
Sharing the cost more efficiently: Improved Approximation for

Multicommodity Rent-or-Buy

L. Becchetti∗ J. Könemann† S. Leonardi∗ M. Pál‡

September 1, 2005

Abstract

In the multicommodity rent-or-buy (MROB) network design problem we are given a net-
work together with a set of k terminal pairs (s1, t1), . . . , (sk, tk). The goal is to provision the
network so that a given amount of flow can be shipped between si and ti for all 1 ≤ i ≤ k
simultaneously. In order to provision the network one can either rent capacity on edges at
some cost per unit of flow, or buy them at some larger fixed cost. Bought edges have no
incremental, flow-dependent cost. The overall objective is to minimize the total provisioning
cost.

Recently, Gupta et al. [7] presented a 12-approximation for the MROB problem. Their
algorithm chooses a subset of the terminal pairs in the graph at random and then buys the
edges of an approximate Steiner forest for these pairs. This technique has previously been
introduced [8] for the single sink rent-or-buy network design problem.

In this paper we give a 6.828-approximation for the MROB problem by refining the algo-
rithm of Gupta et al. and simplifying their analysis. The improvement in our paper is based
on a more careful adaptation and simplified analysis of the primal-dual algorithm for the
Steiner forest problem due to Agrawal, Klein and Ravi [1]. Our result significantly reduces
the gap between the single-sink [8] and multi-sink case.

∗Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”, Via Salaria 113, 00198 Roma,

Italy. Email: {becchett, leon}@dis.uniroma1.it.
†Department of Combinatorics and Optimization, University of Waterloo, 200 University Avenue West, Wa-

terloo, ON N2L 3G1, Canada. Email: jochen@uwaterloo.ca. This work was done while being on leave at the

Dipartimento di Informatica e Sistemistica at Università di Roma “La Sapienza”, Italy.
‡Department of Computer Science, Cornell University, Ithaca, NY 14853, USA. Email: mpal@cs.cornell.edu.

1 Introduction

In the multi-commodity rent-or-buy problem (MROB) we are given an undirected graph G =
(V, E), terminal pairs R = {(s1, t1), . . . , (sk, tk)}, non-negative costs ce for all edges e ∈ E, and
a parameter M ≥ 0. The goal is to select a set of bought edges Fb and a set of of rented edges
Fr, respectively, such that for all (s, t) ∈ R, we can ship a given amount of flow from s to t using
the edges in Fb ∪ Fr. The cost of a bought edge e ∈ Fb is M · ce. A rented edge e ∈ Fr costs
ce · λ(F, e) where λ(F, e) denotes the total flow traversing edge e. The aim is to find a feasible
solution of smallest total cost.

The MROB problem generalizes the single-commodity rent-or-buy problem (SROB). Here we are
again given an undirected network together with rental and buying costs on all edges e ∈ E
as before. We are also given a set of terminal nodes and a root node r. The goal is now to
provision the network such that all terminals can send a specified amount of flow to the root
node r simultaneously. A recent result of Gupta et al. [8] gives a 3.55 approximation algorithm
for the problem.

Awerbuch and Azar [2] and Bartal [3] were the first to give an O(log |V | log log |V |)-approximation
algorithm for the MROB problem. Later, Kumar, Gupta and Roughgarden [12] give the first
constant approximation algorithm for the problem based on a primal-dual approach. A more
recent result by Gupta et al. [7] builds on the techniques used by Gupta et al. [8] for the single-
commodity rent-or-buy problem and obtains a 12-approximation for the MROB problem. Their
work also uses the cost-sharing concept from game-theory (see, e.g., [4, 9, 13]) in the analysis of
the algorithm.

The minimum-cost Steiner tree and forest problems are closely related to both the MROB
and SROB problems. In the more general Steiner forest problem, we are given an undirected
graph G = (V, E), non-negative costs ce for all edges e ∈ E, and a set of terminal pairs
R = {(s1, t1), . . . , (sk, tk)}. The goal is to find a forest F of minimum total cost such for all
1 ≤ i ≤ k, there is a tree T ∈ F that contains both, si and ti. It is well-known that the minimum-
cost Steiner forest problem is NP-hard[5] and Max-SNP hard. On the positive side, Agrawal, Klein
and Ravi [1] and later Goemans and Williamson [6] give a primal-dual 2-approximation for the
problem.

The MROB algorithm from [7] crucially relies on the primal-dual algorithm for Steiner forest of
Agrawal et al. [1]. The algorithm in [7] first picks a random subset of all terminal pairs R0 ⊆ R
and then uses a modified primal-dual Steiner forest algorithm to compute a feasible Steiner forest
F 0 for R0. The algorithm buys all edges from F 0. Terminal pairs in R\R0 that are not connected
in F 0 rent extra capacity in the cheapest possible way to establish connections.

The central feature of the modified primal-dual Steiner forest algorithm used in [7] is β-strictness:
The algorithm defines cost-shares χst for all terminal pairs (s, t) in R. Let the Steiner forest
computed by the algorithm on input R \ {(s, t)} be denoted by F 0 and let G|F 0 be the graph
obtained from G by contracting F 0. The algorithm then guarantees that the cheapest way of
connecting s to t in G|F 0 costs at most β ·χst. Moreover, the sum over all cost-shares of terminal
pairs is at most the cost of a minimum-cost Steiner forest for R.

The prize for a β-strict Steiner forest algorithm is a worse performance guarantee. Gupta et. al
show that their Steiner forest modification returns a 6-approximate and 6-strict Steiner forest and

1

this leads to a 12-approximate MROB-algorithm. In general, they show that any α-approximate
and β-strict algorithm leads to an (α + β)-approximation for the MROB problem.

Our Contribution. Our algorithm uses the cost-sharing framework proposed by Gupta et al.
We prove the following main result:

Theorem 1 For any β ≥ 2 there is a polynomial-time (2 + 2/(β − 2))-approximate and β-strict

algorithm for the minimum-cost Steiner forest problem.

In [7], Gupta et al. show the following main theorem:

Theorem 2 Suppose there is an α-approximate and β-strict algorithm for the Steiner forest

problem. Then there exists an (α + β)-approximation algorithm for the multicommodity rent-or-

buy problem.

Choosing β = 2 +
√

2 in Theorem 1 together with Theorem 2 implies the following corollary:

Corollary 1 There is a (4 + 2
√

2)-approximate algorithm for the multicommodity rent-or-buy

problem.

The heart of our work is a new β-strict algorithm for the Steiner forest problem. Our Steiner
forest algorithm has two main phases: The first phase runs the standard primal-dual Steiner forest
algorithm from [1] and computes an approximate Steiner forest F ′ for a given set of terminal
pairs R.

The second phase identifies the terminal nodes in each tree T in F ′. The newly created super-

node is treated as a terminal of another Steiner tree instance. We then run a budgeted version
of the primal-dual algorithm for Steiner trees to obtain a final Steiner forest. Here, we borrow
ideas from earlier work on prize-collecting variants of the Steiner tree problem (see, e.g., [6]).

The benefit of our method is two-fold: First, we combine existing primal-dual algorithms in a
black-box fashion as opposed to modifying technical details of an existing method. This leads to
a much simplified algorithm and more intuitive analysis. Second, since we use standard primal-
dual algorithms for the Steiner forest and Steiner tree problems we inherit some of their nice
properties. Most notably, our dual solutions are laminar.

Organization of this paper. The next section recaps the primal-dual Steiner forest algorithm
from [1] since our methods and its analysis strongly relies on it. Our algorithm and its analysis
depend crucially on a view of the primal-dual Steiner forest algorithm that differs from the one
taken in [1]. We introduce this view in Section 2. Subsequently, we present in Section 3 our
β-strict Steiner forest algorithm together with its analysis and the proof of Theorem 1. Section
4.1 has a complete analysis of a 5 approximation for a special case of the algorithm. The proof
of the main technical Lemma for the analysis of the general case is presented in Section 5.

2

2 The Minimum-cost Steiner forest problem

We present the primal-dual algorithm (subsequently referred to as AKR) for the Steiner forest
problem due to Agrawal, Klein, and Ravi [1]. The algorithm constructs both a feasible primal
and a feasible dual solution for a linear programming formulation of the Steiner forest problem
and its dual, respectively. A standard integer programming formulation for the Steiner forest
problem has a binary variable xe for all edges e ∈ E. Variable xe has value 1 if edge e is part
of the resulting forest. We let U contain exactly those subsets U of V that separate at least one
terminal pair in R. In other words, U ∈ U iff there is (s, t) ∈ R with |{s, t}∩U | = 1. For a subset
U of the nodes we also let δ(U) denote the set of those edges that have exactly one endpoint in
U . We then obtain the following integer linear programming formulation for the Steiner forest
problem:

min
∑

e∈E

ce · xe (IP)

s.t
∑

e∈δ(U)

xe ≥ 1 ∀U ∈ U

x integer

For a pair of nodes u, v ∈ R, let cuv be the minimum cost of any u, v-path in G. It can be shown
(see [10, 11]) that the following linear program is equivalent to the dual of the LP relaxation
(LP) of (IP):

max
∑

U⊆R

yU (D)

s.t
∑

U⊆R:|{u,v}∩U |=1

yU ≤ cuv ∀u, v ∈ R (1)

y ≥ 0

In our presentation, we let AKR construct a primal solution for (LP) and a dual solution for (D).

We think of an execution of Algorithm AKR as a process over time and let xt and yt be the
primal incidence vector and dual feasible solution at time t. We also use F t to denote the forest
corresponding to xt. The algorithm now starts with x0

e = 0 for all e ∈ E and y0
U = 0 for all

U ∈ U .

Assume that the forest F t at time t is infeasible. For a connected component C of F t, we use
R[C] to denote the set of terminal nodes in C. We say that a connected component C of F t is
active if R[C] ∈ U . The algorithm raises the dual variables corresponding to all active connected
components of F t simultaneously until a constraint of type (1) is satisfied with equality. Suppose
that this happens for terminals u, v ∈ R and also assume that u ∈ Cu and v ∈ Cv for connected
components Cu and Cv of F t. We then add a u, v-path of smallest total cost to F t and continue.

The algorithm terminates at the earliest time t∗ when F t∗ is a feasible Steiner forest. The
following theorem is the main result from [1].

Theorem 3 (See [1]) Suppose that algorithm AKR stops at time t∗. We then must have that

c(F t∗) ≤ 2 ·
∑

U⊆R

yt∗

U .

3

3 A strict algorithm for minimum-cost Steiner forest

This section is split into three major parts. First we show how to compute the cost shares for
each terminal pair (s, t) ∈ R. Subsequently we give our (2 + 2/(β − 2))-approximate and β-strict
algorithm for Steiner forests. The section ends with the strictness-analysis of the algorithm.

3.1 Computing cost-shares

We start by giving a precise definition of the strictness notion. For a forest F in G, let G|F
denote the graph resulting from contracting all trees of F . For vertices u, v ∈ V , we also let
cG(u, v) denote the minimum-cost of any u, v-path in G. In [7], Gupta et al. define the notion of
β-strict algorithms for the minimum-cost Steiner forest problem.

Definition 1 An algorithm A for the Steiner forest problem is β-strict if it returns values χi for

all (si, ti) ∈ R such that

1.
∑

(si,ti)∈R χi ≤ c(F ∗) where F ∗ is a feasible Steiner forest for R of minimum total cost, and

2. cG|Fi
(si, ti) ≤ β · χi for all (si, ti) ∈ R where Fi is a Steiner forest for terminal pairs

R \ {(si, ti)} returned by A.

The algorithm to compute the cost shares χi for all terminal pairs (si, ti) ∈ R differs slightly from
the one presented in [7]. We run AKR on input graph G with terminal pairs R. Let agei be the
time at which si and ti meet during this execution.

For an active component U at some time t during the execution of AKR(R) we pick a distinct
terminal r ∈ R[U] of maximum age and declare it the beneficiary of U . We then define an
indicator variable δi

t for all terminal pairs (si, ti) and for all times t ≥ 0:

δi
t =

2 : Both, si and ti are beneficiaries at time t < agei

1 : Exactly one of si and ti is a beneficiary at time t < agei

0 : otherwise.

The cost-share of terminal pair (si, ti) is defined as

χi =

∫ t∗

0
δi
t dt. (2)

Notice that our definition implies that the total cost-share over all terminal pairs is equal to the
objective function value of the computed dual solution.

3.2 Adding strictness: A modified Steiner forest algorithm

Fix a terminal pair (s, t) ∈ R and let R0 = R \ {(s, t)}. The new algorithm AKR2 first uses AKR to
compute a feasible Steiner forest F ′ for terminal set R0. The second phase of the algorithm adds
more paths to connect components of F ′ that are close to each other. Selecting paths carefully
in this second phase yields a Steiner forest F 0 whose cost is only a constant factor worse than
that of F ′ and that satisfies the necessary strictness properties.

We now describe the algorithm AKR2 in greater detail. The algorithm works on input R0 and has
two phases:

4

[Aerobic Phase] In this phase we execute AKR on terminal set R0. This produces a forest
F ′ that is feasible for R0 and a corresponding dual solution {y′

U}U⊆R0 . We let C′ be the set of
connected components of F ′ and define U ′ to be the set of subsets of R0 that receive positive
dual in AKR(R0), i.e.

U ′ = {U ⊆ R0 : y′U > 0}.

We now use F ′ to create a new graph G′ from the original graph G: For each connected component
C of F ′, we identify the terminals in R0[C]. In other words, we replace the set R0[C] by a new
vertex C. Each edge (u, v) ∈ δ(R0[C]) with u ∈ R0[C] and v 6∈ R0[C] is substituted by a new
edge (C, v) with cost cuv. Finally, we delete all edges e ∈ E that have both end-points in R0[C].
The graph G′ contains a super-node C for each non-trivial connected component C ∈ C ′.

[Anaerobic Phase] Recall that whenever AKR(R0) grows a moat U ∈ U there is a terminal
rU ∈ U of maximum age that is the beneficiary of this growth. For a connected component C of
F ′, we then let

U ′
C = {U ∈ U ′ : rU ∈ R[C]}

be the set of moats whose beneficiary is a terminal in C. The set {U ′
C}C∈C′ is a partition of U ′.

For a node C ∈ C ′ let ageC denote the maximum age among the terminal pairs in R0[C]. Then
define the budget bC of node C ∈ C ′ as

bC = ageC + γ ·
∑

U∈U ′
C

y′U (3)

for a parameter γ ≥ 1/2. For nodes v ∈ V [G′] \ C′ we let bv = 0.

We now run a budgeted version of the Steiner tree algorithm that bears resemblance to the
prize-collecting Steiner tree algorithm from [6]: Say a connected component of the current forest
is active if it has remaining budget. At any point during the algorithm we then raise the dual
variables of all active connected components in the current forest. We decrease the budget of
these components at the rate at which their duals grow.

Two possible events can occur:

Merge A path connecting two active connected components C1 and C2 in the current forest
becomes tight. In this case, add the edges of the path to the current forest and by this
create a new connected component C. The budget of this new component C is the sum of
the remaining budgets of C1 and C2.

Death A connected component runs out of budget in the growth phase. In this case the compo-
nent simply dies and we continue growing those components that have positive remaining
budget.

We let F ′′ be the forest in G′ computed during the anaerobic phase and let {y′′
U}U⊆V [G′] be the

corresponding dual solution. We obtain the final forest F 0 from F ′′ by replacing each super-node
v ∈ C′ by the corresponding connected component in F ′.

Lemma 1 The cost of the forest F 0 computed by AKR2 on terminal set R0 is at most

(2 + 2γ) · opt R0

5

where opt R0 is the cost of a minimum-cost feasible Steiner forest for terminal set R0.

Proof: The proof of Theorem 3 in [1] shows that

c(C) ≤ 2 ·

∑

U∈U ′
C

y′U

− ageC

 (4)

for all connected components C of F ′. The same proof also shows that

c(F ′′) ≤ 2 ·
∑

U⊆R0

y′′U = 2 ·

γ ·

∑

U⊆R0

y′U

+

∑

C∈C′

ageC

 . (5)

Equations (4) and (5) together imply

c(F 0) = c(F ′) + c(F ′′) =

(
∑

C∈C′

c(C)

)
+ c(F ′′) ≤ (2 + 2γ) ·

∑

U⊆R0

y′U .

The lemma follows from weak duality and from the fact that y′ is feasible dual solution for (D).

4 Analyzing the strictness of Algorithm AKR2

We focus on terminal pair (s, t) ∈ R. Recall that R0 = R \ {(s, t)} and let F denote the forest
computed by AKR on input R. As before we let F 0 be the forest computed by AKR2 on input R0.
As in Section 1 we use G|F 0 to denote the graph obtained from G by contracting the connected
components of forest F 0. In order to prove that AKR2 is β-strict we need to show that

cG|F 0(s, t) ≤ β · χst. (6)

Let Pst be the unique s, t-path in the forest F . Notice that the path Pst may enter and leave a
connected component of F 0 multiple times. We can then remove all loops and obtain a path P
in G|F 0 that enters and leaves each component of F 0 at most once.

The rough outline is as follows: The cost of P in G|F 0 is at least cG|F 0(s, t). We will show that

cG|F 0(P) ≤ β · χst

where cG|F 0(P) is the cost of path P in the graph G|F 0 and this implies (6) since cG|F 0(s, t) ≤
cG|F 0(P).

We let C1, . . . , Cp be the connected components of F 0 that P touches in that order. Since P is
loop-less in G|F 0 it follows that each connected component of F 0 occurs at most once in this
list. We also assume that s and t are not part of

⋃p
i=1 Ci. Finally, let pm be the the point on P

where the active moats containing s and t meet during the execution of AKR(R).

6

Ci

Cs
i Ct

i

hi,s hi,tb0
i,s b0

i,t

bi,s bi,t

Figure 1: Connected component Ci on path P together with its budget reservation on P . The
budget growth bu

i of component Cu
i is split into hi,u and b0

i,u.

Recall that we use {yU}U⊂R to denote the dual solution computed by AKR(R). We then define
the residual cost c̃e of edge e ∈ E as

c̃e = ce −
∑

U⊆R0,e∈δ(U)

yU . (7)

The residual cost of edge e is the part of ce that does not feel dual load from subsets of R0 in
AKR(R). Therefore, roughly speaking, s and t gather c̃e units of cost-share while traversing edge
e.

In the following we express the cost cG|F 0(P) of path P in G|F 0 as a sum of hidden and residual
cost. For a connected component Ci of F 0 that is on path P , we let P s

i and P t
i be the s, Ci-

segment and the Ci, t-segment of P , respectively. Let C ′[C] be the set of connected components
of forest F ′ that are contained in a connected component C of F 0. We then let Cs

i , C
t
i ∈ C′[Ci]

be the first and last connected components on the s, t-path Pst in G′.

Define hi,s and hi,t to be the cost of the two hidden segments of P inside Ci, i.e.

hi,u =
∑

U⊆R0,U∩Ci 6=∅

|δ(U) ∩ P u
i | · yU (8)

for u ∈ {s, t} and let hi = max{hi,s, hi,t}. This enables us to express the cost of path P in G|F 0

as

cG|F 0(P) = c̃(P) +

p∑

i=1

(hi,s + hi,t). (9)

In the following, we use ages′,t′ and age0
s′,t′ to denote the time at which the terminals of (s′, t′) ∈

R0 meet during the execution of AKR(R) and AKR(R0), respectively. We extend this notion to sets
C ⊆ V by letting

ageC = max
(s′,t′)∈R0[C]

ages′,t′ .

Consider two connected components C1, C2 ∈ C′. We say that C1 encloses C2 in AKR(R0) if there
is a set U ∈ U ′

C1
that contains C2. In other words, there is a point in time (the time of enclosure)

during AKR(R0) at which an active moat containing C1 grows across a dead moat containing C2.

7

For 1 ≤ i ≤ p and for u ∈ {s, t}, we let Cu
i ∈ C′[Ci] be the connected component in Ci that

encloses Cu
i latest (Cu

i = Cu
i if Cu

i is not enclosed by any other connected component in Ci).
Intuitively, the budget-growth of component Cu

i along path P u
i reserves parts of the residual cost

of P u
i which are later used to pay for the segments of P u

i that are hidden within Ci.

For ease of notation we define the excess budget

b0
i,u = 2γ ·

∑

U∈U ′

Cu
i

y′U (10)

and let
bi,u = b0

i,u + hi,u.

We also use bi for the maximum of bi,s and bi,t.

Lemma 2 Let 1 ≤ i ≤ p and u ∈ {s, t} and assume that u meets the first terminal from Ci

at time T in AKR(R).Then we must have hi,u ≤ min{T, age0
Cu

i

}. In particular this means that

hi ≤ ages,t for all 1 ≤ i ≤ p.

Proof: First, consider the case where T ≤ age0
Cu

i

. Let U ⊆ R be an active moat in AKR(R) at

time T ′ ≥ T with δ(U) ∩ P u
i 6= ∅. In this case u must clearly also be in U and hence the dual

assigned to U does not contribute to hi,u. At any time prior to T there exists at most one active
moat loading P u

i that intersects Ci and hence hi,u ≤ T .

Now assume that T > age0
Cu

i

. This means that u meets Ci only after time age0
Cu

i

and the moat

containing Cu
i is dead at this point. Since Cu

i encloses Cu
i we know that Cu

i must also be dead
at time age0

Cu
i

. Moreover, as before, at any time t ∈ [0, age0
Cu

i

] there is at most one moat loading

P u
i in AKR(R). Therefore we must have hi,u ≤ age0

Cu
i

.

The lemma follows since T ≤ ages,t.

The following lemma relates excess-budget and the cost of hidden segments of P .

Lemma 3 For all connected components Ci on P and for u ∈ {s, t} we must have b0
i,u ≥ 2γhi,u.

Proof: Observe that AKR(R0) grows at least two moats that are contained in Cu
i at all times

t ∈ [0, age0
Cu

i

]. Therefore we must have

b0
i,u = γ ·

∑

U∈U ′

Cu
i

y′U ≥ 2γ · age0
Cu

i

.

An application of Lemma 2 finishes the proof.

We define a useful interference notion that is needed throughout the rest of this paper.

Definition 2 Let (s′, t′) ∈ R be a terminal pair with ages,t ≤ ages′,t′ . We say that terminal

v′ ∈ {s′, t′} interferes with v ∈ {s, t} if v and v′ meet before time ages,t in AKR(R). Formally v′

interferes with v if there is a set U ⊆ R such that {v, v′} ⊆ U and yU > 0.

8

Recall that we use C ′ to denote the set of connected components in the forest F ′ produced by
the aerobic phase of AKR2(R

0).

Definition 3 A component C ∈ C ′ captures a node v if a moat containing C reaches v in the

anaerobic phase of AKR2(R
0). We also say that a connected component C of F 0 captures v if

there is a connected component C ′ of F ′ that captures v and C ′ ⊆ C.

4.1 The strictness of AKR2: A simple case

As a warm up for the reader, we prove the strictness result under the following assumption:

Assumption 1 There are no interfering terminals for terminal pair (s, t) and none of the com-

ponents in {Cu
i }u∈{s,t},1≤i≤p captures s or t.

We will argue that Assumption 1 implies that the amount of cost-share recovered by s and t is
at least the residual cost c̃(P) of path P . This in turn will enable us to prove that the algorithm
is 5-strict in this case.

Lemma 4 Consider two connected components C1, C2 ∈ C′ such that C1 encloses C2 at time T
in AKR(R0). Then C1 also encloses C2 by time T in the anaerobic phase of AKR2(R

0).

Proof: Since C1 encloses C2 at time T in AKR(R0), there must exist terminals s1 ∈ R0[C1] and
s2 ∈ R0[C2] and a tight path P12 connecting them at time T in AKR(R0). By definition, the
budget bCj

of component Cj for j ∈ {1, 2} is at least the maximum age of any terminal in Cj .
Therefore, path P12 must also be tight in the anaerobic phase of AKR2(R

0) at time T .

The Lemma implies that the connected components in C ′(Ci) inflict at least hi,u units of dual on
P u

i by time ageCu
i

in the anaerobic phase of AKR2(R
0) for all 1 ≤ i ≤ p and for u ∈ {s, t}. Since

the remaining budget of component C
u

i at this point is b0
i,u it follows that the load on P u

i coming

from Ci in the anaerobic phase of AKR2(R
0) is at least

bi,u = hi,u + b0
i,u ≥ (2γ + 1)hi,u

where the inequality follows from Lemma 3. Assumption 1 implies that

(2γ + 1)

p∑

i=1

(hi,s + hi,t) ≤
p∑

i=1

(bi,s + bi,t) ≤ cG|F 0(P). (11)

Let χ1
st denote the cost-share of terminal pair (s, t) given Assumption 1. We now show that χ1

st

is at least the residual cost of P .

Lemma 5 The cost share χ1
st of terminal pair (s, t) is at least the residual cost c̃(P) of the

s, t-path P in AKR(R).

9

Proof: Let U ⊆ R be an active moat in the execution of AKR(R) and let u ∈ {s, t} ∩ U . By
Assumption 1, u must be the beneficiary of U . Hence, the total cost-share collected by {s, t} is

∑

U⊆R,|{s,t}∩U |=1

yU ≥ cG|F 0(P) −
∑

U⊆R0

|δ(U) ∩ P | · yU

and the right-hand side of this equality is c̃(P).

In the anaerobic phase of AKR2, the super-node Cu
i ∈ C′ extends along P u

i for all 1 ≤ i ≤ p and
for u ∈ {s, t}. This way, component Cu

i reserves b0
i,u units of the residual cost c̃(P) of path P .

The total amount of residual cost reserved for component i is therefore b0
i,s + b0

i,t and Lemma 5
shows that this translates into at least the same amount of cost-share.

We use this cost-share to pay for those segments of P in G|F 0 that feel dual load from Ci in the
anaerobic phase of AKR2(R

0). Specifically, showing β-strictness amounts to proving

bi,u = b0
i,u + hi,u ≤ β · b0

i,u (12)

for all 1 ≤ i ≤ p and for u ∈ {s, t}. Remember that the ratio bi,u/b0
i,u can be made smaller than

β > 1 by increasing the parameter γ in (3).

Theorem 4 For any β ≥ 2 there is a polynomial-time (2 + 1/(β − 1))-approximate and β-strict

algorithm for the minimum-cost Steiner forest problem under Assumption 1.

Proof: Define the slack sl of path P as the amount of residual cost that is not needed for
budget-reservation in AKR2:

sl = c̃(P) −
p∑

i=1

(b0
i,s + b0

i,t).

Equation (9) then shows that the cost cG|F 0(P) of path P is

∑

1≤i≤p

(b0
i,s + hi,s + b0

i,t + hi,t) + sl.

On the other hand we know from Assumption 1 that none of the components on path P capture
s and t and hence equation (11) holds. The definition of residual cost together with Lemma 5
imply

χ1
s,t ≥ c̃(P) =

(
p∑

i=1

b0
i,s + b0

i,t

)
+ sl.

Therefore showing b0
i,u + hi,u ≤ βb0

i,u for all 1 ≤ i ≤ p and for u ∈ {s, t} suffices to prove β-

strictness. Equivalently we need to show b0
i,u ≥ 1/(β−1) ·hi,u for all 1 ≤ i ≤ p and for u ∈ {s, t}.

By Lemma 3, this is true for γ ≥ 1/2(β − 1) and our final choice of β = 2 implies that γ ≥ 1/2
as wanted.

Choosing β = 2 in Theorem 4 together with [7] yields:

Corollary 2 There is a 5-approximate algorithm for the multicommodity rent-or-buy problem

under Assumption 1

10

4.2 The strictness of AKR2: The general case

The intuitive outline given above does not suffice to analyze the strictness of AKR2 in general.
The problem is two-fold: First, there maybe components on P that capture s or t and hence
(11) may not hold. Second, there may exist terminals that interfere with {s, t}. A proof of the
following general lower-bound on χst is given in Section 5.

Lemma 6 Let I be the set of indices of components on P that contain terminals that interfere

with s or t, i.e.

I = {i ∈ {1, . . . , p} : ∃v′ ∈ Ci that interferes with {s, t}}.

Also define b
0
i,u = min{b0

i,u, 2/(β − 2) · hi,u} and let bi,u = b
0
i,u + hi,u for all 1 ≤ i ≤ p and for

u ∈ {s, t}. We must have

χst ≥
1

2
·

sl +

∑

1≤i≤p,i6∈I

(b
0
i,s + b

0
i,t)

 (13)

where the slack in the residual cost c̃(P) is defined as

sl = max

0, c̃(P) +

(
∑

i∈I

(hi,s + hi,t)

)
−

∑

1≤i≤p,i6∈I

(b
0
i,s + b

0
i,t)

 .

Equation (13) in Lemma 6 shows that we obtain (b
0
i,s+b

0
i,t) units of cost-share for each component

Ci with i ∈ {1, . . . , p} \ I. For each such i ∈ {1, . . . , p} \ I we are going to use this amount of
cost-share to pay for a stretch of length

b
0
i,s + hi,s + b

0
i,t + hi,t

along path P . In particular, this way we pay for a total of
∑

1≤i≤p,i6∈I

(b
0
i,s + b

0
i,t) (14)

of the residual cost of path P . The slack sl in Lemma 6 is the difference between the residual
cost of P and (14). A negative difference indicates that all of the residual cost is paid for by∑

1≤i≤p,i6∈I(b
0
i,s + b

0
i,t) and we therefore define the slack to be 0 in this case. We are now ready

to prove Theorem 1 which we restate for completeness.

Theorem 1 For any β ≥ 2 there is a polynomial-time (2 + 2/(β − 2))-approximate and β-strict

algorithm for the minimum-cost Steiner forest problem.

Proof: We assume that there exist terminals that interfere with {s, t}. Notice that this assump-
tion is w.l.o.g. since the presence of interfering terminals can only lower the cost-share χst. Now
recall the definition of slack in Lemma 6 and observe that the cost cG|F 0(P) of path P is at most

∑

1≤i≤p,i6∈I

(b
0
i,s + hi,s + b

0
i,t + hi,t)

+ sl.

11

On the other hand Lemma 6 yields that the cost-share collected by (s, t) is at least

1

2
·

∑

1≤i≤p,i6∈I

(b
0
i,s + b

0
i,t)

+

sl

2
.

We clearly have sl ≤ β · (sl/2) as β ≥ 2. In order to complete the proof it suffices to show

b
0
i,u + hi,u ≤ β

2
· b 0

i,u

for all 1 ≤ i ≤ p, i 6∈ I and for u ∈ {s, t}. Equivalently we need to have b
0
i,u ≥ 2/(β − 2) · hi,u.

This follows from the definition of b
0
i,u in Lemma 6 and from Lemma 3 with γ ≥ 1/(β − 2). Our

final choice of β = 2 +
√

2 also ensures that γ ≥ 1/2 as wanted.

5 A general lower-bound on the cost-share χst

In order to present a general relation between χst and the residual cost of P we need to handle the
problem of insufficient residual cost. The presence of interfering terminals further complicates
matters. We start with a few useful observations.

5.1 Observations: Old terminals

In this section we prove a few structural properties of the forest F 0 computed by AKR2(R
0)

pertaining to the location of terminal pairs (s′, t′) that interfere with (s, t). Recall that y′′ is
the dual solution computed by AKR2(R

0) in the anaerobic phase. In the following we say that a
connected component C of F 0 interferes with u ∈ {s, t} if there is a terminal u′ ∈ R0[C] that
interferes with u.

Lemma 7 Let u′ be a terminal that interferes with u ∈ {s, t} and assume that u meets u′ at time

T < ages,t in AKR(R). Let C ′ ∈ C′ be the super-node in G′ containing u′. The total dual value

assigned to moats that contain both u and C ′ in the anaerobic phase of AKR2(R
0) must be at least

(2γ + 1) · agest − 2T , i.e.

∑

U⊆V [G′],{u,u′}⊆U

y′′U ≥ (2γ + 1) · agest − 2T.

Proof: Let Pu′ be the path that is added in AKR(R) when u and u′ meet. Consider the path
P ′ = 〈Pu′ , P 〉 formed by concatenating paths Pu′ and path P . The total dual load on P ′ by sets
containing u′ in the anaerobic phase of AKR2(R

0) is at least

bC′ ≥ (2γ + 1) · ages′,t′

by the definition of budget in (3). Since u and u′ meet at time T in AKR(R) we must have that
u′ reaches u by time 2T in AKR2(R

0). Hence the total load inflicted on P by sets containing C ′

and u is at least
(2γ + 1) · ages′,t′ − 2T.

12

The lemma follows from the fact that ages,t ≤ ages′,t′ .

The following corollary is implicit in the proof of Lemma 7.

Corollary 3 Let u1 and u2 be terminals that interfere with u ∈ {s, t}. They both reach u by

time 2 · ages,t in the anaerobic phase of AKR2(R
0) and there must exist a connected component C

in F 0 with {u1, u2} ⊆ R0[C].

Proof: Corollary 3 implies that both u1 and u2 reach u before time 2 · ages,t in the anaerobic

phase of AKR2(R
0). Since u1 and u2 are both active at this point, they must be in the same

connected component of F 0.

Let u′ be a terminal that interferes with u ∈ {s, t}. We say that u′ is on P if u and u′ meet
in AKR(R) at some point p on P . Recall that pm is the point on P where the moats of s and t
collide in AKR(R).

Lemma 8 Let u′ be a terminal on P that interferes with u ∈ {s, t}. Also let C ′ be the connected

component of F ′ containing u′. In this case C ′ captures both s and t by time 2 · ages,t in the

anaerobic phase of AKR2(R
0). Moreover, there must be a connected component Cm for 1 ≤ m ≤ p

that contains all interfering terminals.

Proof: W.l.o.g., assume that u = s and let P s be the s, pm-segment of P . Since u′ is on P we
know that terminal s meets u′ in AKR(R) at some time T < ages,t at a point p on path P . The
load on the p, pm-segment of P by sets containing both s and u′ is at most (ages,t − T). Thus,

there must exist a tight C ′, pm-path at time ages,t in the anaerobic phase of AKR2(R
0). By our

choice of γ ≥ 1/2 we know that bC′ ≥ (2γ + 1) · ages′,t′ > 2 · ages,t. Hence, C ′ reaches both s

and t in the anaerobic phase of AKR2(R
0) by time 2 · agest.

Now let u′′ be a terminal that interferes with u ∈ {s, t} and let C ′′ be the connected component
of F ′ that contains u′′. Corollary 3 shows that both C ′ and C ′′ capture u by time 2 ·ages,t. Since

they are both alive at that point they must be part of the same connected component of F 0.

In the case of interfering terminals on P we will from now on use Cm to denote the connected
component of F 0 that contains all interfering terminals.

Lemma 9 Let u ∈ {s, t} and assume that Cr is a connected component of F 0 that captures u
before time (2γ + 1) · ages,t in AKR2(R

0). Let u′ be a terminal that interferes with u and let C ′ be

its connected component in F ′. Moreover let T be the time where u and u′ meet in AKR(R) and

let T ′ be the time when C ′ captures u in the anaerobic phase of AKR2(R
0). We then must have

either u′ ∈ Cr or 2T ≥ T ′ ≥ br ≥ hr.

Proof: It is not hard to see that C ′ must capture u before time 2T and hence we have 2T ≥ T ′.

The proof is by contradiction: Assume that u′ is not in Cr and that we also have T ′ < br.
Component Cr is alive until time br and by assumption it captures s by time (2γ + 1) · ages,t.
Finally, the budget of component C ′ is at least (2γ + 1) · ages,t. This means that C ′ and Cr

collide when they are both active and hence u′ ∈ Cr contradicting our assumption.

13

5.2 Observations: Insufficient residual cost

Suppose that one or more connected components of the forest F ′ at the end of the aerobic phase
of AKR2(R

0) do not find enough space on P to reserve their portion of budget. In other words,
they grow beyond s or t in the anaerobic phase. Let Cr be such a connected component of F ′

and assume that it captures u ∈ {s, t}. We can then show that the cost of path P u
r in G|F 0 is at

least the total budget of all components on P u
r excluding Cr itself.

Lemma 10 Let u ∈ {s, t} and assume that Cr for 1 ≤ r ≤ p is a connected component of F 0

on P that captures u. Let C be the index set of connected components on P u
r excluding Cr that

capture u. Furthermore, let M be the set of indices of those components on P u
r that do not

capture u. We must have

cG|F 0(P u
r) ≥

∑

i∈C∪M

(bi,s + bi,t).

Proof: For ease of notation and w.l.o.g. we now assume that u = s. We first consider components
Ci with i ∈ M. These components die in the anaerobic phase of AKR2(R

0) before any other
component on P reaches them. In other words, these components extend fully in the anaerobic
phase without capturing either s or t. We remove the components in M together with the part
of cG|F 0(P u

r) that feels dual load from a component in M from path P . The removed part has
total cost exactly ∑

i∈M

(bi,s + bi,t).

For ease of notation renumber the remaining components on P u
r such that

C = {1, . . . , r − 1}

and such that Ci+1 captures s after Ci for all 1 ≤ i < r. We reserve a distinct portion of size
bi,s + bi,t of cG|F 0(P u

r) for each 1 ≤ i < r.

Consider component Ci for 1 ≤ i < r. Ci (and all connected components of F ′ that are contained
in Ci) must be dead at the time T at which Ci+1 captures it in AKR2(R

0) since otherwise Ci and
Ci+1 would be part of the same connected component of F 0. This has two consequences: First
component Ct

i has managed to reserve bi,t units of budget on the Ci, Ci+1-segment of P before
time T . Second, Ci+1 must have accumulated at least max{bi,s, bi,t} units of s-budget on the
Ci, Ci+1-segment of P . This means that the cost of path P s

r in G|F 0 is at least
∑

i∈C

(bi,t + max{bi,s, bi,t}).

The lemma follows.

Let Lu be the set of indices of connected components that capture u ∈ {s, t}. We then define

L = {max
l∈Ls

l, min
q∈Lt

q}.

For ease of notation we also define C = (Ls ∪ Lt) \ L. Finally, we let M be the set of indices of
connected components of F 0 on P that do not capture either s or t. Observe that this means
that {l + 1, . . . , q − 1} ⊆ M in the case where L = {l, q} with 1 ≤ l < q ≤ p.

14

Corollary 4 Define b0
L = b0

l,t + b0
q,s if L = {l, q} for some 1 ≤ l < q ≤ p. Otherwise let b0

L = 0.
Also let hL = hl,s + hq,t. We then must have

b0
L +

∑

i∈C∪M

(b0
i,s + b0

i,t) ≤ c̃(P) + hL.

Proof: Lemma 10 implies that

bL +
∑

i∈C∪M

(bi,s + bi,t) ≤ cG|F 0(P)

where bL = bl,t + bq,s if L = {l, q} with 1 ≤ l < q ≤ p and bL = 0 otherwise. Subtracting∑
i∈C∪M(hi,s + hi,t) on both sides yields

bL +
∑

i∈C∪M

(b0
i,s + b0

i,t) ≤ c̃(P) +
∑

i∈L

(hi,s + hi,t). (15)

Adding hL −∑i∈L(hi,s + hi,t) to both sides of (15) finishes the proof.

5.3 A general lower-bound for χst

We are now ready to give a proof of Lemma 6. We restate the lemma here for completeness.

Lemma 6 Let I be the set of indices of components on P that contain terminals that interfere

with s or t, i.e.

I = {i ∈ {1, . . . , p} : ∃v′ ∈ Ci that interferes with {s, t}}.

Also define b
0
i,u = min{b0

i,u, 2/(β − 2) · hi,u} and let bi,u = b
0
i,u + hi,u for all 1 ≤ i ≤ p and for

u ∈ {s, t}. We must have

χst ≥
1

2
·

sl +

∑

1≤i≤p,i6∈I

(b
0
i,s + b

0
i,t)

where the slack in the residual cost c̃(P) is defined as

sl = max

0, c̃(P) +

(
∑

i∈I

(hi,s + hi,t)

)
−

∑

1≤i≤p,i6∈I

(b
0
i,s + b

0
i,t)

 .

Proof: We know from Lemma 8 that I is either empty or consists of index m only (in the case
where there are interfering terminals on P). We subdivide the argument into two parts depending
on the existence of interfering terminals that are on path P .

15

Interfering terminals on P . Lemma 8 shows that there exists an index m ∈ {1, . . . , p} such
that Cm contains all terminals that interfere with s or t. Consider u ∈ {s, t} and let Tu ≤ ages,t

be the time in AKR(R) when u meets the first interfering component C ∈ C ′[Cm]. Lemma 2 shows
that

hm,u ≤ Tu (16)

for u ∈ {s, t}.
Let p be the point on P u

m where u and Cm meet in AKR(R) and use Pup and Ppm to denote the
u, p-segment and the p, Cm-segment of P u

m, respectively. Definition (7) implies that the residual
cost of Ppm is 0. We therefore obtain

c̃(P u
m) = c̃(〈Pup, Ppm〉) = c̃(Pup) = hm,u.

Together with (16) this implies that

χst ≥ Ts + Tt ≥ hm,s + hm,t = c̃(P s
m) + c̃(P t

m) = c̃(P). (17)

As in Corollary 4 we let C be the index set of components that capture either s or t excluding m.
We also let M be the set of indices of components on P that do not capture s and t. Corollary
4 implies that

c̃(P) + hm,s + hm,t ≥
∑

i∈C∪M

(b0
i,s + b0

i,t) ≥
∑

i∈C∪M

(b
0
i,s + b

0
i,t).

The definition of sl together with (17) imply

χst ≥
c̃(P) + hm,s + hm,t

2
=

1

2
·
(
sl +

∑

i∈C

(b
0
i,s + b

0
i,t)

)

and this finishes the proof in the case of interfering terminals on P .

No interfering terminals on P . In the following we use vs and vt to denote terminals that
interfere with s and t, respectively. Similarly, we let Cs and Ct be connected components of F ′

that contain vertices vs and vt.

We observe that the cost-share collected by {s, t} is smallest if there are interfering terminals.
Corollary 3 shows that we need to consider only two cases: In the two-sided case, both s and t see
interference from distinct terminals vs and vt. Notice that Cs 6= Ct in this case since otherwise
Cs = Ct would be on P . In the one-sided case, only one of s and t sees interference from older
terminal pairs.

[Case 1: Two-sided interference] Let Ts be the time when s meets vs in AKR(R) and define Tt

analogously for t and vt. Let Pvs and Pvt be the paths that are added in AKR(R) when vs and s
meet and when vt and t meet, respectively. Lemma 7 shows that the combined load from Cs and
Ct on 〈Pvs , P, Pvt〉 is at least

(4γ + 2) · ages,t ≥ (2γ + 1) · c̃(P). (18)

Define sets Lu for u ∈ {s, t} as in Corollary 4 and consider set Ci for i ∈ Lu. W.l.o.g. assume
that u is the first vertex in {s, t} that is captured by Ci. Then Ci captures u by time 2 · ages,t

16

in the anaerobic phase: Let C contain the indices of all sets on P u
i excluding i. Notice that all

components Cj for j ∈ C must be dead by the time Ci captures u. Hence, the maximal load that
Ci can inflict on P u

i is bounded by

cG|F 0(P u
i) −

∑

j∈C

(bj,s + bj,t) ≤ c̃(P u
i) + hi,u ≤ 2 · ages,t.

This shows that Ci captures u by time 2 · ages,t in the anaerobic phase. Let C ∈ {Cs, Ct} be

the first set to reach Ci in the anaerobic phase of AKR2(R
0). The above argument shows that the

collision of Ci and C must happen before time (2γ + 1) · ages,t. It follows that Ci must be dead
at this time since otherwise C would be on path P .

Hence component Ci must have extended fully in the anaerobic phase of AKR2(R
0) for all 1 ≤ i ≤ p

before either Cs or Ct reach it in the anaerobic phase. A careful look at Lemma 7 shows that
the load in (18) is inflicted before time (2γ + 1) · ages,t in the anaerobic phase and thus, both Cs

and Ct are active at this time.

Therefore the load in (18) has to be at most

cG|F 0(P) + 2Ts + 2Tt −
p∑

i=1

(bi,s + bi,t) = c̃(P) + 2Ts + 2Tt −
p∑

i=1

(b0
i,s + b0

i,t).

Solving for Ts + Tt gives

Ts + Tt ≥
1

2
· c̃(P) +

1

2
·

p∑

i=1

(b0
i,s + b0

i,t).

Now observe that χst = Ts + Tt and hence

χst ≥
1

2
· c̃(P) +

1

2
·

p∑

i=1

(b0
i,s + b0

i,t).

This concludes the proof in Case 1.

[Case 2: One-sided interference] We assume, w.l.o.g., that there is no terminal vt that interferes
with t. As before let Ts denote the time when s meets the first interfering terminal vs in AKR(R).
Since t sees no interference in AKR(R), the proof of Lemma 5 implies that

χst = agest + Ts ≥
1

2
· c̃(P) + Ts. (19)

We again let Cs be the connected component of F ′ that captures s. Let Ci for 1 ≤ i ≤ p be a
connected component of F 0 on path P . Component Ci must be dead when Cs captures it during
the anaerobic phase of AKR2(R

0) since otherwise Cs would be on path P as well. In other words,
Ci must have finished its budget-growth phase by the time Cs reaches it in the anaerobic phase.

In the following we let L = {l, q} with 1 ≤ l ≤ q ≤ p. Consider the case where l < q and hence L
contains exactly two indices. Observe that Cl captures s by time 2 ·ages,t in this case. Otherwise
Cl would also capture Cq and this contradicts the assumption l 6= q. The budget of Cs is at least
(2γ +1) ·ages,t ≥ 2 ·ages,t and therefore Cs reaches s by time 2Ts ≤ 2 ·ages,t as well. This means
that Cs captures Cl and Cl must be dead at that time.

17

Lemma 10 implies that
p∑

i=q+1

(bi,s + bi,t) ≤ cG|F 0(P t
q). (20)

Let Pvs be the path that is added in AKR(R) when s and vs meet and let P ′ = 〈Pvs , P
s
q 〉 be the

concatenation of Pvs and P s
q .

Assume first that Cs captures Cq. This means that Cq is dead when Cs meets it in AKR2(R
0)

and therefore, Cs inflicts at least bq units of budget on path P ′. The total load coming from
super-nodes contained in sets {Ci}1≤i≤q and from Cs on path P ′ is bounded by cG|F 0(P s

q) + 2Ts.
These observations imply

q∑

i=1

(bi,s + bi,t) ≤ cG|F 0(P s
q) + 2Ts. (21)

On the other hand assume that Cs does not capture Cq. Cq may still capture s but this must
happen after Cs is dead and hence at a time later than

bCs ≥ (2γ + 1) · agevs
≥ (2γ + 1) · ages,t

in the anaerobic phase. In other words, Cs and Cq do not touch at time (2γ + 1) · ages,t in the

anaerobic phase of AKR2(R
0) and hence

2 · (2γ + 1) · ages,t +
∑

1≤i<q

(bi,s + bi,t) ≤ cG|F 0(P s
q) + 2Ts. (22)

For u ∈ {s, t}, the definition of bq,u, our choice of γ ≥ 1/(β − 2) in Theorem 1, and Lemma 2
imply that

bq,u ≤ (2γ + 1) · hq,u ≤ (2γ + 1) · ages,t.

Together with (22) we then obtain

∑

1≤i≤q

(bi,s + bi,t) ≤ cG|F 0(P s
q) + 2Ts. (23)

Inequalities (20), (21), and (23) imply that
∑p

i=1(bi,s + bi,t) ≤ cG|F 0 + 2Ts and hence

p∑

i=1

(b
0
i,s + b

0
i,t) ≤ c̃(P) + 2Ts.

It can be seen that (19) together with the definition of slack sl implies

χst ≥
1

2
·
(

p∑

i=1

(b
0
i,s + b

0
i,t)

)
+

sl

2

and the lemma follows.

18

Acknowledgment We thank R. Ravi for sharing his insights on primal-dual algorithms for
Steiner forests and trees with us.

References

[1] A. Agrawal, P. Klein, and R. Ravi. When trees collide: An approximation algorithm for the
generalized Steiner problem in networks. SIAM J. Comput., 24:440–456, 1995.

[2] Baruch Awerbuch and Yossi Azar. Buy-at-bulk network design. In Proceedings, IEEE

Symposium on Foundations of Computer Science, pages 542–547, 20–22 October 1997.

[3] Yair Bartal. On approximating arbitrary metrics by tree metrics. In Proceedings, ACM

Symposium on Theory of Computing, pages 161–168, May 23–26 1998.

[4] Feigenbaum, Papadimitriou, and Shenker. Sharing the cost of multicast transmissions. JCSS:

Journal of Computer and System Sciences, 63, 2001.

[5] M. R. Garey and D. S. Johnson. Computers and Intractability: A guide to the theory of

NP-completeness. W. H. Freeman and Company, San Francisco, 1979.

[6] M. X. Goemans and D. P. Williamson. A general approximation technique for constrained
forest problems. SIAM J. Comput., 24:296–317, 1995.

[7] A. Gupta, A. Kumar, M. Pal, and T. Roughgarden. Approximation via cost-sharing: A sim-
ple approximation algorithm for the multicommodity rent-or-buy problem. In Proceedings,

IEEE Symposium on Foundations of Computer Science, 2003.

[8] A. Gupta, A. Kumar, and T. Roughgarden. Simpler and better approximation algorithms for
network design. In Proceedings, ACM Symposium on Theory of Computing, pages 365–372,
2003.

[9] K. Jain and V. V. Vazirani. Applications of approximation algorithms to cooperative games.
In Proceedings, ACM Symposium on Theory of Computing, pages 364–372, 2001.

[10] J. Könemann. Approximation Algorithms for Minimum-Cost Low-Degree Subgraphs. PhD
thesis, Carnegie Mellon University, 2003.

[11] J. Könemann and R. Ravi. Quasi-polynomial time approximation algorithm for low-degree
minimum-cost steiner trees. In Proceedings of Foundations of Software Technology and The-

oretical Computer Science., 2003.

[12] Amit Kumar, Anupam Gupta, and Tim Roughgarden. A constant-factor approximation
algorithm for the multicommodity. In Proceedings, IEEE Symposium on Foundations of

Computer Science, pages 333–344, 2002.

[13] M. Pál and É. Tardos. Group strategyproof mechanisms via primal-dual algorithms. In
Proceedings, IEEE Symposium on Foundations of Computer Science, 2003.

