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Abstract. Scheduling a sequence of jobs released over time when the processing time of a job is only
known at its completion is a classical problem in CPU scheduling in time sharing operating systems.
A widely used measure for the responsiveness of the system is the average flow time of the jobs, that
is, the average time spent by jobs in the system between release and completion.

The Windows NT and the Unix operating system scheduling policies are based on the Multilevel
Feedback algorithm. In this article, we prove that a randomized version of the Multilevel Feedback
algorithm is competitive for single and parallel machine systems, in our opinion providing one the-
oretical validation of the goodness of an idea that has proven effective in practice along the last two
decades.

The randomized Multilevel Feedback algorithm (RMLF) was first proposed by Kalyanasundaram
and Pruhs for a single machine achieving@(lognloglogn) competitive ratio to minimize the
average flow time against the on-line adaptive adversary, whethe number of jobs that are released.

We present a version of RMLF working for any numibeof parallel machines. We show for RMLF
afirstO(lognlog i) competitiveness result against the oblivious adversary on parallel machines. We
also show that the same RMLF algorithm surprisingly achieves a @gldgn) competitive ratio
against the oblivious adversary on a single machine, therefore matching the lower bound for this case.

Categories and Subject Descriptors: (Péfformance of Systemp performance attributesF.2.2
[Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems—
sequencing and schedulin@.3 [Probability and Statistics]: Probabilistic Algorithms

General Terms: Algorithms, Performance, Theory

Additional Key Words and Phrases: Probabilistic analysis, flow time, multilevel feedback, randomized
algorithms

1. Introduction

In this article, we study nonclairvoyant algorithms to schedule a stream of jobs
released over time on single and parallel machine systems. Evejyiga@ssigned
with a release time&; > 0 and a processing timp;. Job j must be globally
scheduled fop; time units onm parallel identical machines before its completion.
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Job preemption is allowed, the execution of a job can be stopped and resumed later
on the same or on a different machine. The completion time ofj jbdenoted

by C;. A nonclairvoyantscheduling algorithm knows very little about the input
instance: The existence of a job is only known at the release time of the job; The
processing time of a job is only known when the job is completed.

This problem has a number of motivating applications. The most classical one
is processor scheduling in a time-sharing multitasking operating system, in which
scheduling decisions must be taken without knowledge of the time a job needs to
be executed. The obvious goal is to provide a fast response to users. Job preemption
is widely recognized as a key factor to improve the responsiveness of the system.
In multiprocessor computer systems, preemption requires a context switching at a
processor but this cost is reasonably small.

A widely accepted measure of the quality of service provided to users is the
average response time of the system. The response time, or flow time, of every job
is the time spent by the job in the system between release and completion, that is,
C; —r; for job j. We measure the performance of a randomized nonclairvoyant
scheduling algorithm by its competitive ratio [Sleator and Tarjan 1985; Ben-David
et al. 1994], the worst-case ratio between the expected average flow time of the
algorithm and the optimal average flow time of@iviousadversary that generates
the input sequence without knowledge of the random choices of the algorithm.

This problem has been addressed for a couple of decades in the design of time
sharing operating systems. Windows NT [Nutt 1999] and Unix [Tanenbaum 1992]
have the Multilevel Feedback (MLF) algorithm at the very basis of their scheduling
policies. The basic idea of MLF is to organize jobs into a set of queues. Each job
is processed for'2ime units if in queud;, before being promoted to que@. 1
if not completed. At any time, the machines process jobs in the lowest queues, in
each queue giving priority to jobs at the front. While this algorithm turns out to
be very effective in practice, it behaves very poorly with respect to a worst-case
analysis, as explained below.

A good rule of thumb for flow time minimization is given by the Shortest Remain-
ing Processing Time (SRPT) first rule. SRPT prescribes the preemption of a job on
execution when a job with shorter remaining processing time is released. SRPT is
indeed an optimal algorithm for a single machine [Baker 1974] and provides the
best known approximation for parallel machines [Leonardi and Raz 1997]. How-
ever, a nonclairvoyant scheduling algorithm cannot stick to the SRPT rule since it
has no knowledge of the processing time of the jobs before they are completed. As
to MLF, it behaves on some instances very differently from the SRPT rule in that
it may preempt jobs in a high queue that are nearly completed to process newly
released jobs with large processing time in lower queues. This may force jobs with
small remaining processing time to spend a long time in the system while other
long jobs are processed. It has actually been shown that no deterministic nonclair-
voyant algorithm can be competitive at all against a worst case adversary [Motwani
et al. 1994].

In order to circumvent these difficulties, a randomized version of MLF, called
RMLF, was proposed for a single machine by Kalyanasundaram and Pruhs [1997].

This in particular holds in systems that support threads [Doeppner 1987; IEEE 1994; Mueller 1993;
SUN 1993].
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The idea is to try to approximately behave like SRPT by having a large fraction of
jobs with a remaining processing time that s still a sufficiently large share of the ini-
tial processing time when entering their respective queues of completion. Of course,
this requirement can only be satisfied with some probability. Kalyanasundaram and
Pruhs [1997] show that RMLF ®(log n log logn) competitive for minimizing the
total flow time on a single machine against the on-line adaptive adversary [Ben-
David et al. 1994]. The on-line adaptive adversary may decide its strategy at time
t based on the knowledge of the random choices of the algorithm up tottime
However, the processing time of a job must be fixed by the adversary at release
time of the job.

In this article, we present a randomized version of the Multilevel Feedback
algorithm working for any numben of parallel machines. The algorithm we present
is an evolution of the one presented in Kalyanasundaram and Pruhs [1997] for a
single machine, for this reason we also call RMLF our algorithm. We present two
main results for RMLF:

(1) We show that RMLF has competitive rat@(min{lognlog =, lognlog P})
against an oblivious adversary, wheeeis the ratio between the largest and
the shortest processing time of a job. This is the fisf)-competitive result
for nonclairvoyant average flow time minimization on parallel machines. This
compares with th&(log ) and2(log P) lower bounds against the oblivious
adversary givenin Leonardi and Raz [1997] for the case in which the processing
time of a job is known at release time.

(2) Forthe case ofasingle machine, we show that our version of RMLF surprisingly
matches th&(logn) lower bound against an oblivious adversary of Motwani
et al. [1994].

These two results are obtained as an outcome of a unified analysis of RMLF. They
are proved with a probabilistic analysis that, unlike Kalyanasundaram and Pruhs
[1997], does not require any high probability argument. In turn, our analysis requires
a considerable strengthening and simplification of the tools previously developed
in the study of algorithms for minimizing the average flow time [Leonardi and Raz
1997; Awerbuch et al. 2002].

1.1. ReLATED RESULTS  Nonclairvoyant scheduling to minimize average flow
time has been first studied by Motwani et al. [1994]. The authors prove that any de-
terministic nonclairvoyant algorithm &(n'/3)-competitive where is the number
of jobs released, and that every randomized nonclairvoyant algoritkxtiag n)-
competitive in the case of a single machine. The authors also present competitive
algorithms for the static case where all jobs are released attime 0. Kalyanasundaram
and Pruhs [1997] give the firg{n) competitive nonclairvoyant scheduling result for
asingle machine. They prove thatarandomized version of MCKlisg n log logn)
competitive against an on-line adaptive adversary [Ben-David et al. 1994]. They
also claim ar2(P) randomized lower bound for the problem, whé&rés the ratio
between the maximum and the minimum processing time of a job, on an instance
with a number of jobs thatis exponentialln a previous paper, Kalyanasundaram
and Pruhs [1995] study a different model in which the nonclairvoyant algorithm
is equipped with a faster processor than the adversary. They prove in this case
that shortest elapsed time first is a constant competitive algorithm for a single
machine. More recently, Bansal et al. [2003] have applied resource augmentation
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to nonclairvoyant scheduling to minimize average stretch on parallel machines,
proposing arO(1)-speedO(log? P)-competitive algorithmP being the ratio be-
tween the largest and smallest job sizes. They also proposglag P) lower
bound, which is tight when all jobs are released at time 0. Bansal and Pruhs [2003],
finally, among other results also prove that the Shortest Elapsed Time First heuristic
is O(1+ €)-speed O(1/€@+2/P))-competitive to minimize th& , norm of the flow

time, and that with constant speed-up it is poly-logarithmically competitive (with
respect taP) for the L , norm of the stretch. Related to nonclairvoyant scheduling

is the work of Bender et al. [2002], where the authors show that a constant-factor
competitive ratio for average stretch is achievable even if the processing times (or
remaining processing times) of jobs are known only to within a constant factor
of accuracy.

Related results are also concerned with the more classical average flow time mini-
mization problem when the processing time of ajob is known atrelease time. Alsoin
this case, if preemption is not allowed, achieving reasonable performances on-line
is not possible. If preemption is allowed, the problem can be optimally solved on 1
machine by the well-known SRPT (Shortest Remaining Processing Time) heuristic
[Baker 1974]. Leonardi and Raz [1997] proved that SRRI(i®g(min{n/m, P}))-
competitive form > 2 identical parallel machines. No better approximation, even
off-line, is known for this problem. They also prove &(log ) and an2(log P)
lower bound on the competitive ratio of any randomized algorithm for the problem.
These lower bounds clearly extend to the nonclairvoyant case on2 parallel
machines. Other related work is concerned with the issues of using preemption
without allowing job migration [Awerbuch et al. 2002] and with related objective
functions like the stretch metric [Acharya et al. 1999; Bender et al. 1998; Gehrke
et al. 1999; Becchetti et al. 2004].

1.2. QUR WORK. We prove that RMLF achieves aB(lognlog ) and an
O(lognlog P) randomized competitive ratio against the oblivious adversary for
any numbem of parallel identical machines. We recall thtis the ratio be-
tween the largest and the shortest processing time of a job. Observe that one of
the two bounds may be strictly better than the other depending on the values of
P, n andm. We do not contradict th(P) randomized lower bound claimed in
Kalyanasundaram and Pruhs [1997] since it is obtained with a number of jobs ex-
ponential inP. For a single machine, we show &{logn) bound, which is tight.

Our algorithm requires the knowledge of the minimum processing time of a job that
is released. This knowledge is essential for an MLF-like algorithm to establish how
long it should execute a job in the lowest queue when it enters the system. A wrong
estimation of the minimum processing time of a job may leave many small jobs
waiting much longer than their processing times. This argument can be extended to
show that in absence of this information it is not possible to be competitive at all.
However, we do not need any knowledge of the maximum processing time of a job
that is released. Moreover, we do not need to know the numbeéjobs released

over the sequence.

Our analysis of RMLF contains a set of new tools of analysis. We mentioned in
the introduction that RMLF tries to approximately follow SRPT with the goal of
avoiding the preemption of jobs that are nearly finished. We prove that (Lemmas 6
and 7) every job, apart from a logarithmic number, with constant probability, has
a remaining processing time that is still a large share of the initial processing
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time when it enters the queue in which it will be completed. This allows, roughly
speaking, to concentrate only on those jobs that are called “big”. We bound at any
timet the difference between the number of big jobs of almost equal size that are
uncompleted in RMLF and in the optimum, by limiting their corresponding volume,
that is, their overall remaining processing time. We then prove (Lemma 13) that
at any timet, the expected number of jobs not completed by RMLF is at most
O(logn) times a constant fraction of the jobs uncompleted by the adversary plus
an additive termO(log n(m k(t)), wherek(t) is related to the number of nonempty
gueues at timé in RMLF. The O(lognlog P) result for parallel machines then
follows since there are at moét(log P) queues in the system.

The proof of O(lognlog =) competitiveness for parallel machines and of
O(logn) competitiveness for a single machine requires bounding the additional
flow time due to the contribution of th@(log n(mk(t)) term over time in a differ-
ent way. This contribution is partly originated by the fact thanos 2 machines
RMLF may keep machines idle for more than the optimum. We will bound this
contribution (Section 4.4) by at mo€§t(lognlog ) times the optimum fom > 2
machines while for a single machine we will Be able to limit this contribution to
O(logn) times the optimum. These two results, however, are obtained as conse-
guences of a unified analysis of RMLF.

1.3. SRUCTURE OF THEARTICLE. In Section 2, we formally define our schedul-
ing problem. Section 3 presents the RMLF algorithm. In Section 4, we provide the
analysis of the behaviour of RMLF. In particular, in Section 4.1, we provide some
definitions and basic facts. In Section 4.2, we present some tools and preliminary re-
sults. Section 4.3 is devoted to proving tBélog nlog P) competitive ratio, while
Section 4.4 concerns th®@(lognlog(n/m)) competitive ratio of RMLF and the
O(logn) upper bound for the single machine case. Open problems are discussed
in Section 5.

2. Problem Definition

We are given a sel of n jobs and a set ofn identical machines. Each jopis
assigned with a pair (, p;) wherer; is the release time of the job arg] is its
processing time. We order jobs by increasing release times and we assume the first
job is released at time, = 0. In the preemptive model, a job that is running can

be preempted and continued later on any machine. The algorithm decides which of
the uncompleted jobs should be executed at each time. A job cannot be processed
before its release time. A job cannot be executed in parallel on multiple machines,
while only a single job can be processed by a machine at any time. For any given
schedule, we defin€; to be the completion time of jop in that schedule. The

flow time of job j is F; = C; —rj. The total flow time for the input instanck

isF(J) = ZjeJ F;. The goal of the scheduling algorithm is to minimize the total
flow time or equivalently the average flow time.

The arrival of a job is unknown to th@nclairvoyantalgorithm until the job is
released. The processing time of a job is unknown to the nonclairvoyant algorithm
until the completion time of the job. We assume the minimum processing time of
a job that is released to be known in advance to the algorithm, and the convention
minjc;p; = 1, while we do not assume any knowledge of the maximum processing
time of a job.
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We compare the randomized nonclairvoyant algorithm with an oblivious ad-
versary that decides in advance, without knowledge of the random choices of the
algorithm, the numben of jobs of the sequence together with the release time and
the processing time of each job. The adversary is charged with the optimal flow
time for the sequence. Denote Bythe randomized on-line algorithm, and denote
by OPTthe optimal adversary. The generic (deterministic) executiof ofer an
input sequencd is defined by a set of random choices We denote by P«()
the probability of sequence. A randomized on-line algorithm is c-competitive
against an oblivious adversary if for any inplt

E,[FA(J)] < cFoPT(J),

where the expectation is taken over any possible outcome of the random ahoices
of the algorithm for input instancé. The instancd will be omitted in the following
when clear from the context.

3. The RMLF Algorithm

We present our randomized version of the Multilevel Feedback algorithm for paral-
lel machines, called RMLF in the following. A job is saadtiveor alive at timet if
released but not completed. Denotexpft) the time jobj has been processed until
timet. Denote byy; (t) = p; — X;(t) the remaining processing time of jgkat time

t. B is arandom variable with distribution B; < x] = 1—exp(=y 3 Inj).In

our algorithm, we choosg = 4/3.

Active jobs are partitioned into a set®fiority Queues Q, Qg, . ... Within each
gueue, the priority is determined by the Earliest Release Time first rule. For any
two queuesQ;, Qk, Qi is said lower tharQy if i < k. Jobj is assigned with a
target processing timg; ; when it enters queu®;. At any timet, RMLF behaves
as follows:

(1) Schedule alive jobs on timemachines proceeding from the lowest to the highest
gueue, within any queue in order of priority.

(2) Jobj released at timeenters queu€o with Tj o = max{1, 2 — B; o}.

(3) Forajobj ina qL‘JeuleQi,l at timet, if xjA(t) = Tji-1 < pj, job j entersQ;
with Tj,i = max{2', 2+ ,Bj,i}-

(4) Forajobj in a queueQ; at timet, if xjA(t) = p; < T;,,assignC;(t) =t and
discardj from Q;.

The Earliest Release Time first rule assigns a static priority to jobs, rather than
following the dynamic priority defined by the time of arrival in a queue. The reason
of this choice is to fix, independently from the specific execution of the algorithm,
the relative priority between any two jobs located in the same queue. This will turn
out to be very useful in the probabilistic analysis of the algorithm.

We would also like to comment on the dependence of the probability distribution
of targetT; ; on bothi andj. This is necessary since the numheaf jobs released
in the sequence is not known in advancen \fas known, we could simply replace
J with n in the probability distribution ofl; ;. However, this would not improve
the worst case performance of RMLF.
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A very natural question at this point of the exposition is: why the exponential dis-
tribution rather than the uniform distribution? The following example, due to Kirk
Pruhs (2000 personal communication), shows why a uniform distribution of target
Tii €[2', 21 in queueQ; does not work, even against the oblivious adversary.

~Consider a single machine andobs released at time 0 with processing time
21+ %), with n = 2'. With probability at Ieastln every job will enterQ;
with a remaining processing time at leagh andfat most 2/n. This guaran-
tees that at tim¢ = n2'(1 + in) — cn, for some constant, the algorithm will
haveQ(,/n) uncompleted jobs in queu®; ,; with high probability, while the opti-
mal solution will have terminated all jobs with the exception of a constant number,
for a total flow time ofO(n?). Starting a time, a job of size 1 is released for each
of n? time units. The expected flow time of the algorithm will 2¢n3,/n), while
the optimum isO(nq).

4. Analysis

4.1. RRELIMINARIES. In the analysis, we use the following notation. We denote
by §(t) the number of active jobs at tinte The volumeV (t) is the sum of the
remaining processing times of the jobs that are active at tinh€t) denotes the
total work done prior to time, that is the overall time then machines have been
processing jobs until time For any functionf (3, V andL), we denote byf A(t)
and f °F(t) the value of functionf at timet, respectively, for a generic outcorae
of the random choices of RMLF and for the optimal solut@RT. By A, f(t) =
fA(t) — fOPT(t), we denote their difference.

In the analysis, without loss of generality, we restrict to input instances in which
ri=0andr; < Zi’;ll pi, j > 1, since otherwise every input instance can be split
into a set of input instances of this form that we separately analyze.

In our analysis, we classify active jobs into classes according to their processing
times. Ajobj isofclassi,i > 0, ifits processing time is in [22'™1). For a generic
function f (V, AV, §, A §, L or AL) the notationf_(t) will denote the value of
function f at timet when restricted to jobs of class exadtiywe usef.p <(t) to
denote the value of at timet when restricted to jobs of classes betwbemndk.

Denote byP = %JEJ‘ the ratio between the maximum and the minimum

minjey

processing time of a job. The maximum class of a jodag P | + 1. Moreover:

Fact 1. During the execution of the algorithm at mgdbg P] queues are
created.

We start by observing that the total flow time is the integral over time of the
number of active jobs (see, e.g., Leonardi and Raz [1997]):

FACT 2. F =3}, ;Fj = [é)dt

Moreover, we have the following basic lower bound to the total flow time:
FacTt 3. F = ZjEJ Fi > ZjEJ JB

The following fact holds for the algorithm:

FACT 4. Ajob j of classi ends either in queug @ in queue Q,;.
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PrOOF.  Jobj, with processing timep; € [2', 2'*1), has targefji_; < 2' in
Qi_1 while it has targeT; i1 > 21 in queueQi 1. [

Definition 1. Jobj of classi is unluckyin a given execution of the algorithm
if it has processing tim@; < 2' +2'~2and it ends in queu®; ;1. A job that is not
unlucky is said lucky.

We denote bys! (t) and bys!(t) respectively the number of lucky and unlucky
jobs that are active at tintefor a specific execution of RMLF.

Definition 2. At any tlmet a |UC|(yJObJ in queueQ; is saidbig if it entered
Q; attimet <t andy;(t) > | , itis saidsmallotherwise.

Observe that, according to this definition, a lucky job of cliass always big
while in queuesQ; _; or lower. We denote b§®(t) the number of big (lucky) jobs
that are alive at timé for a specific outcome of the random choices of RMLF.

Finally, we define a set of random variables that will be used in the analysis of
the algorithm. More in detail, for each jgbX'! has value 1 if jobj is lucky, while
X = 0if j is unlucky. Observe that this variable does not depend upon time but
onIy on the specific execution of the algorithm. Moreover, for eachjjahd for
each tim, four binary variables are define}, X; (t) X} (t) andX®(t). The value
of Xj(t)is 1if job j is alive at timet, O otherW|sex i (1) |s deflnedln terms oI('
andx j(t), namely,X| (t) = X} - X;(t). Finally, Xb(t) = 1if X}(t) = 1 and jObj
is big at timet, Xb(t) =0 otherW|se

The following gives a basic property of the RMLF algorithm:

FAacT 5. Atanytimet and for any i, at most m jobs, alive at time t, have been
executed in queueQut have not been promoted tq Q.

PROOF Letjs, jo, ... Dbethe jobsim; attimet ordered by decreasing priority.
Let k be the largest index such thgthas been processed while in quege Let
t" <t be the last time thaji was processed ip;. We show below that all jobg,,
h < k, are also executed at tinte Since at mosin jobs are executed at the same
time, this impliesk < m and the claim follows. Two cases are possible for a job
jn, h < ki (1) if j, was in queudQ; at timet’, it would be on execution since it
precedes jolj in the earliest released time first order; (ii) if at tinigob j, was
in a queueQy, | < i, then it would also be on execution since a job is executed in
a higher queu®;. [J

We first present the probabilistic statements we use in the analysis. Then we give
the analysis of the competitive ratio for RMLF.

4.2. RROBABILISTIC ANALYSIS. We start by showing that a job of claisith
processing time close td & likely to be completed in queue therefore over-
coming the counterexample for the uniform distribution described in Section 3. As
illustrated in Figure 1(a), we prove that the probability that taigetfalls in the
interval [2, 2' + 2'-2) is at most %j.

This is formally proved in the following lemma:

LEMMA 6. The expected number of unlucky jobs along the execution of the
algorithm is H,.
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Pr(Tj; < @) Pr(Tj; < =

(a) 2¢ 2t 4 282 2t z (b) 20 pj(1—1/Injp; 2041 P

Fic. 1. FunctionPr[T;; < x] is the probability distribution off; ;. a) The probability that a jolp
of classi is unlucky is at most 4j. b) P, and P, — P, are the probabilities that a job is respectively
big or small. They differ for at most a constant factor.

PROOF. A job j of classi with processing time; < 2' + 2'~2is unlucky if it
enters queu€);, 1. This happens with probability at mostjlas shown by:

PI’[XIJ :O] = Prrl—j,i < pj] S Pr[T],I < 2i +2i72]
= Pr[ﬂj,i > 3272] = exp(_|n J) — Ji’

sincey = 4/3. The expected number of unlucky jobs is then bounde[]’fx_al
1

- = Hn. I:‘

j

In the remainder of this section, we present a second fundamental property of
our algorithm. As pointed out in the introduction we would like our algorithm to
approximately follow the SRPT heuristic, implying that most of the jobshége
that is, they enter the queue of completion with a remaining processing time that
is at least a logarithmic fraction of the original processing time. We prove that, for
any jobj of classi and for any time, the probability that jokj is alive and big at
timet is at least a constant fraction of the probability that jois lucky and alive
at the same time. This property implies that, at any ttine constant fraction of
lucky jobs that are alive dtare also big. This will be used to limit the difference
between the expected number of jobs in the schedule of RMLF and in the optimal
schedule.

Observe that to ensure the property stated above we need that when dividing the
interval [2, 2+1) into logn subintervals of sizer\(f'—n, for everyl, the probability
that the target falls in the firdt intervals is at least a constant fraction of the
probability that it falls in the first + 1 intervals. It is straightforward to conclude
that an exponential decreasing probability distribution is necessary to this purpose.

The proof of this property is straightforward if, at tirhea job j of classi is in
a queueQy, k < i, while it needs some work if jop is in one of the queues of
possible completion, namel®; or Q; ;. Assume for instance jobp is in queue
Qi+1, the fact that jobj is big when it enters queu®; .1 depends on the value of
targetT; ;. In Figure 1b) it is pictorially shown that for a job with; > 2' + 2/—2
(a lucky job by definition), ifTj; < p; (the job entered queu®;.1), then with
constant probabilityl; ; is also smaller thap;(1—1/In j), therefore the job is big.

However, we restrict our attention to those executions in whichjjab alive
a timet. This might restrict the set of favourable executions, hence the argument
above cannot be applied directly. The formal proof for our case is given in the
following lemma:
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LEMMA 7. There exists a constantsuch that, for every job > « and time t
it holdsPr[X®(t) = 1] = exp(—4y) Pr[X|(t) = 1].

PROOF.  SinceX?(t) = 1 implies X! (t) = 1, we have:

PIIXP(t) = 1] = Pr[XP(t) = 1n X|(t) = 1]
= Pr[XP(t) = 11X (t) = 1] - Pr(Xj(t) = 1].

The problemis to bound PX{(t) = 1|X](t) = 1]forajobj of class . We needto
characterize the set of specific executioref the algorithm for which'j’U (t)=1.
Denote byX the generic assignment of all random variables with the exception of
T;i—1 (Tj,i). We denote by»:‘j(t) (Zij“(t)) the set of all executions such that:

(i) all random variables with the exception ©f;_1 (T; ;) are assigned according
to &'; (i) at timet job j is in queueQ; (Qi;1); (iii) X'j,a(t) = 1. Every execution

in Zij(t) (E'J-“(t)) is denoted in the following by =< &X', Tji_1 > (0 =< X,

Tji >). Hence, the Lemma is proved if BXf(t) = 1o € Zj(t)] > exp(4y)
and PrX®(t) = 1o e Zj™(t)] > exp(~4y), since a job of class is always
big in queues;_; or lower. The following, technical Lemma proves that, for any

executiono with an assignment;j_; = T (T;; = T) such thatj is lucky and
alive at timet, j is also lucky and alive dt for any other execution differing from
o only in the assignment;; 1 = T" < T (Tj; = T’ < T). We will use this

argument to complete the proof.

LEMMA 8. Consider a job j of class i and a specific execution=< X,
Tiica=T >e Zi(t) (0 =< X, Tj; =T >e I7(t)). Then, for every Te
2L T) (T e [2,T)) it holdso’ =< X, Tjj_1 = T >¢ E‘j(t) () =<
X, T =T >e =j"(1).

PROOF.  We prove the claim for a jolp of classi ando € X! (t). The proof for
o€ Z'j“(t) proceeds exactly the same, with straightforward changes, by replacing
i with i + 1 and is therefore omitted. Intuitively, we prove thaj ifs alive, lucky
and in queud); at timet in accordance with executian, the same happens with
executiono’, when the targeT;;_ is reduced fronT to T’ < T. Lett’ denote
the time at whichj is processed fof’ units in queueQ);_; according to execution
o’. The schedules far ando’ are identical up to tim¢’, hence we shall always
assume > t’.

We first prove (Fact a) that, for afye (t', t] such thatj is alive aff in execution
o', we havey () < ynh.(t) for every jobh # j. Observe that at least one
such time instant when job | is alive exists since by assumptioR, < T and
o =< X, Tji-1 =T >¢ Z}(t). The claim above intuitively means that, by
reducing the target of jolp in queueQ;_; to T’, during interval {’, t], every job
other thanj receives at least the same processing time in the new execution.

We consider jobs ilQ;,| <i — 1, and in queue®;_1, Q; andQ; 1 separately.
The processing of jobs in queues lower th@n ; is by no way affected by the
processing in queudd;_1 or higher, hence the claim is true for ahg (t’, t] and
for any jobh # j in a queue lower tha@;_; at timef.
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As to jobs in queue); _1, Q; and Q. 1, the proof is by contradiction. Assume
there exists at least one jbb# j in Q;_1, Q; or Qi 1, such thaw o () > yh..(f),
for somet e (t',t]. LetT € [t/, f) be the last time whegy . () < yh.. (f) for all
h # j. There has to be a jdib# j such thaty, ,(t) = Yh.,(t) while y, ,(t +€) >
Yn.o (t + €) for everye sufficiently small. The contradiction follows by proving that
the set of jobs that have priority ovhrin o at timet contains the set of jobs that
have priority overh in ¢’ at timet. Recall that a job’ has priority over a jolj”
if j"isin a lower queue thap” or if they are in the same queue bjthas been
released earlier.

At this point of the proof, we use the Earliest Release Time First priority rule
in order to have a fixed priority between jobs independently of the time they are
promoted into a queue. In fact, if jobs’ priorities were determined by their arrival
times in the queue, the relative priority between two jobs promoted to a qoeue
could change if the target of job in queueQ;_; were reduced. Assume jop
promoted to queueafter job j” in executiono. By stopping the execution of job
j at timet’ in executions’ we may anticipate the processing of some jétthat
could therefore be promoted to qudueefore jobj”.

In determining the set of jobs that have priority oliewe considelj and all jobs
other thanj or h separately. According to executiet), at timet, job j is in queue
Qi, while at the same time it is either in queQg_; or Q; in executions. On the
other side, sincgy - (t) = yn,(t), att hisin the same queue in the two executions.
Therefore, ifj has priority oveh in¢’, so it does inr. For all jobs other thah and
j, we observe that in executieri and at time they have a remaining processing
time that is smaller or equal thandn by definition oft. Therefore, in execution
and at timef, they are in the same queue or in a lower queue than in exeeution
for which, if att and in executiow’ they have priority oveh, the same happens
with executiono. This proves that the set of jobs that have priority dvém o at
timet contains the set of jobs that have priority ohen o’ at timet.

But this contradicts the assumption above and hence (Fagtaf) < yh.. (f)
for every jobh # j and for anyt e (t’, t] such thatj is alive atf. As a corollary
of (Fact a), we have (Fact b) for aye (t’, t] such thatj is alive atf, we have
85(F) < 8A(T).

We can now prove tha?l('J =1 |mpI|esX' (t) = 1. Assume this is not the
case and consider the Idsé (t', t] such thatj is alive at timef. (Fact b) implies
that the overall work done by the machines during intert/af) in executiono’
is not more than irr. This consideration and (Fact a) together imply, (f) >
Yi, +(f), which contradicts the assumption. As a consequejpég alive at timet
in executions” and it is obviously lucky, sincé&; ;_1 has been reduced, whilg
was left unchanged, that vs' »(t) = 1 (for the caser € E'“(t) observe that

,(t) = Limpliesp; > 2' + 2' ~2). Finally, sincey; ,(f) > y, +(0), j isin queue
Q, at timet, accordlngto executiot’. This, and the fact tha( . (t) = 1, together

imply o € Zj(t). O

CoroLLARY 9. Consider a job j of class i and a specific assignm&naf all
random variables with the exception gfiT; (Tj,i). Considerthe s@ij (t) (Z'j“(t))
of all sequences with assignmetitwhere job j is in queue ((Qi;1) attime t,
such that ){ (t) = 1. Then, there exists a valuex [21~1,2') (x € [2', 2'*1))
such that for every T_1 € [2'71, ) (Tj,; € [2', X)) the correspondmg sequence
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isin =!(t) (0 € =j*(1)), while itis notinZi(t) (o € B{T(t)) for every T;_1 €
[x,2) (T} € [x,27).

Denoted byx the smallest value for variablg ; 1 (T; i) such that for the corre-
sponding executios we haveX'j,U(t) = 0, the proof of Corollary 9 follows by a
simple contradiction argument and is therefore omitted.

We can now prove Lemma 7. Consider a jpb> €® of classi and consider
all sequences for which X' ,(t) = 1. For all sequences in whichis in queue
Quw k=<i—1,jisbig, smceTJ i_» < 2-1 and then, iff denotes the timg was
promoted to queu®y, yj(®) > pj — 271 > pj/2 > pj/Inj,forj > 8. Asa
consequence, the only possibility for a Iucky job Qf class be small is to enter
queueQ; or queueQ; ;1 attimet < t, with y;(t) < In—'

First, consider any subsél‘ (1) (E'*l(t)) of the set of sequences in which jpb
is alive, lucky and in queu@. (Q.H) at timet, such that all sequencesfﬁ (1)
(E'*l(t)) only differ for the value ofT; ;_1 (Tj ;).

If we prove a bound on the probability that jghis big when conditioned to
sequences € E}(t) (0 € E}“(t)), then the claim is proved foy in Q; (j in
Qi,1) at timet. Let x denote the value derived from Corollary 9. We proceed as
follows:

i ; 1
PI’|:TJ"i1 < pj— I:])—JJ |o € E;(t)] = PI’|:TJ',i1 < Pj (l— m)‘ Tjic1< Xi|

1 .
Pr|:Tj,i_1 < pj <1— m)‘ Tj,i_1<2|:|

- P{Tji—1 < pj(1— m)]
PI’[Tj’i_l < 2']

v

where the second inequality follows singe< 2, the seventh inequality stems
from p; > 2, while the last inequality fronp; < 2'+2.

We then prove the claim for sequences belongirmijtb“‘(t). Since jobj is lucky,
p; > 2' + 2'-2. We show that jolj is big when it enter®; ;1 with (conditioned)
probability at lease™?" .

Corollary 9 ensuresthatthere existsavadsachthat =< X, Tj; >¢ =)
for everyT;; € [2', x). If we prove a bound on the probability that jgbis big
when conditioned to sequences: E'”(t) then the claim is proved. We proceed
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as follows:

IA

o€ z}“(t)}

1

o (=) T
1

o (1= ap) o<

PTii < pi(1—m7)]
PrTii < pjl

P = 27— pj(1— )]
Pl’[ﬂj,i > 2+l p]]

24h-p (1)
e’ 2

PI’|:TJ',i

v
IA

PI’|:Tj’i

Inj

v

> exp(—y%) > exp(=2y).

Here, the second inequality follows since< p; (becauser € Eij“(t)), while
the fourth inequality holds sincg ; = max(2', 21 — g, ;}, sincep; > 2' +2'—2
andpj(1—1/Inj) > 2" whenj > €°. The last inequality follows fronp; < 2'+1,
Takinga = [€°] the claim of Lemma 7 is proved.

4.3. THE O(LOG n LOG P)-CoMPETITIVE RATIO. In this section, we prove that
RMLF is O(lognlog P) competitive.

Intuitively, the logn factor is the price of nonclairvoyance and it is a direct
consequence of Definition 2 (see Eq. (3) in the proof of Lemma 13). The log
factor, instead, comes from the fact that during the execution, at moBtdpgues
are created and each might have a number of jobs that have been initiated and
subsequently preempted by the algorithm. As pointed out further in Section 4.4,
this is a consequence of the fact that the on line algorithm in general does not
optimally balance the load among the available machines.

Recall that, for any possible executions2(t) = §U(t) + 8! (t), for which the
total flow time of RMLF can be expressed as:

E,[F = E, [ /t Oaf(t)dt] =E, [ /t O(ag(t)+aj,(t))dt]

_ u |
— E, [ ft , (SU(t)dt] tE, [ /t N 80(t)dt]

_ / E, [58()]dt+ / E, [5! (t)]dt (1)
t>0 t=0
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In the remainder of this section, we need to bound the two contributions to Eq. (1).
The following lemma, based on the claim of Lemma 6, bounds the first contribution

to the total flow time.
LEMMA 10. [ o E,[8)(t)]dt= O(logn) 3~; p;-
PROOF.  First, observe tha, 3. (t)] = O(logn). This follows from:
E.[s2(t)] = zn: PriXj =0n X;(t) = 1]
1:1
< > Pr[X| =0] = O(logn).
j=1

Since the algorithm never keeps machines idle, no job is in the system after time
Zj p;. This, together with the inequality above implies:

| Bl = / LS | otogra

0<t=<>:; pj
= O(logn) Y " p;. O
j
The next lemma uses the claim of Lemma 7 to relate the expected number of
lucky jobs alive at time to the expected number of big jobs alive at titme

LEMMA 11. There exists a constantsuch that, at any time t, the number of
lucky jobs in the system satisfies the following relation:

E, [8, ()] < & + exp(4)E, [82(1)].

PROOF. Seta = [€°]. We have the following inequalities:
n
E,[8,(®)] = Y _Pr[Xj(t) =1]
j=1

o+ Xn: PriX(t) = 1]

j=a+1

o + exp(4) Xn: PrXy(t) = 1]

j=a+1
o +exp(4)E, [82(1)].

where the third inequality follows from the claim of Lemma 7]

IA

IA

A

The next lemma bounds the expected time spent by the algorithm while all
machines are busy.

LEMMA 12. [i_oPr3A(t) = mdt< £ 3", pj.
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PrROOF. The claim is derived from the following relations:

A = o
ft>opr[a (t)>m]dt = /M > Prlo]dt

o:8A(t)>m

= Z Prlo] /‘SA(th
- Z P; Z Prlo]

jeJ o

:_Zp,,

jed

A

Where the third inequality follows since for eveasyftaA«Pm dt is bounded by
ZJGJ pJ 0

The expected cost of RMLF of expression (1) is then rewritten as follows:

E,[F}] = E, [ /t » (Sf(t)dt}
_ /t Bl N / E, [ (t)]at

t>0

=0logn) b+ | e en@)E o)
i <t<3>; pj

= O(logn) Z pj +a Z pj + exp(4y)/ E,[82(t)]dt

=0logny_ p,-+exp(4y)Ea[/_ " sz(t)dt}expw)a,u - 82(t)dt}

=Oogn 3 py + expl) / [BRIBA) = mPBAOI Z midt. (@)

The third mequallty follows by Lemma 10, by Lemma 11, and by recalling that
no job is in the system aftertimEj p;, hences' (t) = 0, for anyt > Zj p;. The
fifth inequality follows by the linearity of expectation and by partitioning the time
axis, for each possible executieninto the instants for which”(t) < mand into
those for WhlchSA(t) > m. Flnally, the last mequallty follows by observing that
Jrsay<m S5 (DAt < ftéA(t) néA(t)dt < 3~ pj, since the overall work done by
them machines in any possible execution of the algorithm is bounded by the sum
of the processing times of thejobs, and by expanding, [ ;. 3A®t)=m 00 82(t)adt).

We are left to bound the last term of Eq. (2) and to this purpose we present the
critical part of the proof, in which we bound the number of big jobs at tinmethe
generic execution of RMLF determined by a set of random choices of the algorithm.

LEMMA 13. For any outcomer of the random choices of the algorithm, for
any time t: 2(t) > m, 82 _, _ (t) < 2Inn(2(m — 1)(kz — kg + 1) + 35°PT(t)) +
m(ka — ky + 2).
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ProoOF. Inthe following, we omit- when clear from the context. Fﬁﬁk <)
we write the following relations:

= VA (t)
Bize® = Mo~k +2)+Inny == 3)

Ikl

The bound follows since every big job of classhas remaining processing
time at least 2/ Inn. We should additionally consider those big jobs of class

i = Ky, .., kz, with a processing time smaller thaty 2h n since they have been
processed after entering the queue they are in. For a job ofidlissmay happen

in queues — 1,i ori + 1. However, for every queue, there are at mogbbs that

have been processed after entering the queue (Fact 5), for which the total number
of such jobs is bounded bm(k, — k; + 2). We continue with:

ke VA(t) V() + AVLi (1)

27~k 2

i=kq i=ke
ko

AV (1)
i= k1

IA

0T k(t)+z AVsi(t) - AV<. 1(t)

>k1

Ikl

25T (1) 4 AVek®) | kzl AVai(t) _ AVaa(t)
>k, <k>

2k . i+l 2ky
I:kl
AV (1)
< 2627 4 (0) + 821 1(t)+22k 51
=K1
AV<i(t)
< 2% +2)] 1 )

Ikl

where the second inequality follows since a job of clabas size less thari 2,

while the fifth inequality follows since- AV(;@ 10 < ;kkll <% ..

We are left to study the terfi;2, 2¥U. For anyt; < t, < t, for a generic
function f, denote byf [t (t) the value of functlonf at timet when restricted to
jobs released betwe¢nandt,, for example L [t (t) is the work done by time
on jobs of class at mostreleased between tlmgandtz Letty(t) be the last time
prior to timet in the execution determined by the set of random choscesuch
thatsA(to) < m. Denote byt; < t the maximum betweety(t) and the last time
prior to timet in which a job was processed in queQeg, ; or higher in this specific
execution of RMLF. Observe that, for=ky, ..., ko, [tii1,t) D [ti, t).

Attimet; ., either the algorithm was processing a job in quéue, or higher, or
ti11 = to(t), for which at timet;  ; at mostim— 1 jobs were in queuey, ..., Qj.1.
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At timet we have:

AV<i(t) < V< Ot.+1](t) + AV(t'H t](t)
A[O ti44] (t) + VA[O il (t) — A[O ti41] (ta) + |_A(t|+1 1] t) OPT(M t](t)
< (m _ 1)2|+2 + Lii(twl.,t](t) _ (jli:"l'(t,ﬂ,t (t)

| /\

The first inequality follows sinceAV;(t) is bounded by the sum of a first
contribution equal to the volume of the jobs released until time in RMLF’s
schedule and a contribution equal to the volume difference of jobs released af-
ter timet; ;. The second inequality states that the volume difference is bounded
by the time spent in the interval (1, t] by RMLF processing jobs of class big-
ger thani minus the time spent by the optimal solution processing jobs of class
bigger thani released in the intervat;( 1, t]. The third inequality follows from
VARl ARGl )y A0Sl ) < (m— 1)2+2. This relation holds since
at mostm — 1 jobs are in queuegy, .., Qi;1 at timet;, ;. Assumex; such jobs
are of class< i andx; such jobs are of class i. The remaining volume of the
X1 jobs of class< i at timetj,; is at mostx12'+1, while thex, jobs of class> i
are processed inf1, t) for at mostx,2 +2 time units. Fronx; + X, < m — 1, the
inequality follows.

The fact that at mosh — 1 jobs are in the system in queu€s, ..., Q; 1 at
timet; 1 is crucial in proving the tightness result fior= 1. In fact form = 1, this
contribution to the flow time will disappeatr.

In the following, we adopt the conventidg_, = t. From the inequality above
we write:

ko . ke 2 (tIH .
JAVa) _ gh(m- D27+ AL o 1k — ko 4 1)

i+1 1
i 27 i=ky 2
ko AL(tl+l t](t)
- 2|+1 (5)
I:kl
k AL
We then concentrate on the tepm2, —3=—— for which we have:
ko A t|+1 t] (t) — OPT(t|+1 t] (t) k2 i A(t1+1 tj ](t) OPT(t]+l tj ](t)
s =2 2 e
|=k1 1= k1]:k1—l

k2 k2 A(tj+1 t ](t) OPT(tH»l '[ ](t)

= |+1
j=ki—1i=] 2

where the second equality follows by partitioning the work done on the jobs released
in the interval {1, t] into the work done on the jobs released in the intervals

(t]+l9t] J_kl_l I'
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Leti(j) € [j. ... ko] be the index that maximizeis i+ — | Pl \ye
then have:

A(tJ+lt ( ) _ LOPT(IJH 4 ](t)

k. tiq,t k: k.
S A0 g g o O
ot 2i+1 — L5 2i+1

ko A(tH—l £ ](t) _ OPT(tHl-tj](t)

=1(1) L)
=2 5

j_k1

<2 Z 5OIF’(-|1-()ti+1,tJ](t) < 250PT(t1+1 t](t) < Z(SOPT(t) (6)
j=ki—1

To prove the third inequality, observe that every job of class biggeritjar>
j released in the time intervat;(4, t;] is processed by RMLF in the interval
(tj+1, t] for at most 2+2 time units. Order the jobs of this specific set by increas-
ing X;(t). Now, observe that each of these jobs has remaining processing time at
least 20)+1 > 2i+1 gt the beginning of intervat 1, t] and we give to the optimum
the further advantage that it finishes every such job when processed for an amount
X;(t) < 2/*2. To maximize the number of finished jobs, the optimum places the
work LOP“tJ+1 1 on the jobs with smallex; (t). The optimum is then left at time

with a number of jobs

LAEtHlvtj] _ LOfKth,tj]
SOPT(tHl,tJ-] ) >i(j) ,

>i(j) - 2j+1

for which the third inequality holds.
Altogether, from (3), (4), (5) and (6) we obtain:

>k1 <k2(t)
< m(kz — ki + 2)+ 2InnE (L) + 2(m — 1)(kz — ko + 1) + 262¢ (1))
<m(ky — ki +2)+2Inn (2(m — 1Dk — kg + 1)+ SSOPT(t)) ,
for which the claim of the Lemma is proved]

We then plug the claim of Lemma 13 into the expression (2) of the total flow
time of RMLF to achieve our first result:

E,[F/] = O(logn) Y " p; +exp() [ E,[s2(t)I8"(t) = m] PrlsA(t)| = m]dt
i t>0

A

O(logn) 3 p
j

+exp(4) /t 0(2 Inn(2(m — 1)(log P + 2) + 38°7(t)))

PrisA(t) > m]dt
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O(logn) 3 p,
j

+0O(lognlog P)f mPr[s”(t) > mldt+ O(logn) §OPT(t)dt
t>0 t>0

O(logn) Y _ pj + O(lognlog P) > " p; + O(logn)F°"
jed j
= O(lognlog P)F°"T,

where in the second inequality we apply Lemma 13 and Fact 1, while in the fourth
we apply the claim of Lemma 12. We therefore state our first result:

THEOREM 14. RMLFisan (lognlog P) competitive nonclairvoyant random-
ized algorithm for minimizing the total flow time on parallel machines.

4.4. THE O(LOG n) COMPETITIVE RATIO FORM = 1, O(LOG N LOG ) COMPET-

ITVE RATIO FORM > 2. In this section, we strengthen the analysis to obtain an
O(logn) tight bound for a single machine and &flognlog ) bound form > 2
parallel machines.

Again, the log factor is the price of nonclairvoyance, as already commented
at the beginning of Section 4.3. The I8gterm, instead, comes from the fact that
the optimum might work more than the algorithm, due to a better distribution of
the overall load among the machines. In the worst case, the unbalance of MLF
with respect to the optimum brings to a multiplicative fact@fognlog %) in the
competitive ratio. As expected, this term vanishes in the single machine case, where
instead of a competitive ratid (log? n), we have a tighte®(log n). In this respect,
this contribution is similar to the one emerging in the analysis of SRPT [Leonardi
and Raz 1997]. _

Let k be the lowest class such that less timajobs of class> k are released.

Let T(o) = {t : §A(t) > m} be the set of time instants where all machines are
busy in the execution of RMLF defined lay. Let Tj(o) € T(0), j = 0,..,K,

be the set of time instants where at least one machine is busy with jobs in queue
Q; and no machine is busy with jobs in queues higher tQarin the execution

of RMLF defined byo. Let Ty, 1(0) € T(o) be the set of time instants when at
least one machine is processing a job in qu@ye; or higher and all machines are
busy. Observe that for eaeh {To(o), T1(0), ..., Teyr1(o)} defines a partition of

T (o). For the sake of simplicity, in the sequel, with a slight abuse of notation, we
useT; (o) to denote both the above defined set and its size. For the total flow time
of RMLF, the last term of Eqg. (2) can be rewritten using the claim of Lemma 13
as follows:

/ E, [82()(8*(t) = m] Pr[s”(t) > m]dt
t>0

= ZPr(o)/t y )5§(t)dt

k
<Y Pr)y_ / @M 482, L 1(0)dt+ ) Pro) f 82 (t)dt
o j=0 VteTj(o) T o teTiya(o)
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K
<Y Prig)>" / 2Inn2(m — 1)k — j) + 38°°T(t)) + m(k — j + 3))dt
o j=0 teTj(o)
)2 d
i Xo: Pre) m/teTk+1(a) t

k _
= Prio 41 — 1)k — j)dt
; r( )j;)/t.eﬂ(a) nn(m )( J)

K
+> Pro) ) / 6 InnsCPT(t)dt
o j=0v1t

ETj(O’)
E —
+E Pr(a)E / m(k—j+3)dt+2§ Pj
o j=0 /teTj(0) j

k B ko
= 0O(logn) > "Pre) Y (m— 1)K - )Tj(e) + > _Pre)Y_m(k — )T;(o)
a j:O (o3 j=0

3
+3m Y Prie) 3 (o) + Oflogn) " Prie) / Tt + 23 p
o j=0 o teT(0) i

K B ko _
= 0O(logn) > "Prie) Y (M- 1)K — )Tj(e) + > _Pre) Y _m(k — [)Tj(o)
o j=0 o j=0
+0O(logn)F°"T.

The second inequality follows by partitioning for evesy the set{t > 0 :
SA(t) > my} into the subset§To(o), T1(o), ..., Tip1(o)}, and by observing that at
any timet € T;(o) there are at mosh jobs of class less thapandm — 1 jobs of
class bigger or equal th&n The third inequality follows by the claim of Lemma 13

and by observing that for any tintec Ty ;(c) at most 2n jobs are in the system
since (i) a machine is processing a job in a quiedel or higher and hence at most

m — 1 jobs of class less thdnare in the system; (ii) at most — 1 jobs of class
> k have been released. The other inequalities follow by rearranging the terms and
observing that (i) Pr(a)fteTj(a) §OPT(t)dt < FOPT, (i) >, pj < FOFT, (iii) by
applying the claim of Lemma 12.

As a consequence of the inequalities above and from Eqg. (2), we can write:

E —
E,[FA] = O(®logn)F°°T + exp(4/)(m — 1)O(logn) > "Pr(e) Y "(k — j)Tj(o)
o j=0
E J—
+exp(4) Y Pri) Y m(k— )Tj(o). (7
o j=0

We are left to bound, for any, the termF,(n) = lez:o m(E— )Ti(0). We
show this in the following Lemma:
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LEMMA 15. Forany outcome of the random choieesf the algorithm, it holds
ko _ n
_ i i _ _ OPT
Fo(n) = 1221: m(k - )Tj(o) = O (log —) Fo""

PROOE We deflneT (0) € T(0)/Ti;1(0) to be the set of time instants where
machind,| =1,..,m, is processmg ajob ofqueyej =0, ..., k, in execution
o, Observe that, forea(th{T (0),... T} i} defines a partition oT(o)/TkH(o) Let
nJ be the number of jobs flnlshed by machInB queuej in this specific execution

of RMLF. In the following we useT (o) to denote both the above defined set
and its size and we om#& when clear from the context. We have the follow-
ing inequalities:

K B k m Kk i m _ )
F) =) mk=DTy=) > k=DTj =) > > njk—i)2*
=0

j=01=1 j=0i=0 I=1

The second inequality follows since any time T; is also part of the s, for
somei < j. The third mequallty follows since any job that is completed in queue
Q; has been processed in any qué&ei < j, for at most 2+1 therefore giving

a contribution of kK — i)2' 1, B
Since} ), 2*+(k —i) < 21*2(k — j + 1), it follows

K m
F) < 4> ) nik—j+1)2

j=0 I=1

Letl; =2 3", n' We show thaE _0(k j +1)Ij = O(log 2)FOPT. Let
7 = max{2¥, 1/mZ 0IJ} Since there are more thamjobs of class at leakt— 1
we havemzk 1< FOPT Since every job ending in a queydas size at least 21,
we havezJ olj= ZJ 02 Z| LN, < 2F°PT. Therefore, we haveZ < 2F©°.

To prove that~(n) = O(ZJ _o(k = j)Ij + 2F°PT) = O(log £)F°PT, we study
the following optimization problem:

<
max,,...ig F(N) = ) (k= j)I;

=}
A%
M- 1
N | =

T 1,

W
Sl
'M*'

I
o

where the first constraint holds sin§e= P n'j <n.
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We rewrite the problem using variabés = Zi<j li, ] > 0, with the convention
Y_1 = 0: -

maxy,,...vygF(n) = Y|

n =

M 10

o

Yi— Y Y
Szl g
i= j=0
mZ > Ye>Yir>....
The objective function is maximized assignimf = Y =Yg 1 =Yoo=~

= Yi_, and 0= Yi_,_1 = --- = Yp with | being the minimum integer such that
the second constraint is tight or violated, namely the minimum integer such that
S >N,

2k—|—1 -

We then compute a valuesuch that 21 = . Since 2 < 7 we have
| = O(log &), thus yieldingF (n) = O(log #:)mZ = O(log 1) F°"T that completes
the proof. [

The bound obtained from Claim 15 holds for amy Applying this claim in
Eq. (7), we obtain our second result:

THEOREM 16. RMLF is a Qllognlog &) competitive nonclairvoyant random-
ized algorithm for minimizing the total flow time on parallel machines.

Considering Eg. (7) witbm = 1, we obtain our tight result for the single
machine case:

THEOREM 17. RMLF is a Qlogn) competitive nonclairvoyant randomized
algorithm for minimizing the total flow time on a single machine.

5. Open Problems

There is still a logarithmic gap between the competitive result on parallel machines
and theQ(log +) randomized lower bound for the case in which the processing
time of a job is known at release time [Leonardi and Raz 1997]. However, our
conjecture is that alike the case of a single machine, the lack of knowledge about
the processing times of the jobs leads to a logarithmic overhead.

The fact that a randomized version of MLF achieves optimal or almost optimal
performances from a worst case point of view may be a good indication that MLF is
also very efficient on input sequences drawn from specific probability distributions
like the uniform or the exponential ones. This might be a further validation of the
goodness of MLF in practice.

We finally mention nonclairvoyant minimization of other flow time related met-
rics, like the average stretch, thatJs,;_; Fj/pj, for which constant competitive
algorithms for the clairvoyant case have been proposed [Becchetti et al. 2004;
Gehrke et al. 1999].
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