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Abstract. Scheduling a sequence of jobs released over time when the processing time of a job is only
known at its completion is a classical problem in CPU scheduling in time sharing operating systems.
A widely used measure for the responsiveness of the system is the average flow time of the jobs, that
is, the average time spent by jobs in the system between release and completion.

The Windows NT and the Unix operating system scheduling policies are based on the Multilevel
Feedback algorithm. In this article, we prove that a randomized version of the Multilevel Feedback
algorithm is competitive for single and parallel machine systems, in our opinion providing one the-
oretical validation of the goodness of an idea that has proven effective in practice along the last two
decades.

The randomized Multilevel Feedback algorithm (RMLF) was first proposed by Kalyanasundaram
and Pruhs for a single machine achieving anO(logn log logn) competitive ratio to minimize the
average flow time against the on-line adaptive adversary, wheren is the number of jobs that are released.
We present a version of RMLF working for any numberm of parallel machines. We show for RMLF
a firstO(logn log n

m) competitiveness result against the oblivious adversary on parallel machines. We
also show that the same RMLF algorithm surprisingly achieves a tightO(logn) competitive ratio
against the oblivious adversary on a single machine, therefore matching the lower bound for this case.

Categories and Subject Descriptors: C.4 [Performance of Systems]: performance attributes; F.2.2
[Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems—
sequencing and scheduling; G.3 [Probability and Statistics]: Probabilistic Algorithms

General Terms: Algorithms, Performance, Theory

Additional Key Words and Phrases: Probabilistic analysis, flow time, multilevel feedback, randomized
algorithms

1. Introduction

In this article, we study nonclairvoyant algorithms to schedule a stream of jobs
released over time on single and parallel machine systems. Every jobj is assigned
with a release timer j ≥ 0 and a processing timepj . Job j must be globally
scheduled forpj time units onm parallel identical machines before its completion.
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Job preemption is allowed, the execution of a job can be stopped and resumed later
on the same or on a different machine. The completion time of jobj is denoted
by Cj . A nonclairvoyantscheduling algorithm knows very little about the input
instance: The existence of a job is only known at the release time of the job; The
processing time of a job is only known when the job is completed.

This problem has a number of motivating applications. The most classical one
is processor scheduling in a time-sharing multitasking operating system, in which
scheduling decisions must be taken without knowledge of the time a job needs to
be executed. The obvious goal is to provide a fast response to users. Job preemption
is widely recognized as a key factor to improve the responsiveness of the system.
In multiprocessor computer systems, preemption requires a context switching at a
processor but this cost is reasonably small.1

A widely accepted measure of the quality of service provided to users is the
average response time of the system. The response time, or flow time, of every job
is the time spent by the job in the system between release and completion, that is,
Cj − r j for job j . We measure the performance of a randomized nonclairvoyant
scheduling algorithm by its competitive ratio [Sleator and Tarjan 1985; Ben-David
et al. 1994], the worst-case ratio between the expected average flow time of the
algorithm and the optimal average flow time of anobliviousadversary that generates
the input sequence without knowledge of the random choices of the algorithm.

This problem has been addressed for a couple of decades in the design of time
sharing operating systems. Windows NT [Nutt 1999] and Unix [Tanenbaum 1992]
have the Multilevel Feedback (MLF) algorithm at the very basis of their scheduling
policies. The basic idea of MLF is to organize jobs into a set of queues. Each job
is processed for 2i time units if in queueQi , before being promoted to queueQi+1
if not completed. At any time, the machines process jobs in the lowest queues, in
each queue giving priority to jobs at the front. While this algorithm turns out to
be very effective in practice, it behaves very poorly with respect to a worst-case
analysis, as explained below.

A good rule of thumb for flow time minimization is given by the Shortest Remain-
ing Processing Time (SRPT) first rule. SRPT prescribes the preemption of a job on
execution when a job with shorter remaining processing time is released. SRPT is
indeed an optimal algorithm for a single machine [Baker 1974] and provides the
best known approximation for parallel machines [Leonardi and Raz 1997]. How-
ever, a nonclairvoyant scheduling algorithm cannot stick to the SRPT rule since it
has no knowledge of the processing time of the jobs before they are completed. As
to MLF, it behaves on some instances very differently from the SRPT rule in that
it may preempt jobs in a high queue that are nearly completed to process newly
released jobs with large processing time in lower queues. This may force jobs with
small remaining processing time to spend a long time in the system while other
long jobs are processed. It has actually been shown that no deterministic nonclair-
voyant algorithm can be competitive at all against a worst case adversary [Motwani
et al. 1994].

In order to circumvent these difficulties, a randomized version of MLF, called
RMLF, was proposed for a single machine by Kalyanasundaram and Pruhs [1997].

1This in particular holds in systems that support threads [Doeppner 1987; IEEE 1994; Mueller 1993;
SUN 1993].
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The idea is to try to approximately behave like SRPT by having a large fraction of
jobs with a remaining processing time that is still a sufficiently large share of the ini-
tial processing time when entering their respective queues of completion. Of course,
this requirement can only be satisfied with some probability. Kalyanasundaram and
Pruhs [1997] show that RMLF isO(logn log logn) competitive for minimizing the
total flow time on a single machine against the on-line adaptive adversary [Ben-
David et al. 1994]. The on-line adaptive adversary may decide its strategy at time
t based on the knowledge of the random choices of the algorithm up to timet .
However, the processing time of a job must be fixed by the adversary at release
time of the job.

In this article, we present a randomized version of the Multilevel Feedback
algorithm working for any numbermof parallel machines. The algorithm we present
is an evolution of the one presented in Kalyanasundaram and Pruhs [1997] for a
single machine, for this reason we also call RMLF our algorithm. We present two
main results for RMLF:

(1) We show that RMLF has competitive ratioO(min{logn log n
m, logn log P})

against an oblivious adversary, whereP is the ratio between the largest and
the shortest processing time of a job. This is the firsto(n)-competitive result
for nonclairvoyant average flow time minimization on parallel machines. This
compares with theÄ(log n

m) andÄ(log P) lower bounds against the oblivious
adversary given in Leonardi and Raz [1997] for the case in which the processing
time of a job is known at release time.

(2) For the case of a single machine, we show that our version of RMLF surprisingly
matches theÄ(logn) lower bound against an oblivious adversary of Motwani
et al. [1994].

These two results are obtained as an outcome of a unified analysis of RMLF. They
are proved with a probabilistic analysis that, unlike Kalyanasundaram and Pruhs
[1997], does not require any high probability argument. In turn, our analysis requires
a considerable strengthening and simplification of the tools previously developed
in the study of algorithms for minimizing the average flow time [Leonardi and Raz
1997; Awerbuch et al. 2002].

1.1. RELATED RESULTS. Nonclairvoyant scheduling to minimize average flow
time has been first studied by Motwani et al. [1994]. The authors prove that any de-
terministic nonclairvoyant algorithm isÄ(n1/3)-competitive wheren is the number
of jobs released, and that every randomized nonclairvoyant algorithm isÄ(logn)-
competitive in the case of a single machine. The authors also present competitive
algorithms for the static case where all jobs are released at time 0. Kalyanasundaram
and Pruhs [1997] give the firsto(n) competitive nonclairvoyant scheduling result for
a single machine. They prove that a randomized version of MLF isO(logn log logn)
competitive against an on-line adaptive adversary [Ben-David et al. 1994]. They
also claim anÄ(P) randomized lower bound for the problem, whereP is the ratio
between the maximum and the minimum processing time of a job, on an instance
with a number of jobs that is exponential inP. In a previous paper, Kalyanasundaram
and Pruhs [1995] study a different model in which the nonclairvoyant algorithm
is equipped with a faster processor than the adversary. They prove in this case
that shortest elapsed time first is a constant competitive algorithm for a single
machine. More recently, Bansal et al. [2003] have applied resource augmentation
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to nonclairvoyant scheduling to minimize average stretch on parallel machines,
proposing anO(1)-speed,O(log2 P)-competitive algorithm,P being the ratio be-
tween the largest and smallest job sizes. They also propose anÄ(log P) lower
bound, which is tight when all jobs are released at time 0. Bansal and Pruhs [2003],
finally, among other results also prove that the Shortest Elapsed Time First heuristic
is O(1+ ε)-speed,O(1/ε(2+2/p))-competitive to minimize theL p norm of the flow
time, and that with constant speed-up it is poly-logarithmically competitive (with
respect toP) for theL p norm of the stretch. Related to nonclairvoyant scheduling
is the work of Bender et al. [2002], where the authors show that a constant-factor
competitive ratio for average stretch is achievable even if the processing times (or
remaining processing times) of jobs are known only to within a constant factor
of accuracy.

Related results are also concerned with the more classical average flow time mini-
mization problem when the processing time of a job is known at release time. Also in
this case, if preemption is not allowed, achieving reasonable performances on-line
is not possible. If preemption is allowed, the problem can be optimally solved on 1
machine by the well-known SRPT (Shortest Remaining Processing Time) heuristic
[Baker 1974]. Leonardi and Raz [1997] proved that SRPT isO(log(min{n/m, P}))-
competitive form ≥ 2 identical parallel machines. No better approximation, even
off-line, is known for this problem. They also prove anÄ(log n

m) and anÄ(log P)
lower bound on the competitive ratio of any randomized algorithm for the problem.
These lower bounds clearly extend to the nonclairvoyant case onm ≥ 2 parallel
machines. Other related work is concerned with the issues of using preemption
without allowing job migration [Awerbuch et al. 2002] and with related objective
functions like the stretch metric [Acharya et al. 1999; Bender et al. 1998; Gehrke
et al. 1999; Becchetti et al. 2004].

1.2. OUR WORK. We prove that RMLF achieves anO(logn log n
m) and an

O(logn log P) randomized competitive ratio against the oblivious adversary for
any numberm of parallel identical machines. We recall thatP is the ratio be-
tween the largest and the shortest processing time of a job. Observe that one of
the two bounds may be strictly better than the other depending on the values of
P, n andm. We do not contradict theÄ(P) randomized lower bound claimed in
Kalyanasundaram and Pruhs [1997] since it is obtained with a number of jobs ex-
ponential inP. For a single machine, we show anO(logn) bound, which is tight.
Our algorithm requires the knowledge of the minimum processing time of a job that
is released. This knowledge is essential for an MLF-like algorithm to establish how
long it should execute a job in the lowest queue when it enters the system. A wrong
estimation of the minimum processing time of a job may leave many small jobs
waiting much longer than their processing times. This argument can be extended to
show that in absence of this information it is not possible to be competitive at all.
However, we do not need any knowledge of the maximum processing time of a job
that is released. Moreover, we do not need to know the numbern of jobs released
over the sequence.

Our analysis of RMLF contains a set of new tools of analysis. We mentioned in
the introduction that RMLF tries to approximately follow SRPT with the goal of
avoiding the preemption of jobs that are nearly finished. We prove that (Lemmas 6
and 7) every job, apart from a logarithmic number, with constant probability, has
a remaining processing time that is still a large share of the initial processing
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time when it enters the queue in which it will be completed. This allows, roughly
speaking, to concentrate only on those jobs that are called “big”. We bound at any
time t the difference between the number of big jobs of almost equal size that are
uncompleted in RMLF and in the optimum, by limiting their corresponding volume,
that is, their overall remaining processing time. We then prove (Lemma 13) that
at any timet , the expected number of jobs not completed by RMLF is at most
O(logn) times a constant fraction of the jobs uncompleted by the adversary plus
an additive termO(logn(m k(t)), wherek(t) is related to the number of nonempty
queues at timet in RMLF. The O(logn log P) result for parallel machines then
follows since there are at mostO(log P) queues in the system.

The proof of O(logn log n
m) competitiveness for parallel machines and of

O(logn) competitiveness for a single machine requires bounding the additional
flow time due to the contribution of theO(logn(mk(t)) term over time in a differ-
ent way. This contribution is partly originated by the fact that onm ≥ 2 machines
RMLF may keep machines idle for more than the optimum. We will bound this
contribution (Section 4.4) by at mostO(logn log n

m) times the optimum form≥ 2
machines while for a single machine we will be able to limit this contribution to
O(logn) times the optimum. These two results, however, are obtained as conse-
quences of a unified analysis of RMLF.

1.3. STRUCTURE OF THEARTICLE. In Section 2, we formally define our schedul-
ing problem. Section 3 presents the RMLF algorithm. In Section 4, we provide the
analysis of the behaviour of RMLF. In particular, in Section 4.1, we provide some
definitions and basic facts. In Section 4.2, we present some tools and preliminary re-
sults. Section 4.3 is devoted to proving theO(logn log P) competitive ratio, while
Section 4.4 concerns theO(logn log(n/m)) competitive ratio of RMLF and the
O(logn) upper bound for the single machine case. Open problems are discussed
in Section 5.

2. Problem Definition

We are given a setJ of n jobs and a set ofm identical machines. Each jobj is
assigned with a pair (r j , pj ) wherer j is the release time of the job andpj is its
processing time. We order jobs by increasing release times and we assume the first
job is released at timer1 = 0. In the preemptive model, a job that is running can
be preempted and continued later on any machine. The algorithm decides which of
the uncompleted jobs should be executed at each time. A job cannot be processed
before its release time. A job cannot be executed in parallel on multiple machines,
while only a single job can be processed by a machine at any time. For any given
schedule, we defineCj to be the completion time of jobj in that schedule. The
flow time of job j is Fj = Cj − r j . The total flow time for the input instanceJ
is F(J) =∑ j∈J Fj . The goal of the scheduling algorithm is to minimize the total
flow time or equivalently the average flow time.

The arrival of a job is unknown to thenonclairvoyantalgorithm until the job is
released. The processing time of a job is unknown to the nonclairvoyant algorithm
until the completion time of the job. We assume the minimum processing time of
a job that is released to be known in advance to the algorithm, and the convention
min j∈J pj = 1, while we do not assume any knowledge of the maximum processing
time of a job.
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We compare the randomized nonclairvoyant algorithm with an oblivious ad-
versary that decides in advance, without knowledge of the random choices of the
algorithm, the numbern of jobs of the sequence together with the release time and
the processing time of each job. The adversary is charged with the optimal flow
time for the sequence. Denote byA the randomized on-line algorithm, and denote
by OPTthe optimal adversary. The generic (deterministic) execution ofA over an
input sequenceJ is defined by a set of random choicesσ . We denote by Pr(σ )
the probability of sequenceσ . A randomized on-line algorithmA is c-competitive
against an oblivious adversary if for any inputJ,

Eσ [F A
σ (J)] ≤ cFOPT(J),

where the expectation is taken over any possible outcome of the random choicesσ
of the algorithm for input instanceJ. The instanceJ will be omitted in the following
when clear from the context.

3. The RMLF Algorithm

We present our randomized version of the Multilevel Feedback algorithm for paral-
lel machines, called RMLF in the following. A job is saidactiveor aliveat timet if
released but not completed. Denote byxj (t) the time jobj has been processed until
time t . Denote byyj (t) = pj − xj (t) the remaining processing time of jobj at time
t . β j,i is a random variable with distribution Pr[β j,i ≤ x] = 1− exp(−γ x

2i ln j ). In
our algorithm, we chooseγ = 4/3.

Active jobs are partitioned into a set ofPriority Queues Q0, Q1, . . . . Within each
queue, the priority is determined by the Earliest Release Time first rule. For any
two queuesQi , Qk, Qi is said lower thanQk if i < k. Job j is assigned with a
target processing timeTj,i when it enters queueQi . At any timet , RMLF behaves
as follows:

(1) Schedule alive jobs on themmachines proceeding from the lowest to the highest
queue, within any queue in order of priority.

(2) Job j released at timet enters queueQ0 with Tj,0 = max{1, 2− β j,0}.
(3) For a job j in a queueQi−1 at timet , if xA

j (t) = Tj,i−1 < pj , job j entersQi

with Tj,i = max{2i , 2i+1− β j,i }.
(4) For a job j in a queueQi at timet , if xA

j (t) = pj ≤ Tj,i , assignCj (t) = t and
discard j from Qi .

The Earliest Release Time first rule assigns a static priority to jobs, rather than
following the dynamic priority defined by the time of arrival in a queue. The reason
of this choice is to fix, independently from the specific execution of the algorithm,
the relative priority between any two jobs located in the same queue. This will turn
out to be very useful in the probabilistic analysis of the algorithm.

We would also like to comment on the dependence of the probability distribution
of targetTj,i on bothi and j . This is necessary since the numbern of jobs released
in the sequence is not known in advance. Ifn was known, we could simply replace
j with n in the probability distribution ofTj,i . However, this would not improve
the worst case performance of RMLF.
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A very natural question at this point of the exposition is: why the exponential dis-
tribution rather than the uniform distribution? The following example, due to Kirk
Pruhs (2000 personal communication), shows why a uniform distribution of target
Tj,i ∈ [2i , 2i+1) in queueQi does not work, even against the oblivious adversary.

Consider a single machine andn jobs released at time 0 with processing time
2i (1+ 2√

n
), with n = 2i . With probability at least 1√

n
every job will enterQi+1

with a remaining processing time at least
√

n and at most 2
√

n. This guaran-
tees that at timet = n2i (1+ 2√

n
) − cn, for some constantc, the algorithm will

haveÄ(
√

n) uncompleted jobs in queueQi+1 with high probability, while the opti-
mal solution will have terminated all jobs with the exception of a constant number,
for a total flow time ofO(n3). Starting a timet , a job of size 1 is released for each
of n3 time units. The expected flow time of the algorithm will beÄ(n3√n), while
the optimum isO(n3).

4. Analysis

4.1. PRELIMINARIES. In the analysis, we use the following notation. We denote
by δ(t) the number of active jobs at timet . The volumeV(t) is the sum of the
remaining processing times of the jobs that are active at timet . L(t) denotes the
total work done prior to timet , that is the overall time them machines have been
processing jobs until timet . For any functionf (δ, V andL), we denote byf A

σ (t)
and f OPT(t) the value of functionf at timet , respectively, for a generic outcomeσ
of the random choices of RMLF and for the optimal solutionOPT. By 1σ f (t) =
f A
σ (t)− f OPT(t), we denote their difference.
In the analysis, without loss of generality, we restrict to input instances in which

r1 = 0 andr j ≤
∑ j−1

i=1 pi , j > 1, since otherwise every input instance can be split
into a set of input instances of this form that we separately analyze.

In our analysis, we classify active jobs into classes according to their processing
times. A job j is ofclass i, i ≥ 0, if its processing time is in [2i , 2i+1). For a generic
function f (V ,1V , δ,1 δ, L or1L) the notationf=k(t) will denote the value of
function f at timet when restricted to jobs of class exactlyk; we use f≥h,≤k(t) to
denote the value off at timet when restricted to jobs of classes betweenh andk.

Denote byP = maxj∈J pj

min j∈J pj
the ratio between the maximum and the minimum

processing time of a job. The maximum class of a job isblog Pc + 1. Moreover:

FACT 1. During the execution of the algorithm at mostdlog Pe queues are
created.

We start by observing that the total flow time is the integral over time of the
number of active jobs (see, e.g., Leonardi and Raz [1997]):

FACT 2. F =∑ j∈J Fj =
∫

t δ(t)dt.

Moreover, we have the following basic lower bound to the total flow time:

FACT 3. F =∑ j∈J Fj ≥
∑

j∈J pj .

The following fact holds for the algorithm:

FACT 4. A job j of class i ends either in queue Qi or in queue Qi+1.
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PROOF. Job j , with processing timepj ∈ [2i , 2i+1), has targetTj,i−1 < 2i in
Qi−1 while it has targetTj,i+1 ≥ 2i+1 in queueQi+1.

Definition 1. Job j of classi is unluckyin a given execution of the algorithm
if it has processing timepj ≤ 2i +2i−2 and it ends in queueQi+1. A job that is not
unlucky is said lucky.

We denote byδl
σ (t) and byδu

σ (t) respectively the number of lucky and unlucky
jobs that are active at timet for a specific executionσ of RMLF.

Definition 2. At any timet , a lucky job j in queueQi is saidbig if it entered
Qi at timet ≤ t andyj (t) ≥ pj

ln j , it is saidsmallotherwise.

Observe that, according to this definition, a lucky job of classi is always big
while in queuesQi−1 or lower. We denote byδb

σ (t) the number of big (lucky) jobs
that are alive at timet for a specific outcomeσ of the random choices of RMLF.

Finally, we define a set of random variables that will be used in the analysis of
the algorithm. More in detail, for each jobj Xl

j has value 1 if jobj is lucky, while
Xl

j = 0 if j is unlucky. Observe that this variable does not depend upon time but
only on the specific execution of the algorithm. Moreover, for each jobj and for
each timet , four binary variables are defined:Xl

j , X j (t), Xl
j (t) andXb

j (t). The value
of X j (t) is 1 if job j is alive at timet , 0 otherwise.Xl

j (t) is defined in terms ofXl
j

andX j (t), namely,Xl
j (t) = Xl

j · X j (t). Finally, Xb
j (t) = 1 if Xl

j (t) = 1 and job j
is big at timet , Xb

j (t) = 0 otherwise.
The following gives a basic property of the RMLF algorithm:

FACT 5. At any time t and for any i , at most m jobs, alive at time t, have been
executed in queue Qi but have not been promoted to Qi+1.

PROOF. Let j1, j2, . . . be the jobs inQi at timet ordered by decreasing priority.
Let k be the largest index such thatjk has been processed while in queueQi . Let
t ′ ≤ t be the last time thatjk was processed inQi . We show below that all jobsjh,
h < k, are also executed at timet ′. Since at mostm jobs are executed at the same
time, this impliesk ≤ m and the claim follows. Two cases are possible for a job
jh, h < k: (i) if jh was in queueQi at time t ′, it would be on execution since it
precedes jobjk in the earliest released time first order; (ii) if at timet ′ job jh was
in a queueQl , l < i , then it would also be on execution since a job is executed in
a higher queueQi .

We first present the probabilistic statements we use in the analysis. Then we give
the analysis of the competitive ratio for RMLF.

4.2. PROBABILISTIC ANALYSIS. We start by showing that a job of classi with
processing time close to 2i is likely to be completed in queuei , therefore over-
coming the counterexample for the uniform distribution described in Section 3. As
illustrated in Figure 1(a), we prove that the probability that targetTj,i falls in the
interval [2i , 2i + 2i−2) is at most 1/j .

This is formally proved in the following lemma:

LEMMA 6. The expected number of unlucky jobs along the execution of the
algorithm is Hn.
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FIG. 1. FunctionPr [Tj,i ≤ x] is the probability distribution ofTj,i . a) The probability that a jobj
of classi is unlucky is at most 1/j . b) P1 andP2 − P1 are the probabilities that a job is respectively
big or small. They differ for at most a constant factor.

PROOF. A job j of classi with processing timepj ≤ 2i + 2i−2 is unlucky if it
enters queueQi+1. This happens with probability at most 1/j as shown by:

Pr
[
Xl

j = 0
] = Pr[Tj,i < pj ] ≤ Pr

[
Tj,i < 2i + 2i−2

]
= Pr

[
β j,i > 32i−2

] = exp(− ln j ) = 1

j
,

sinceγ = 4/3. The expected number of unlucky jobs is then bounded by
∑n

j=1
1
j = Hn.

In the remainder of this section, we present a second fundamental property of
our algorithm. As pointed out in the introduction we would like our algorithm to
approximately follow the SRPT heuristic, implying that most of the jobs arebig,
that is, they enter the queue of completion with a remaining processing time that
is at least a logarithmic fraction of the original processing time. We prove that, for
any job j of classi and for any timet , the probability that jobj is alive and big at
time t is at least a constant fraction of the probability that jobj is lucky and alive
at the same time. This property implies that, at any timet , a constant fraction of
lucky jobs that are alive att are also big. This will be used to limit the difference
between the expected number of jobs in the schedule of RMLF and in the optimal
schedule.

Observe that to ensure the property stated above we need that when dividing the
interval [2i , 2i+1) into logn subintervals of size2i

logn , for everyl , the probability
that the target falls in the firstl intervals is at least a constant fraction of the
probability that it falls in the firstl + 1 intervals. It is straightforward to conclude
that an exponential decreasing probability distribution is necessary to this purpose.

The proof of this property is straightforward if, at timet , a job j of classi is in
a queueQk, k < i , while it needs some work if jobj is in one of the queues of
possible completion, namelyQi or Qi+1. Assume for instance jobj is in queue
Qi+1, the fact that jobj is big when it enters queueQi+1 depends on the value of
targetTj,i . In Figure 1b) it is pictorially shown that for a job withpj ≥ 2i + 2i−2

(a lucky job by definition), ifTj,i < pj (the job entered queueQi+1), then with
constant probabilityTj,i is also smaller thanpj (1−1/ ln j ), therefore the job is big.

However, we restrict our attention to those executions in which jobj is alive
a timet . This might restrict the set of favourable executions, hence the argument
above cannot be applied directly. The formal proof for our case is given in the
following lemma:
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LEMMA 7. There exists a constantα such that, for every job j≥ α and time t
it holdsPr[Xb

j (t) = 1] ≥ exp(−4γ ) Pr[Xl
j (t) = 1].

PROOF. SinceXb
j (t) = 1 impliesXl

j (t) = 1, we have:

Pr[Xb
j (t) = 1] = Pr

[
Xb

j (t) = 1∩ Xl
j (t) = 1

]
= Pr

[
Xb

j (t) = 1|Xl
j (t) = 1

] · Pr
[
Xl

j (t) = 1
]
.

The problem is to bound Pr[Xb
j (t) = 1|Xl

j (t) = 1] for a job j of classi . We need to
characterize the set of specific executionsσ of the algorithm for whichXl

j,σ (t) = 1.
Denote byX the generic assignment of all random variables with the exception of
Tj,i−1 (Tj,i ). We denote by6i

j (t) (6i+1
j (t)) the set of all executionsσ such that:

(i) all random variables with the exception ofTj,i−1 (Tj,i ) are assigned according
toX ; (ii) at time t job j is in queueQi (Qi+1); (iii) Xl

j,σ (t) = 1. Every execution
in 6i

j (t) (6i+1
j (t)) is denoted in the following byσ =< X , Tj,i−1 > (σ =< X ,

Tj,i >). Hence, the Lemma is proved if Pr[Xb
j (t) = 1|σ ∈ 6i

j (t)] ≥ exp(−4γ )
and Pr[Xb

j (t) = 1|σ ∈ 6i+1
j (t)] ≥ exp(−4γ ), since a job of classi is always

big in queuesQi−1 or lower. The following, technical Lemma proves that, for any
executionσ with an assignmentTj,i−1 = T (Tj,i = T) such thatj is lucky and
alive at timet , j is also lucky and alive att , for any other execution differing from
σ only in the assignmentTj,i−1 = T ′ < T (Tj,i = T ′ < T). We will use this
argument to complete the proof.

LEMMA 8. Consider a job j of class i and a specific executionσ =< X ,
Tj,i−1 = T >∈ 6i

j (t) (σ =< X , Tj,i = T >∈ 6i+1
j (t)). Then, for every T′ ∈

[2i−1, T) (T ′ ∈ [2i , T)) it holds σ ′ =< X , Tj,i−1 = T ′ >∈ 6i
j (t) (σ ′ =<

X , Tj,i = T ′ >∈ 6i+1
j (t)).

PROOF. We prove the claim for a jobj of classi andσ ∈ 6i
j (t). The proof for

σ ∈ 6i+1
j (t) proceeds exactly the same, with straightforward changes, by replacing

i with i + 1 and is therefore omitted. Intuitively, we prove that ifj is alive, lucky
and in queueQi at timet in accordance with executionσ , the same happens with
executionσ ′, when the targetTj,i−1 is reduced fromT to T ′ < T . Let t ′ denote
the time at whichj is processed forT ′ units in queueQi−1 according to execution
σ ′. The schedules forσ andσ ′ are identical up to timet ′, hence we shall always
assumet > t ′.

We first prove (Fact a) that, for anyt̂ ∈ (t ′, t ] such thatj is alive at̂t in execution
σ ′, we haveyh,σ ′(t̂) ≤ yh,σ (t̂) for every jobh 6= j . Observe that at least one
such time instant̂t when job j is alive exists since by assumption,T ′ < T and
σ =< X , Tj,i−1 = T >∈ 6i

j (t). The claim above intuitively means that, by
reducing the target of jobj in queueQi−1 to T ′, during interval (t ′, t ], every job
other thanj receives at least the same processing time in the new execution.

We consider jobs inQl , l < i − 1, and in queuesQi−1, Qi andQi+1 separately.
The processing of jobs in queues lower thanQi−1 is by no way affected by the
processing in queuesQi−1 or higher, hence the claim is true for anyt̂ ∈ (t ′, t ] and
for any jobh 6= j in a queue lower thanQi−1 at timet̂ .
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As to jobs in queuesQi−1, Qi andQi+1, the proof is by contradiction. Assume
there exists at least one jobh 6= j in Qi−1, Qi or Qi+1, such thatyh,σ ′(t̂) > yh,σ (t̂),
for somet̂ ∈ (t ′, t ]. Let t ∈ [t ′, t̂) be the last time whenyh,σ ′(t) ≤ yh,σ (t) for all
h 6= j . There has to be a jobh 6= j such thatyh,σ ′(t) = yh,σ (t) while yh,σ ′(t + ε) >
yh,σ (t + ε) for everyε sufficiently small. The contradiction follows by proving that
the set of jobs that have priority overh in σ at timet contains the set of jobs that
have priority overh in σ ′ at timet . Recall that a jobj ′ has priority over a jobj ′′
if j ′ is in a lower queue thanj ′′ or if they are in the same queue butj ′ has been
released earlier.

At this point of the proof, we use the Earliest Release Time First priority rule
in order to have a fixed priority between jobs independently of the time they are
promoted into a queue. In fact, if jobs’ priorities were determined by their arrival
times in the queue, the relative priority between two jobs promoted to a queueQi
could change if the target of jobj in queueQi−1 were reduced. Assume jobj ′
promoted to queuei after job j ′′ in executionσ . By stopping the execution of job
j at timet ′ in executionσ ′ we may anticipate the processing of some jobj ′ that
could therefore be promoted to queuei before job j ′′.

In determining the set of jobs that have priority overh, we considerj and all jobs
other thanj or h separately. According to executionσ ′, at timet , job j is in queue
Qi , while at the same time it is either in queueQi−1 or Qi in executionσ . On the
other side, sinceyh,σ ′(t) = yh,σ (t), att h is in the same queue in the two executions.
Therefore, ifj has priority overh in σ ′, so it does inσ . For all jobs other thanh and
j , we observe that in executionσ ′ and at timet they have a remaining processing
time that is smaller or equal than inσ , by definition oft . Therefore, in executionσ
and at timet , they are in the same queue or in a lower queue than in executionσ ′,
for which, if at t and in executionσ ′ they have priority overh, the same happens
with executionσ . This proves that the set of jobs that have priority overh in σ at
time t contains the set of jobs that have priority overh in σ ′ at timet .

But this contradicts the assumption above and hence (Fact a)yh,σ ′(t̂) ≤ yh,σ (t̂)
for every jobh 6= j and for anŷt ∈ (t ′, t ] such thatj is alive att̂ . As a corollary
of (Fact a), we have (Fact b) for anyt̂ ∈ (t ′, t ] such that j is alive att̂ , we have
δA
σ ′(t̂) ≤ δA

σ (t̂).
We can now prove thatXl

j,σ (t) = 1 impliesXl
j,σ ′(t) = 1. Assume this is not the

case and consider the lastt̂ ∈ (t ′, t ] such thatj is alive at timêt . (Fact b) implies
that the overall work done by the machines during interval (t ′, t̂ ] in executionσ ′
is not more than inσ . This consideration and (Fact a) together implyyj,σ ′(t̂) ≥
yj,σ (t̂), which contradicts the assumption. As a consequence,j is alive at timet
in executionσ ′ and it is obviously lucky, sinceTj,i−1 has been reduced, whileTj,i
was left unchanged, that isXl

j,σ ′(t) = 1 (for the caseσ ∈ 6 i+1
j (t), observe that

Xl
j,σ (t) = 1 impliespj > 2i + 2i−2). Finally, sinceyj,σ ′(t̂) ≥ yj,σ (t̂), j is in queue

Qi at timet , according to executionσ ′. This, and the fact thatXl
j,σ ′(t) = 1, together

imply σ ′ ∈ 6i
j (t).

COROLLARY 9. Consider a job j of class i and a specific assignmentX of all
random variables with the exception of Tj,i−1 (Tj,i ). Consider the set6i

j (t) (6i+1
j (t))

of all sequences with assignmentX where job j is in queue Qi (Qi+1) at time t,
such that Xlj,σ (t) = 1. Then, there exists a value x∈ [2i−1, 2i ) (x ∈ [2i , 2i+1))
such that for every Tj,i−1 ∈ [2i−1, x) (Tj,i ∈ [2i , x)) the corresponding sequence
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is in6i
j (t) (σ ∈ 6i+1

j (t)), while it is not in6i
j (t) (σ ∈ 6i+1

j (t)) for every Tj,i−1 ∈
[x, 2i ) (Tj,i ∈ [x, 2i+1)).

Denoted byx the smallest value for variableTj,i−1 (Tj,i ) such that for the corre-
sponding executionσ we haveXl

j,σ (t) = 0, the proof of Corollary 9 follows by a
simple contradiction argument and is therefore omitted.

We can now prove Lemma 7. Consider a jobj ≥ e5 of classi and consider
all sequencesσ for which Xl

j,σ (t) = 1. For all sequences in whichj is in queue
Qk, k ≤ i − 1, j is big, sinceTj,i−2 < 2i−1 and then, ift denotes the timej was
promoted to queueQk, yj (t) > pj − 2i−1 ≥ pj /2 ≥ pj / ln j , for j ≥ 8. As a
consequence, the only possibility for a lucky job of classi to be small is to enter
queueQi or queueQi+1 at timet ≤ t , with yj (t) <

pj

ln j .
First, consider any subset6i

j (t) (6i+1
j (t)) of the set of sequences in which jobj

is alive, lucky and in queueQi (Qi+1) at timet , such that all sequences in6i
j (t)

(6i+1
j (t)) only differ for the value ofTj,i−1 (Tj,i ).
If we prove a bound on the probability that jobj is big when conditioned to

sequencesσ ∈ 6i
j (t) (σ ∈ 6i+1

j (t)), then the claim is proved forj in Qi ( j in
Qi+1) at timet . Let x denote the value derived from Corollary 9. We proceed as
follows:

Pr

[
Tj,i−1 ≤ pj − pj

ln j
| σ ∈ 6i

j (t)

]
= Pr

[
Tj,i−1 ≤ pj

(
1− 1

ln j

)∣∣∣∣ Tj,i−1 < x

]
≥ Pr

[
Tj,i−1 ≤ pj

(
1− 1

ln j

)∣∣∣∣ Tj,i−1< 2i

]
≥

Pr
[
Tj,i−1 ≤ pj

(
1− 1

ln j

)]
Pr
[
Tj,i−1 < 2i

]
≥ Pr

[
β j,i−1 ≥ 2i − pj

(
1− 1

ln j

)]
≥ exp

(
−γ

2i − pj
(
1− 1

ln j

)
2i−1

ln j

)

= exp

(
−γ 2i − pj

2i−1
ln j − γ pj

2i−1

)
≥ exp

(
−γ pj

2i−1

)
≥ exp(−4γ ),

where the second inequality follows sincex < 2i , the seventh inequality stems
from pj ≥ 2i , while the last inequality frompj < 2i+1.

We then prove the claim for sequences belonging to6i+1
j (t). Since jobj is lucky,

pj > 2i + 2i−2. We show that jobj is big when it entersQi+1 with (conditioned)
probability at leaste−2γ .

Corollary 9 ensures that there exists a valuex such thatσ =< X , Tj,i >∈ 6i+1
j (t)

for everyTj,i ∈ [2i , x). If we prove a bound on the probability that jobj is big
when conditioned to sequencesσ ∈ 6i+1

j (t), then the claim is proved. We proceed
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as follows:

Pr

[
Tj,i ≤ pj − pj

ln j

∣∣∣∣ σ ∈ 6i+1
j (t)

]
= Pr

[
Tj,i ≤ pj

(
1− 1

ln j

)∣∣∣∣ Tj,i < x

]
≥ Pr

[
Tj,i ≤ pj

(
1− 1

ln j

)∣∣∣∣ Tj,i < pj

]
=

Pr
[
Tj,i ≤ pj

(
1− 1

ln j

)]
Pr[Tj,i < pj ]

=
Pr
[
β j,i ≥ 2i+1− pj

(
1− 1

ln j

)]
Pr[β j,i > 2i+1− pj ]

≥ e−γ
2i+1−pj (1− 1

ln j )
2i ln j

e−γ
2i+1−pj

2i ln j

= e−γ
2i+1−pj

2i ln j−γ pj
2i

e−γ
2i+1−pj

2i ln j

≥ exp
(
−γ pj

2i

)
≥ exp(−2γ ).

Here, the second inequality follows sincex < pj (becauseσ ∈ 6i+1
j (t)), while

the fourth inequality holds sinceTj,i, = max{2i , 2i+1− β j,i }, sincepj ≥ 2i + 2i−2

andpj (1−1/ ln j ) ≥ 2i when j ≥ e5. The last inequality follows frompj ≤ 2i+1.
Takingα = de5e the claim of Lemma 7 is proved.

4.3. THE O(LOG n LOG P)-COMPETITIVE RATIO. In this section, we prove that
RMLF is O(logn log P) competitive.

Intuitively, the logn factor is the price of nonclairvoyance and it is a direct
consequence of Definition 2 (see Eq. (3) in the proof of Lemma 13). The logP
factor, instead, comes from the fact that during the execution, at most logP queues
are created and each might have a number of jobs that have been initiated and
subsequently preempted by the algorithm. As pointed out further in Section 4.4,
this is a consequence of the fact that the on line algorithm in general does not
optimally balance the load among the available machines.

Recall that, for any possible executionσ , δA
σ (t) = δu

σ (t) + δl
σ (t), for which the

total flow time of RMLF can be expressed as:

Eσ [F A
σ ] = Eσ

[∫
t≥0
δA
σ (t)dt

]
= Eσ

[∫
t≥0

(δu
σ (t)+ δl

σ (t))dt

]
= Eσ

[∫
t≥0
δu
σ (t)dt

]
+ Eσ

[∫
t≥0
δl
σ (t)dt

]
=
∫

t≥0
Eσ [δu

σ (t)]dt+
∫

t≥0
Eσ [δl

σ (t)]dt. (1)
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In the remainder of this section, we need to bound the two contributions to Eq. (1).
The following lemma, based on the claim of Lemma 6, bounds the first contribution
to the total flow time.

LEMMA 10.
∫

t≥0 Eσ
[
δu
σ (t)

]
dt= O(logn)

∑
j pj .

PROOF. First, observe thatEσ [δu
σ (t)] = O(logn). This follows from:

Eσ
[
δu
σ (t)

] = n∑
j=1

Pr
[
Xl

j = 0∩ X j (t) = 1
]

≤
n∑

j=1

Pr
[
Xl

j = 0
] = O(logn).

Since the algorithm never keeps machines idle, no job is in the system after time∑
j pj . This, together with the inequality above implies:∫

t≥0
Eσ
[
δu
σ (t)

]
dt ≤

∫
0≤t≤∑ j pj

Eσ
[
δu
σ (t)

]
dt=

∫
0≤t≤∑ j pj

O(logn)dt

= O(logn)
∑

j

pj .

The next lemma uses the claim of Lemma 7 to relate the expected number of
lucky jobs alive at timet to the expected number of big jobs alive at timet .

LEMMA 11. There exists a constantα such that, at any time t, the number of
lucky jobs in the system satisfies the following relation:

Eσ
[
δl
σ (t)

] ≤ α + exp(4γ )Eσ
[
δb
σ (t)

]
.

PROOF. Setα = de5e. We have the following inequalities:

Eσ
[
δl
σ (t)

] = n∑
j=1

Pr
[
Xl

j (t) = 1
]

≤ α +
n∑

j=α+1

Pr
[
Xl

j (t) = 1
]

≤ α + exp(4γ )
n∑

j=α+1

Pr
[
Xl

b(t) = 1
]

≤ α + exp(4γ )Eσ
[
δb
σ (t)

]
,

where the third inequality follows from the claim of Lemma 7.

The next lemma bounds the expected time spent by the algorithm while all
machines are busy.

LEMMA 12.
∫

t≥0 Pr[δA(t) ≥ m] dt≤ 1
m

∑
j∈J pj .
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PROOF. The claim is derived from the following relations:∫
t≥0

Pr[δA(t) ≥ m] dt =
∫

t≥0

∑
σ :δA

σ (t)≥m

Pr[σ ] dt

=
∑
σ

Pr[σ ]
∫

t :δA
σ (t)≥m

dt

≤ 1

m

∑
j∈J

pj

∑
σ

Pr[σ ]

= 1

m

∑
j∈J

pj ,

where the third inequality follows since for everyσ
∫

t :δA
σ (t)≥m dt is bounded by

1
m

∑
j∈J pj .

The expected cost of RMLF of expression (1) is then rewritten as follows:

Eσ
[
F A
σ

] = Eσ

[∫
t≥0
δA
σ (t)dt

]
=
∫

t≥0
Eσ
[
δu
σ (t)

]
dt+

∫
t≥0

Eσ
[
δl
σ (t)

]
dt

≤O(logn)
∑

j

pj +
∫

0≤t≤∑ j pj

(α + exp(4γ )Eσ
[
δb
σ (t)

]
)dt

=O(logn)
∑

j

pj + α
∑

j

pj + exp(4γ )
∫

t≥0
Eσ
[
δb
σ (t)

]
dt

=O(logn)
∑

j

pj+ exp(4γ )Eσ

[∫
t :δA

σ (t)<m
δb
σ (t)dt

]
+ exp(4γ )Eσ

[∫
t :δA

σ (t)≥m
δb
σ (t)dt

]

=O(logn)
∑

j

pj + exp(4γ )
∫

t≥0
Eσ
[
δb
σ (t)|δA(t) ≥ m

]
Pr[δA(t)| ≥ m]dt. (2)

The third inequality follows by Lemma 10, by Lemma 11, and by recalling that
no job is in the system after time

∑
j pj , henceδl (t) = 0, for anyt >

∑
j pj . The

fifth inequality follows by the linearity of expectation and by partitioning the time
axis, for each possible executionσ , into the instants for whichδA

σ (t) < m and into
those for whichδA

σ (t) ≥ m. Finally, the last inequality follows by observing that∫
t :δA

σ (t)<m δ
b
σ (t)dt ≤ ∫t :δA

σ (t)<m δ
A
σ (t)dt ≤ ∑ j∈J pj , since the overall work done by

them machines in any possible execution of the algorithm is bounded by the sum
of the processing times of then jobs, and by expandingEσ [

∫
t :δA

σ (t)≥m δ
b
σ (t)dt].

We are left to bound the last term of Eq. (2) and to this purpose we present the
critical part of the proof, in which we bound the number of big jobs at timet in the
generic execution of RMLF determined by a set of random choices of the algorithm.

LEMMA 13. For any outcomeσ of the random choices of the algorithm, for
any time t: δA

σ (t) ≥ m,δb
σ,≥k1,≤k2

(t) ≤ 2 lnn(2(m− 1)(k2− k1+ 1)+ 3δOPT(t))+
m(k2− k1+ 2).
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PROOF. In the following, we omitσ when clear from the context. Forδb
≥k1,≤k2

(t)
we write the following relations:

δb
≥k1,≤k2

(t) ≤ m(k2− k1+ 2)+ ln n
k2∑

i=k1

V A
=i (t)

2i
. (3)

The bound follows since every big job of classi has remaining processing
time at least 2i / ln n. We should additionally consider those big jobs of classi ,
i = k1, . . , k2, with a processing time smaller than 2i / ln n since they have been
processed after entering the queue they are in. For a job of classi this may happen
in queuesi − 1, i or i + 1. However, for every queue, there are at mostm jobs that
have been processed after entering the queue (Fact 5), for which the total number
of such jobs is bounded bym(k2− k1+ 2). We continue with:

k2∑
i=k1

V A
=i (t)

2i
=

k2∑
i=k1

VOPT
=i (t)+1V=i (t)

2i

≤ 2δOPT
≥k1,≤k2

(t)+
k2∑

i=k1

1V=i (t)

2i

= 2δOPT
≥k1,≤k2

(t)+
k2∑

i=k1

1V≤i (t)−1V≤i−1(t)

2i

= 2δOPT
≥k1,≤k2

(t)+ 1V≤k2(t)

2k2
+

k2−1∑
i=k1

1V≤i (t)

2i+1
− 1V≤k1−1(t)

2k1

≤ 2δOPT
≥k1,≤k2

(t)+ δOPT
≤k1−1(t)+ 2

k2∑
i=k1

1V≤i (t)

2i+1

≤ 2δOPT
≤k2

(t)+ 2
k2∑

i=k1

1V≤i (t)

2i+1
, (4)

where the second inequality follows since a job of classi has size less than 2i+1,
while the fifth inequality follows since−1V≤k1−1(t)

2k1
≤ VOPT

≤k1−1

2k1
≤ δOPT
≤k1−1.

We are left to study the term
∑k2

i=k1

1V≤i (t)
2i+1 . For anyt1 ≤ t2 ≤ t , for a generic

function f , denote byf [t1,t2](t) the value of functionf at timet when restricted to
jobs released betweent1 andt2, for example,L [t1,t2]

≤i (t) is the work done by timet
on jobs of class at mosti released between timet1 andt2. Let t0(t) be the last time
prior to timet in the execution determined by the set of random choicesσ , such
that δA

σ (t0) < m. Denote byti < t the maximum betweent0(t) and the last time
prior to timet in which a job was processed in queueQi+1 or higher in this specific
execution of RMLF. Observe that, fori = k1, . . . , k2, [ti+1, t) ⊇ [ti , t).

At time ti+1 either the algorithm was processing a job in queueQi+2 or higher, or
ti+1 = t0(t), for which at timeti+1 at mostm−1 jobs were in queuesQ0, . . . , Qi+1.
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At time t we have:

1V≤i (t) ≤ V A[0,ti+1]
≤i (t)+1V (ti+1,t ]

≤i (t)

≤ V A[0,ti+1]
≤i (t)+ V A[0,ti+1]

>i (t)− V A[0,ti+1]
>i (ti+1)+ L A(ti+1,t ]

>i (t)− LOPT(ti+1,t ]
>i (t)

≤ (m− 1)2i+2+ L A(ti+1,t ]
>i (t)− LOPT(ti+1,t ]

>i (t).

The first inequality follows since1V≤i (t) is bounded by the sum of a first
contribution equal to the volume of the jobs released until timeti+1 in RMLF’s
schedule and a contribution equal to the volume difference of jobs released af-
ter time ti+1. The second inequality states that the volume difference is bounded
by the time spent in the interval (ti+1, t ] by RMLF processing jobs of class big-
ger thani minus the time spent by the optimal solution processing jobs of class
bigger thani released in the interval (ti+1, t ]. The third inequality follows from
V A[0,ti+1]
≤i (t)+V A[0,ti+1]

>i (t)−V A[0,ti+1]
>i (ti+1) ≤ (m−1)2i+2. This relation holds since

at mostm− 1 jobs are in queuesQ0, . . , Qi+1 at timeti+1. Assumex1 such jobs
are of class≤ i andx2 such jobs are of class> i . The remaining volume of the
x1 jobs of class≤ i at timeti+1 is at mostx12i+1, while thex2 jobs of class> i
are processed in [ti+1, t) for at mostx22i+2 time units. Fromx1+ x2 ≤ m− 1, the
inequality follows.

The fact that at mostm− 1 jobs are in the system in queuesQ0, . . . , Qi+1 at
time ti+1 is crucial in proving the tightness result form= 1. In fact form= 1, this
contribution to the flow time will disappear.

In the following, we adopt the conventiontk1−1 = t . From the inequality above
we write:

k2∑
i=k1

1V≤i (t)

2i+1
≤

k2∑
i=k1

(m− 1)2i+2+1L (ti+1,t ]
>i (t)

2i+1
≤ 2(m− 1)(k2− k1+ 1)

+
k2∑

i=k1

1L (ti+1,t ]
>i (t)

2i+1
(5)

We then concentrate on the term
∑k2

i=k1

1L
(ti+1,t ]
>i (t)
2i+1 for which we have:

k2∑
i=k1

L A(ti+1,t ]
>i (t)− LOPT(ti+1,t ]

>i (t)

2i+1
=

k2∑
i=k1

i∑
j=k1−1

L
A(t j+1,t j ]
>i (t)− L

OPT(t j+1,t j ]
>i (t)

2i+1

≤
k2∑

j=k1−1

k2∑
i= j

L
A(t j+1,t j ]
>i (t)− L

OPT(t j+1,t j ]
>i (t)

2i+1
,

where the second equality follows by partitioning the work done on the jobs released
in the interval (ti+1, t ] into the work done on the jobs released in the intervals
(t j+1, t j ], j = k1− 1, . . , i .
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Let i ( j ) ∈ [ j, . . , k2] be the index that maximizesL
A(t j+1,t j ]
>i − L

OPT(t j+1,t j ]
>i . We

then have:

k2∑
i=k1

1L (ti+1,t ]
>i (t)

2i+1
≤

k2∑
j=k1−1

k2∑
i= j

L
A(t j+1,t j ]

>i ( j )
(t)− L

OPT(t j+1,t j ]

>i ( j )
(t)

2i+1

≤
k2∑

j=k1−1

L
A(t j+1,t j ]

>i ( j )
(t)− L

OPT(t j+1,t j ]

>i ( j )
(t)

2 j

≤ 2
k2∑

j=k1−1

δ
OPT(t j+1,t j ]

>i ( j )
(t) ≤ 2δ

OPT(t j+1,t ]
≥k1

(t) ≤ 2δOPT
≥k1

(t). (6)

To prove the third inequality, observe that every job of class bigger thani ( j ) ≥
j released in the time interval (t j+1, t j ] is processed by RMLF in the interval
(t j+1, t ] for at most 2j+2 time units. Order the jobs of this specific set by increas-
ing xj (t). Now, observe that each of these jobs has remaining processing time at
least 2i ( j )+1 ≥ 2 j+1 at the beginning of interval (t j+1, t ] and we give to the optimum
the further advantage that it finishes every such job when processed for an amount
xj (t) ≤ 2 j+2. To maximize the number of finished jobs, the optimum places the

work L
OPT(t j+1,t j ]

>i ( j )
on the jobs with smallerxj (t). The optimum is then left at timet

with a number of jobsδOPT(t j+1,t j ]

>i ( j )
≥

L
A(t j+1,t j ]

>i ( j )
− L

OPT(t j+1,t j ]

>i ( j )

2 j+1

 ,
for which the third inequality holds.

Altogether, from (3), (4), (5) and (6) we obtain:

δb
≥k1,≤k2

(t)

≤ m(k2− k1+ 2)+ 2 lnn(δOPT
≤k2

(t)+ 2(m− 1)(k2− k1+ 1)+ 2δOPT
≥k1

(t))

≤ m(k2− k1+ 2)+ 2 lnn
(
2(m− 1)(k2− k1+ 1)+ 3δOPT(t)

)
,

for which the claim of the Lemma is proved.

We then plug the claim of Lemma 13 into the expression (2) of the total flow
time of RMLF to achieve our first result:

Eσ [F A
σ ] = O(logn)

∑
j

pj + exp(4γ )
∫

t≥0
Eσ
[
δb
σ (t)|δA(t) ≥ m

]
Pr[δA(t)| ≥ m]dt

≤ O(logn)
∑

j

pj

+ exp(4γ )
∫

t≥0
(2 lnn(2(m− 1)(log P + 2)+ 3δOPT(t)))

Pr[δA(t) ≥ m]dt
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= O(logn)
∑

j

pj

+O(logn log P)
∫

t≥0
mPr[δA(t) ≥ m]dt+ O(logn)

∫
t≥0
δOPT(t)dt

= O(logn)
∑
j∈J

pj + O(logn log P)
∑

j

pj + O(logn)FOPT

= O(logn log P)FOPT,

where in the second inequality we apply Lemma 13 and Fact 1, while in the fourth
we apply the claim of Lemma 12. We therefore state our first result:

THEOREM 14. RMLF is an O(logn log P) competitive nonclairvoyant random-
ized algorithm for minimizing the total flow time on parallel machines.

4.4. THE O(LOG n) COMPETITIVE RATIO FORm= 1, O( LOG n LOG n
m) COMPET-

ITIVE RATIO FOR m ≥ 2. In this section, we strengthen the analysis to obtain an
O(logn) tight bound for a single machine and anO(logn log n

m) bound form≥ 2
parallel machines.

Again, the logn factor is the price of nonclairvoyance, as already commented
at the beginning of Section 4.3. The logn

m term, instead, comes from the fact that
the optimum might work more than the algorithm, due to a better distribution of
the overall load among the machines. In the worst case, the unbalance of MLF
with respect to the optimum brings to a multiplicative factorO(logn log n

m) in the
competitive ratio. As expected, this term vanishes in the single machine case, where
instead of a competitive ratioO(log2 n), we have a tighterO(logn). In this respect,
this contribution is similar to the one emerging in the analysis of SRPT [Leonardi
and Raz 1997].

Let k̄ be the lowest class such that less thanm jobs of class≥ k̄ are released.
Let T(σ ) = {t : δA

σ (t) ≥ m} be the set of time instants where all machines are
busy in the execution of RMLF defined byσ . Let Tj (σ ) ⊆ T(σ ), j = 0, . . , k̄,
be the set of time instants where at least one machine is busy with jobs in queue
Qj and no machine is busy with jobs in queues higher thanQj in the execution
of RMLF defined byσ . Let Tk̄+1(σ ) ⊆ T(σ ) be the set of time instants when at
least one machine is processing a job in queueQk̄+1 or higher and all machines are
busy. Observe that for eachσ , {T0(σ ), T1(σ ), . . . , Tk̄+1(σ )} defines a partition of
T(σ ). For the sake of simplicity, in the sequel, with a slight abuse of notation, we
useTj (σ ) to denote both the above defined set and its size. For the total flow time
of RMLF, the last term of Eq. (2) can be rewritten using the claim of Lemma 13
as follows:∫

t≥0
Eσ
[
δb
σ (t)|δA(t) ≥ m

]
Pr[δA(t) ≥ m]dt

=
∑
σ

Pr(σ )
∫

t∈T(σ )
δb
σ (t)dt

≤
∑
σ

Pr(σ )
k̄∑

j=0

∫
t∈Tj (σ )

(2m+ δb
σ,≥ j,≤k̄−1(t))dt+

∑
σ

Pr(σ )
∫

t∈Tk̄+1(σ )
δb
σ (t)dt
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≤
∑
σ

Pr(σ )
k̄∑

j=0

∫
t∈Tj (σ )

(2 lnn(2(m− 1)(k̄− j )+ 3δOPT(t))+m(k̄− j + 3))dt

+
∑
σ

Pr(σ )2m
∫

t∈Tk̄+1(σ )
dt

=
∑
σ

Pr(σ )
k̄∑

j=0

∫
t∈Tj (σ )

4 lnn(m− 1)(k̄− j )dt

+
∑
σ

Pr(σ )
k̄∑

j=0

∫
t∈Tj (σ )

6 lnnδOPT(t)dt

+
∑
σ

Pr(σ )
k̄∑

j=0

∫
t∈Tj (σ )

m(k̄− j + 3)dt+ 2
∑

j

pj

= O(logn)
∑
σ

Pr(σ )
k̄∑

j=0

(m− 1)(k̄− j )Tj (σ )+
∑
σ

Pr(σ )
k̄∑

j=0

m(k̄− j )Tj (σ )

+3m
∑
σ

Pr(σ )
k̄∑

j=0

Tj (σ )+ O(logn)
∑
σ

Pr(σ )
∫

t∈Tj (σ )
δOPT(t)dt+ 2

∑
j

pj

= O(logn)
∑
σ

Pr(σ )
k̄∑

j=0

(m− 1)(k̄− j )Tj (σ )+
∑
σ

Pr(σ )
k̄∑

j=0

m(k̄− j )Tj (σ )

+O(logn)FOPT.

The second inequality follows by partitioning for everyσ , the set{t ≥ 0 :
δA
σ (t) ≥ m} into the subsets{T0(σ ), T1(σ ), . . . , Tk̄+1(σ )}, and by observing that at

any timet ∈ Tj (σ ) there are at mostm jobs of class less thanj andm− 1 jobs of
class bigger or equal than̄k. The third inequality follows by the claim of Lemma 13
and by observing that for any timet ∈ Tk̄+1(σ ) at most 2m jobs are in the system
since (i) a machine is processing a job in a queuek̄+1 or higher and hence at most
m− 1 jobs of class less than̄k are in the system; (ii) at mostm− 1 jobs of class
≥ k̄ have been released. The other inequalities follow by rearranging the terms and
observing that (i)

∑
σ Pr (σ )

∫
t∈Tj (σ ) δ

OPT(t)dt ≤ FOPT, (ii)
∑

j pj ≤ FOPT, (iii) by
applying the claim of Lemma 12.

As a consequence of the inequalities above and from Eq. (2), we can write:

Eσ
[
F A
σ

] = O(logn)FOPT+ exp(4γ )(m− 1)O(logn)
∑
σ

Pr(σ )
k̄∑

j=0

(k̄− j )Tj (σ )

+ exp(4γ )
∑
σ

Pr(σ )
k̄∑

j=0

m(k̄− j )Tj (σ ). (7)

We are left to bound, for anyσ , the termFσ (n) = ∑k̄
j=0 m(k̄ − j )Tj (σ ). We

show this in the following Lemma:
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LEMMA 15. For any outcome of the random choicesσ of the algorithm, it holds

Fσ (n) =
k̄∑

j=1

m(k̄− j )Tj (σ ) = O
(
log

n

m

)
FOPT.

PROOF. We defineTl
j (σ ) ⊆ T(σ )/Tk̄+1(σ ) to be the set of time instants where

machinel , l = 1, . . ,m, is processing a job of queuej , j = 0, . . . , k̄, in execution
σ . Observe that, for eachl , {Tl

0(σ ), . . . Tl
k̄ } defines a partition ofT(σ )/Tk̄+1(σ ). Let

nl
j be the number of jobs finished by machinel in queuej in this specific execution

of RMLF. In the following we useTl
j (σ ) to denote both the above defined set

and its size and we omitσ when clear from the context. We have the follow-
ing inequalities:

F(n) =
k̄∑

j=0

m(k̄− j )Tj ≤
k̄∑

j=0

m∑
l=1

(k̄− j )Tl
j ≤

k̄∑
j=0

j∑
i=0

m∑
l=1

nl
j (k̄− i )2i+1.

The second inequality follows since any timet ∈ Tj is also part of the setTl
i , for

somei ≤ j . The third inequality follows since any job that is completed in queue
Qj has been processed in any queueQi , i ≤ j , for at most 2i+1, therefore giving
a contribution of (̄k− i )2i+1.

Since
∑ j

i=0 2i+1(k̄− i ) ≤ 2 j+2(k̄− j + 1), it follows

F(n) ≤ 4
k̄∑

j=0

m∑
l=1

nl
j (k̄− j + 1)2j

Let I j = 2 j
∑m

l=1 nl
j . We show that

∑k̄
j=0(k̄ − j + 1)I j = O(log n

m)FOPT. Let
I = max{2k̄, 1/m

∑k̄
j=0 I j }. Since there are more thanm jobs of class at least̄k−1

we havem2k̄−1 ≤ FOPT. Since every job ending in a queuej has size at least 2j−1,
we have

∑k̄
j=0 I j =

∑k̄
j=0 2 j

∑m
l=1 nl

j ≤ 2FOPT. Therefore, we havemI ≤ 2FOPT.
To prove thatF(n) = O(

∑k̄
j=0(k̄ − j )I j + 2FOPT) = O(log n

m)FOPT, we study
the following optimization problem:

max{I0,...,Ik̄}F(n) =
k̄∑

j=0

(k̄− j )I j

n ≥
k̄∑

j=0

I j

2 j

I ≥ 1

m

k̄∑
j=0

I j ,

where the first constraint holds sinceI j

2 j =
∑m

l=1 nl
j ≤ n.
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We rewrite the problem using variablesYj =
∑

i≤ j I i , j ≥ 0, with the convention
Y−1 = 0:

max{Y0,...,Yk̄}F(n) =
k̄∑

j=0

Yj

n ≥
k̄∑

j=0

Yj − Yj−1

2 j
≥

k̄∑
j=0

Yj

2 j+1

mI ≥ Yk̄ ≥ Yk̄−1 ≥ . . . .
The objective function is maximized assigningmI = Yk̄ = Yk̄−1 = Yk̄−2 = · · ·
= Yk̄−l , and 0= Yk̄−l−1 = · · · = Y0 with l being the minimum integer such that
the second constraint is tight or violated, namely the minimum integer such that

mI
2k̄−l−1 ≥ n.

We then compute a valuel such that 2l+1 = n
m

2k̄

I . Since 2k̄ ≤ I we have
l = O(log n

m), thus yieldingF(n) = O(log n
m)mI = O(log n

m)FOPT that completes
the proof.

The bound obtained from Claim 15 holds for anyσ . Applying this claim in
Eq. (7), we obtain our second result:

THEOREM 16. RMLF is a O(logn log n
m) competitive nonclairvoyant random-

ized algorithm for minimizing the total flow time on parallel machines.

Considering Eq. (7) withm = 1, we obtain our tight result for the single
machine case:

THEOREM 17. RMLF is a O(logn) competitive nonclairvoyant randomized
algorithm for minimizing the total flow time on a single machine.

5. Open Problems

There is still a logarithmic gap between the competitive result on parallel machines
and theÄ(log n

m) randomized lower bound for the case in which the processing
time of a job is known at release time [Leonardi and Raz 1997]. However, our
conjecture is that alike the case of a single machine, the lack of knowledge about
the processing times of the jobs leads to a logarithmic overhead.

The fact that a randomized version of MLF achieves optimal or almost optimal
performances from a worst case point of view may be a good indication that MLF is
also very efficient on input sequences drawn from specific probability distributions
like the uniform or the exponential ones. This might be a further validation of the
goodness of MLF in practice.

We finally mention nonclairvoyant minimization of other flow time related met-
rics, like the average stretch, that is,

∑
j∈J Fj /pj , for which constant competitive

algorithms for the clairvoyant case have been proposed [Becchetti et al. 2004;
Gehrke et al. 1999].
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