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Abstract

We propose a framework for designing global observers for nonlinear systems with disturbances under geometric conditions
based on orbital symmetries. Under some additional restrictions these orbital symmetry-based conditions boil down to geometric
homogeneity (at infinity) conditions. Our observers are the result of the combination of a first filter, a state norm estimator,
with a second filter adaptively tuned by the first and when compared with the existing literature have a completely novel
structure, inherited by the orbital symmetry-based conditions. The observers exploits the geometric properties of orbital
symmetries which are one-parameter groups of transformations capable of mapping the system state into neighbourhoods with
parametrized width.
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1 Introduction

Among the various approaches to state estimation
for nonlinear systems observer with adaptive or time-
varying gains are by far the most popular [14]. Adap-
tive or time-varying gains allow to overcome classical
limitations of high/low-gain observers (HGO), distur-
bance observers (DBO) and extended state observers
(ESO) such as compact domains of error convergence
or bounded (with their derivatives) nonlinearities. An
adaptive high/low-gain observer is based on the idea
of selecting or dynamically updating its gains via par-
allel filters in such a way as to dominate the nonlinear
contribution to the dynamics of the estimation er-
ror. The combination of the tuning capabilities of the
extended Kalman filter approach with the high-gain
global stability properties is considered in [11]. Adap-
tive high-gain observers are investigated to achieve a
tradeoff between transient response in a noise-free set-
ting and sensitivity to disturbances in the presence of
noise [3], [6], [15], [17], [22], [29]. In particular, [3] is a
first attempt of mixing adaptive-based techniques with
homogeneity conditions. Homogeneity is a particular
type of symmetry, which is widely used in control the-
ory for system analysis, regulation and observer design
(see, for instance, [18], [25] for a geometric definition
of homogeneity and [4] for observer design techniques
based on weighted homogeneity). Such an interest to the
homogeneity concept is based on various useful features
of homogeneous systems. In particular, local stability

properties are also global; the rate of convergence of ho-
mogeneous systems can be assessed by its homogeneity
degree and homogeneous systems are robust with re-
spect to external perturbations and time delays. All the
previous observer design results with weighted homo-
geneity require specific system structures, such as chains
of integrators, and in many cases restrictive conditions
on the increments of the nonlinearities ([4], [8] and ref-
erences therein). A symmetry-based approach has been
initiated in [12] and subsequently in [20] and [23] with
local asymptotic convergence results. A sliding-mode
approach is also well-studied and recently combined
with homogeneity in order to obtain (homogeneous)
sliding-mode observers, with convergence in finite time
and robustly with respect to bounded disturbances.
Application however is still limited to chains of integra-
tors with matched nonlinearities and disturbances and
known, constant or time-varying, bound on the state
trajectories ([13], [21]), globally Lipschitz nonlinearities
([31]) or incrementally dissipative nonlinearities ([1], [2]).

In this paper we follow and significantly improve the con-
ference paper [5] (which is presented without proofs) by
pointing out general observer design techniques result-
ing frommixing adaptive with symmetry-based method-
ologies. We stress the fact that our analysis and design
is aimed at global state observers, i.e. the estimation er-
ror converges for any state and observer initial condi-
tions, which are opposed to semi-global state observers,
i.e. the estimation error converges for any state and ob-
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server initial conditions in a given bounded set D Ă Rn.
With these premises, the main points in favour of the
proposed results are:

i) Novel symmetry-based conditions for global observer
design. Under some additional restrictive assumptions
on the type of orbital symmetry involved, these con-
ditions boils down to well-known homogeneity condi-
tions ([3], [4], [26]). Indeed, homogeneity is a particular
type of orbital symmetry. It follows that our results
are applicable to homogeneous systems but most im-
portantly may be used for systems which are not ho-
mogenous in the classical sense but still possess an or-
bital symmetry. Moreover, since symmetries are an in-
trinsic geometric notion it is possible to consider more
general systems on homogeneous spaces: exploiting
the symmetry structure has led to high performance
observers and filters ([20], [23]).
ii) Unlike previous cited works on homogeneous ob-
servers and sliding-modes with homogeneity, the pre-
sented results do not require special forms or system’s
decompositions (integrator chains, relative-degree
forms, etc) or restrictive/specific conditions on the
observer initialization (semi-global observers) and/or
on the state nonlinearities (globally Lipschitz nonlin-
earities, bounded state trajectories or incrementally
dissipative nonlinearities: [1], [2], [13], [21], [31]).
iii) Unlike other existing symmetry-based approaches,
we design observers with global convergence proper-
ties. Moreover, we consider the most general type of
orbital symmetry (i.e. a nonlinear one) in comparison
with more restricted classes of orbital symmetries (i.e.
linear ones: [25]).
iv) Our results take into account the presence of non-
vanishing disturbances and we give bounds for the es-
timation error, which can be potentially adjusted or
optimized by adjusting the observer parameters. In
this paper, the only information we use on the dis-
turbance is a known bound d8 but our approach is
amenable to various generalizations to unbounded dis-
turbances (with known time-varying bound d8ptq). To
this aim, we introduce novel notions of symmetries for
systems with disturbances.

The paper is organized as follows: in Section 3 we present
the class of systems and we explain shortly the observer’s
structure (Figure 1), in Section 4 we discuss the exis-
tence of state-norm estimators with some constructive
tips for special classes of systems (Examples 4.1 and 4.2),
deferring to Section A of the Appendix the discussion
of more abstract conditions based on backward/strong
observability issues. In Section 5.1 we introduce actions,
push-forwards and symmetries, specifically for readers
less familiar with these issues, and a new notion of in-
cremental symmetry in the 8-limit, instrumental for
our observer design, by describing in detail how to con-
struct such types of symmetries for lower triangular vec-
tor fields (Section 5.3). We list the main assumptions
A2-A6 in Section 6.1 and state the main result Theorem

6.1 in Section 6.2, together with some important corol-
laries which can be compared with existing results us-
ing high-gain or sliding-modes observers. A simulation
for an academic unstable system is given in Section 6.4,
by illustrating how the observer is capable to track di-
verging states, and the main observer design steps are
sketched for the cart pendulum system.

2 Notation

(I)(vector spaces). Rn (resp. Rnˆm) is the set of n-
dimensional real column vectors (resp. nˆm matrices).
Rě (resp. Rą, resp. Rną) denotes the set of non-negative
real numbers (resp. positive real numbers, resp. column
vectors of n positive real numbers). GLpnq (general lin-
ear group) is the set of nonsingular matrices A P Rnˆn
and In is the identity element. For any A P Rnˆm we
denote by A# we denote the Penrose pseudoinverse and
A# “ pAJAq´1AJ when the rank ofA ism. For any vec-
tor v P Rn we denote by vi or rvsi the i-th element of v
and diag tv1, . . . , vnu denotes the nˆn diagonal matrix
with i-th diagonal element vi. C (resp. C´) is the set of
complex numbers (resp. with negative real part), Retλu
denotes the real part of λ P C and SpSq Ă C denotes
the spectrum of S P Rnˆn. Rnˆną (resp. Rnˆně ) is the set
of symmetric positive definite (resp. semi-definite) ma-
trices S P Rnˆn with λSmin :“ mintλ : λ P SpSqu and
λSmax :“ maxtλ : λ P SpSqu.

(II)(norms). |v| denotes the absolute value of v P R,
}v} :“

?
vJv denotes the euclidean norm of v P Rn

and the induced norm of S P Rmˆn is }S} :“
supxPRnp}Sx}{}x}q.

(III)(monotone functions). Let Ką (resp. K, resp. K8)
be the set of continuous non-decreasing (resp. strictly
increasing) functions f : Rě Ñ Rě such that fp0q ą 0
(resp. such that fp0q “ 0, resp. such that fp0q “ 0 and
limsÑ`8 fpsq “ `8). Let L be the set of continuous
strictly decreasing functions f : Rě Ñ Rą such that
limsÑ`8 fpsq “ 0. Finally, let KL (resp. KLą) be the
set of continuous functions f : RěˆRě Ñ Rě such that
fp¨, sq P K (resp. fp¨, sq P Ką) and fpr, ¨q P L for each
r, s P Rě and KK (resp. KKą) be the set of continuous
functions f : Rě ˆ Rě Ñ Rě such that fp¨, sq P K and
fpr, ¨q P K (resp. fp¨, sq P Ką and fpr, ¨q P Ką) for each
r, s P Rě.

Continuous, continuously differentiable and locally Lip-
schitz functions on a domain X are denoted by C0pX q,
C1pX q and C0,1

loc pX q, respectively, and we will omit
the domain X when clear from the context. Let K1

8

be the set of functions f P K8 X C1pRąq such that

0 ă infsą0
s

fpsq

df

ds
psq ď sup

są0

s

fpsq

df

ds
psq ă `8. The set

K1
8 is not standard but it is dense in K8. Monotoni-

cally increasing powers, roots, polynomials and rational
functions are all in K1

8.
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Figure 1. The structure of the observer O (shaded area) and
the estimate z of x. S is the system, SNE the state norm
estimator, Λs the symmetry for S and Γs the scaling factor
for the disturbance d.

(IV)(saturation functions). A C0,1
loc -function σ : Rn ˆ

Rną Ñ Rn, pc, xq ÞÑ σcpxq :“ pσ1px1, c1q, ¨ ¨ ¨ ,

σnpxn, cnqq
J, is a C0,1

loc -saturation function with satu-
ration levels c P Rną if σipxi, ciq “ xi for xi P r´ci, cis,
|σipxi, ciq| ď ci and |σipxi, ciq ´ σipzi, ciq| ď |xi´ zi| for
all xi, zi P R.

3 Class of systems

Consider a nonlinear system of the general form

9x“ F px, dq, y “ Hpx, dq, (1)

with state x P Rn, measurements y P Rp and distur-
bance vector d. We assume that the disturbances d are
continuous and bounded functions d : R Ñ D Ă Rm of
a space denoted by D and endowed with the sup norm
}d}8 :“ suptPR }dptq} uniformly bounded by a known
d8 ą 0. F : RnˆRm Ñ Rn and H : RnˆRm Ñ Rp are
C0,1

loc -mappings with F p0, 0q “ 0 and Hp0, 0q “ 0.

For stressing dependence on time, we will sometimes de-
note xptq, yptq (with initial state xp0q “ x0 at t “ 0)
and dptq by xt, yt and, respectively, dt. In particular,
xtpx, s; dq (resp. ytpx, s; dq) will denote the value at time
t of the unique solution (resp. output) of system (1)
with input d and initialized at point x at time s, i.e.
xspx, s; dq “ x. Throughout the paper, we assume for-
ward completeness of (1).

Assumption 1 (Forward completeness). The solutions
xt of (1) are defined for all px0, d, tq P Rn ˆD ˆ Rě.

In order to formulate our assumptions on (1) which make
possible our observer design, we discuss two key issues
which are fundamental in the observer structure: a) the
design of a state-norm estimator for (1) (which is less
demanding than a full-state or reduced observer) and b)
the construction of symmetries for (1), which basically
are one-parameter groups of transformations. The struc-
ture of the observer is explained in Figure 1. The system
(1), represented as S, is mapped into the system rS by

a symmetry rx :“ Λspxq (parametrized by s) together
with a disturbance rescaling rd “ Γspxqd. The parameter
s of the symmetry is adapted on-line by a state norm
estimator, labeled as (SNE), which keeps the norm of
rx “ Λspxq (as well as the values of rd) within prescribed
small values c . Taking advantage of the fact that }rx}
and }rd} are small, an estimate rz of rx is computed by a
local observer rO and a global observer O is readily ob-
tained by mapping rz back into z through Λ´1

s after a
pre-saturation σc (shaded area in Figure 1).

4 Design of state norm estimators

In this section we discuss the design of a state norm
estimator (SNE). To this aim, we propose the following
set of conditions:

(SNE). There exist a C1-function v : Rn ˆ Rě Ñ R,
λ ą 0, α, β, ζ P K8, δ, ξ P Ką and t ě 0 such that:

‚ for all px, d, tq P Rn ˆD ˆ Rě

Bv

Bx
px, tqF px, dtq `

Bv

Bt
px, tq pPDIq

ď´λvpx, tq ` αp}Hpx, dtq}q ` δpd8q,

‚ for all px, d, tq P Rn ˆD ˆ rt,`8q

vpx, tq ě βp}x}q, pULBq

αp}Hpx, dtq}q ď ζpvpx, tqq ` ξpd8q. pUUBq

We also say that the tuple pv, λ, α, δ, β, ζ, ξ, tq satisfies a
(SNE) condition for (1) and we use separate or combined
terminologies as well: pv, λ, α, δq satisfies a (PDI) (par-
tial differential inequality) condition, pv, β, tq satisfies a
(ULB) (uniform lower bound) condition, pv, λ, α, δ, β, tq
satisfies a (PDI) +(ULB) condition, etc. etc.

Notice that vpx, tq is not required to be non-negative for
all t ě 0, still by (ULB) it must be positive only for
t ě t. Our interest in the (PDI) + (ULB) condition is
motivated by the following result (a similar result was
originally proposed by [19] in slightly different terms and
we omit the proof).

Proposition 4.1 Assume pv, λ, α, δ, β, tq satisfy a
(PDI) + (ULB) condition for (1). For each px0, dq P
Rn ˆD there exists Tx0,d ě t such that for t ě Tx0,d:

}xt} ď β´1pvpxt, tqq ď β´1ppvt ` 1q, (2)

where pvt is the output of the filter

9
pvt “´λpvt ` αp}yt}q ` δpd8q, pv0 ě 0. (3)
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Proposition 4.1 proves that a (PDI)+(ULB) condition
for (1) is sufficient for the existence of a filter of the
form (3) capable of estimating the state norm of (1) and
clarifies in which sense, specified by (2), a state norm
estimate for (1) has to be meant.

Remark 4.1 For implementing the state norm estima-
tor (2)-(3) we need the functions α, δ and β. A general
approach (inspired by linear systems) is to stabilize (1) by
output injection φpyq and find a corresponding Lyapunov
function vpxq. From v and φ we get the functions α, δ and
β. For instance, for a detectable linear system 9x “ Ax,
y “ Cx, if K is such that A ´KC is Hurwitz and P P
Rnˆną such that P pA´KCq`pA´KCqJP ă 0, then with
vpxq “ xJPx and φpyq “ Ky we get 9v ď ´λv`α}φpyq}2

for some λ, α ą 0. Moreover, vpxq ě λPmin}x} :“ βp}x}q.
Below (Examples 4.1 and 4.2) we give a sketch of the con-
structive procedure for some important classes of nonlin-
ear systems.

Another approach (discussed in section A) is to pick α,
define a time-varying v (using α and the backward solu-
tions of (1)) and from α and v find δ and (under certain
observability conditions) β.

The functions ζ P K and ξ P Ką satisfying the
(UUB) (uniform upper bound) condition can be ob-
tained from the functions β and α as follows: define
τps, rq :“ sup}x}ďβ´1psq,}d}ďr αp}Hpx, dq}q and pick
ζ P K and ξ P Ką such that ζpsq ě τps, sq and
ξpsq ě τps, sq. Ÿ

Example 4.1 (Systems linear with respect to unmea-
sured state variables). Consider systems (1) of the form

F px, dq :“

˜

Ap1qpx1qx2 `B
p1qpx1qd1

Ap2qpx1qx2 `B
p2qpx1qd1

¸

, (4)

Hpx, dq :“ x1`d2, with x1, x2, d1, d2 P R andAp1qpx1q ą

0 for all x1. By direct computations, we can construct a
tuple pv, λ, α, δ, β, ζ, ξ, 0q satisfying a (SNE) condition,
with vpxq :“ c2px2`φpx1qq

2`c1pφ
2px1q`x

2
1q`c0 where

φpx1q :“ ´
şx1

0
pAp2qpsq ` 1qAp1q

´1
psqds and for suitable

c0, c1, c2 ą 0. By iterating this constructive paradigm, we
come to a tuple pv, λ, α, δ, β, ζ, ξ, 0q satisfying a (SNE)
condition for a n-dimensional lower triangular system

F px, dq :“

¨

˚

˚

˚

˚

˚

˝

A
p1q
2 px1qx2 `B

p1qpx1qd1
ř3
j“2A

p2q
j px1qxj `B

p2qpx1qd1

...
řn
j“2A

pnq
j px1qxj `B

pnqpx1qd1

˛

‹

‹

‹

‹

‹

‚

, (5)

Hpx, dq :“ x1 ` d2, with x1, ¨ ¨ ¨ , xn, d1, d2 P R and
A
piq
i`1px1q ą 0, i “ 1, . . . , n´ 1, for all x1. Ÿ

Example 4.2 (Homogeneous systems). Consider (1)
with

F px, dq :“ Ax` Φpxq ` d1, Hpx, dq :“ Cx` d2 (6)

with pC,Aq in observer canonical form and |Φipxq| ď
a
ři
j“1 |xj |

rj{ri , i “ 1, . . . , n, with r1 :“ 1, ri :“ γr `
ri´1, i “ 2, . . . , n, a, γr ě 0 and for all x P Rn. By
borrowing some basic results on homogeneity from [4]
we can construct a tuple pv, λ, α, δ, β, ζ, ξ, 0q satisfying a
(SNE) condition with

vpxq “ c0 `
n´1
ÿ

j“1

ż cixi

x

ri
ri`1
i`1

ph
γv´ri
ri ´ x

γv´ri
ri`1

i`1 qdh` cn|xn|
γv
rn

for sufficiently large c0, ¨ ¨ ¨ , cn, γv ą 0 (by rs we mean
|r|ssgnprq). Notice that the case γr “ 0 amounts to Φ
being a globally Lipschitz lower triangular vector field.

Remark 4.2 For symplifying the design of the functions
v, β and α, it is possible to weaken the (PDI) condition
as follows:

Bv

Bx
px, tqF px, dtq `

Bv

Bt
px, tq (7)

ď´λpvpx, tqq ` αp}Hpx, dtq}q ` δpd8q

where λ is aK-class function for which there exist c1, c2 ě
0 and c3 ą 0 such λpp1` c1qr ` c2q ě p1` c1qλprq ` c3
for all r ě 0. For instance, the K-class function λprq “
r
r`1 satisfies this additional condition. It is easy to see
that a simpler function vpx, tq “ lnp1 ` xTPxq, with
P P Rnˆną and βprq “ lnp1 ` rq, satisfies (7) for the
system (5). Under condition (7) the filter (3) is modified
as 9

pvt “ ´λppvtq ` αp}yt}q ` δpd8q and for t ě Tx0,d we
have }xt} ď β´1pp1` c1qpvt ` c2q. Ÿ

Examples 4.1 and 4.2 provide functions vpx, tq which are
not time-varying. Notice that the function vpx, tq must
satisfy (PDI), (ULB) and (UUB) for all d P D (i.e. vpx, tq
is the same whatever d P D is). However, vpx, tq may de-
pend on d P D as well, in the sense that for each d P D we
find vpx, tq satisfying (PDI), (ULB) and (UUB). Indeed,
these functions vpx, tq are obtained along the backward
solutions of (1). This different definition of vpx, tq will
not affect the result of Proposition 4.1. For not distract-
ing the reader from the main flow of the presentation, we
discuss in section A of the Appendix, supported by sim-
ple examples, how and under which conditions (related
to backward/strong observability issues) it is possible in
principle to construct time-varying vpx, tq and satisfy-
ing (PDI)+(ULB). We only list below some useful and
important properties, which we use for our main result:

(P1). Let pv, λ, α, δ, β, ζ, ξ, tq satisfy a (SNE) condition
for (1). The tuples pcv, λ, cα, cβ, cζp sc q, cξ, q, tq or pv `
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b, λ, α, δ ` bλ, β, ζ, tq, with any b, c ą 0, still satisfy a
(SNE) condition for (1) (this trivially follows from the
definition). In other words, we can change v by adding
or multiplying by positive numbers while preserving the
(SNE) condition.

(P2). Let pv, λ, α, δ, β, ζ, ξ, tq satisfy a (PDI) + (UUB)
condition and vpx, tq ě βp}x}q ´ b for some b ą 0 and
for all px, tq P Rn ˆ rt,`8q. The tuple pv ` b, λ, α, δ `
λb, β, ζ, tq satisfy a (SNE) condition for (1) (this follows
from (P1)).

(P3). Given ra,rb ą 0, it is possible to re-design a
tuple pv, λ, α, δ, β, ζ, ξ, tq, with β, ζ P K1

8 and sat-
isfying a (SNE) condition for (1), into a new tu-
ple prv, rλ, rα, rδ, rβ, rζ, rξ, tq, with rβpsq :“ ras

rb P K1
8 and

rζpsq “ r`ζpsq for all s ě 1 and for some r` ą 0 (depending
on λ, β, ζ, ra and rb), still satisfying a (SNE) condition
for (1) (the proof is available in Section B.1 of the Ap-
pendix). In other words, we can change β P K1

8 into any
other rβ P K1

8 while preserving the (SNE) condition.

5 Incremental orbital symmetries

A second key ingredient in our setup is to construct some
types of symmetries for (1). Symmetries have a long his-
tory: see the recent book of Olver [27] for an introduction
to symmetries in a differential geometric framework and
with regard to their potential applications to nonlinear
control systems. A breakthrough under this regard dates
back to [18], where symmetries are linked to homogene-
ity, and more recently some developments for linear sym-
metries are contained in [25]. For defining a symmetry
or any of its variant, we need some basic notions which
we recall here for readers less familiar with these issues.

5.1 An excursus on actions and relevant properties

Let Λ : R ˆ Rn Ñ Rn, ps, xq ÞÑ Λps, xq :“ Λspxq, be
a one-parameter group of C1-transformations (i.e. a C1

action Λ : G ˆ Rn Ñ Rn with G “ pR,`q, the addi-
tive group of real numbers) with complete C0,1

loc infinites-
imal generatorW (i.e. the action is transitive). In equiv-
alent terms, Λs has the group property Λs1pΛs2pxqq “
Λs1`s2pxq for all ps1, s2, xq P R ˆ R ˆ Rn and satisfies
the differential equation

B

Bs
Λspxq “W pΛspxqq, Λ0pxq “ x (8)

for all ps, xq P R ˆ Rn. As a consequence of the group
property, Λs : Rn Ñ Rn is for each s P R a C1- transfor-
mation with inverse C1-transformation Λ´1

s “ Λ´s. In
what follows, we use the more generic term “action” in
place of “one-parameter group of transformations”.

If W pxq “ Wx, with W P Rnˆn, then Λspxq “ esWx
and we say that Λs is a linear action. If, in addition,
W P Rnˆn is diagonal we say that Λs is a decoupled
linear action. For our purposes we consider actions Λs
with the following specific properties:

(Stability margin (SM)). There exists λ P KL such that
for all ps, xq P Rě ˆ Rn

}Λspxq} ď λp}x}, sq. (9)

The (SM) property asks for the origin of (8) being
globally asymptotically stable: we say that the action
Λs is GAS. If (9) holds with λpr, sq “ ke´hsr for some
k, h ą 0, we say that the action Λs is GES (i.e. the ori-
gin of (8) is globally exponentially stable). A GAS linear
action Λspxq “ esWx is such that W is Hurwitz, hence
it is also GES.

(Contraction (C)). For each τ P L there exist ps P Ką
such that for all r P Rě

λpr ` 1, psprqq ď τprq (10)

For each τ P L the function ps P Ką can be always
obtained from the stability margin λ P KL: indeed,
there always exist α1, α2 P K8 and a ą 0 such that
λpr, sq ď α1pα2prqe

´asq for all r, s P Rě (see for in-
stance [16], Lemma 7) and ps can be readily obtained as
psprq “ p1{aq lnpα2pr ` 1q{α´1

1 pτprqqq. For example, for
a GES action we get psprq “ 1

h ln
´

kpr`1q
τprq

¯

for all r ě 0.

(Incremental Rate (IR)). There exists ρ P KKą such
that for all ps, xq P Rě ˆ Rn

›

›

›

›

BΛ´1
s

Bx
pxq

›

›

›

›

ď ρp}x}, sq. (11)

The incremental rate property is a direct consequence
of Λ´1

s being C1. For a linear action we get for instance
ρpr, sq “ e}W }s.

(Normalized upper bounds (NUB)). There exist a C0

function ψ : Rě Ñ Rną, ψpsq “ pψ1psq, ¨ ¨ ¨ , ψnpsqq
J,

such that for all ps, xq P Rě ˆ Rn

|rΛspxqsi|

λp}x}, sq
ď ψipsq ď 1, i “ 1, . . . , n. (12)

The (NUB) property is a direct consequence of the
(SM) property (since }Λspxq}

λp}x},sq ď 1 for all ps, xq P Rě ˆ
Rn). Each ψi can be either a L- or a Ką-class function
(bounded by 1) and represents an upper bound, normal-
ized by the stability margin, for each component of the
vector Λspxq. A trivial choice of ψi is clearly 1.
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Throughout this paper, for a GAS action with generator
W as in (8) and pλ, ρ, ψq satisfying (9), (11) and (12) we
say that the action Λs is GAS with associated quadruple
pW,λ, ρ, ψq.

We mention an important generalization of an ac-
tion Λs, suitable for allowing non-uniform generators
W ps, xq which we may come across in general nonlin-
ear contexts. More in detail, Λ : R ˆ R ˆ Rn Ñ Rn,
ps, xq ÞÑ Λps, t, xq :“ Λs,tpxq, be a C1-map such
that Λs1,tpΛt,s2pxqq “ Λs1,s2pxq for all ps1, t, s2, xq P
R ˆ R ˆ R ˆ Rn and satisfying the differential
B
BsΛs,tpxq “ W ps,Λs,tpxqq, Λt,tpxq “ x for all
ps, t, xq P R ˆ R ˆ Rn. In this case, we lose the
one-parameter structure and group property, still
Λs,t : Rn Ñ Rn is for each pair ps, tq P R ˆ R a C1-
transformation with C1-inverse Λ´1

s,t “ Λt,s. The (non-
uniform) generator of Λs,t is W ps, xq and we still say
(with some abuse of terminology) that Λs,t is a C1-
action (with associated quadruple pW,λ, ρ, ψq). For our
purposes, the second parameter t is not important and
we may set t “ 0 and consider Λspxq “ Λps, 0, xq.

5.2 Incremental orbital symmetries and some examples

An action Λs transforms vector fields and maps as fol-
lows. For a given C0,1

loc vector field F : Rn ˆ Rm Ñ Rn,
the push-forward of F by Λs is defined as Λs˚F px, dq :“
BΛs
Bz pzqF pz, dq|z“Λ´1

s pxq, while, for a given C0,1
loc mapping

H : Rn ˆ Rm Ñ Rp, the push-forward of H by Λs is
Λs˚Hpx, dq :“ Hpz, dq|z“Λ´1

s pxq.

According to previous notions of symmetry (see for in-
stance [18]), an orbital C1-symmetry for a C0,1

loc vector
field F : Rn Ñ Rn is a GAS C1-action Λspxq such
that Λs˚F pxq “ eγF sF pxq for all ps, xq P Rě ˆ Rn
and for some γF P R. The above definition has the
following drawbacks: a) it requires the exact equality
Λs˚F pxq “ eγF sF pxq which may be somewhat restric-
tive for our purposes, b) it is not suitable for vector fields
with exogenous inputs and c) no insight is given on the
incremental behaviour of Λs˚F pxq at different points,
which is a key information for observer and contraction-
based design. Under this regard, we propose the follow-
ing definition of orbital incremental symmetry.

Definition 5.1 A GAS C1-action Λspxq with asso-
ciated quadruple pW,λ, ρ, ψq is an incremental or-
bital symmetry in the 8-limit of a C0,1

loc vector field
F : Rn ˆ Rm Ñ Rn with scaling factors pγF ,Γdq
and C1 limit vector field F8 : Rn ˆ Rm Ñ Rn,
F8p0, 0q “ 0, if there exist C0 functions γF : R Ñ Rą,
Γd : R ˆ Rn Ñ GLpmq and λF P KLą such that for all
s P Rě, x, z P Rn : |xi|, |zi| ď ψipsq, i “ 1, . . . , n, and
d P Rm

}Φps, x, dq ´ Φps, z, 0q} ď λF p}d}, sqp}x´ z} ` }d}q (13)

where

Φps, x, dq :“
1

γF psq
Λs˚F

`

x,Γ´1
d ps, xqd

˘

´ F8px, dq.

When Φps, x, dq ” 0 for all ps, x, dq P Rě ˆRn ˆRm we
say that Λspxq is an orbital symmetry of F with scaling
factors pγF ,Γdq. In this case, (13) is trivially satisfied
and, since Λ0pxq ” x and BΛs

Bx |s“0 “
BΛ0

Bx , it follows that

F8px, dq ”
1

γF p0q
F px,Γ´1

d p0, xqdq.

Hence, F8 is a rescaled version of F . In view of this
particular case, it is clear from (13) that an incremental
orbital symmetry in the8-limit can be seen as an orbital
symmetry both in an “approximating” sense (quantified
by λF P KLą) and “incremental” sense (quantified by
the increments of Φ).

A necessary and sufficient condition for a C1-action
Λspxq with C1-generator W pxq to be an orbital sym-
metry of a disturbance-free vector field F pxq is given
by the following result which we state without proof
(rF,W spxq denotes the Lie bracket between the vector
fields F pxq and W pxq).

Proposition 5.1 A C1-action Λspxq with generator
W pxq is an orbital symmetry of a C1-vector field F pxq
with exponential scaling factor γF psq ” eγF s if and only
if rF,W spxq “ γFF pxq for all x P Rn.

Proposition 5.1 provides the geometric definition of ho-
mogeneity with degree γF given in [18] for a disturbance-
free vector field F pxq. Hence, definition 5.1 extends in
many directions the geometric definition of homogene-
ity of a vector field. In classical homogeneity frameworks
([3], [4], [26], [28]) only decoupled linear actions are con-
sidered with exponential scaling factors while in more
general contexts ([25]) also non-decoupled linear actions
are taken into account.

Below we give directly some examples of incremental
symmetries, which can be also computed with the more
general methodology given later in Section 5.3.

Example 5.1 (Decoupled linear actions: homogene-
ity revisited). Consider the vector field F px, dq “

px2,´x2x
2
1 ` dqJ. The decoupled linear action Λspxq “

eWsx with W “ diagp´1,´3q is an orbital symme-
try of F with scaling factors pγF ,Γdq “ pe2s, e´5sq.
As associated quadruple of Λs we have pW,λ, ρ, ψq “
pWx, e´sr, e3s, p1, e´sqJq. The vector field F px, 0q is
homogeneous with weigths p1, 3q and degree 2. Ÿ

Example 5.2 (Nonlinear actions). Consider the

vector field F px, dq “

ˆ

x2

a

1` x2
1,
x1x

2
2`x

2
1`d?

1`x2
1

˙J

.
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There is no linear action Λs which is a symme-
try of F : in particular, F px, 0q is not even homoge-
neous. On the other hand, the GES nonlinear action

Λspxq “ pe´sx1,

c

1`x2
1

1`e´2sx2
1
e´2sx2q

J is an incremen-

tal orbital symmetry in the 8-limit of F with scaling
factors pγF ,Γdq “ pes, e´3sq and limit F8px, dq “
ˆ

x2

a

1` x2
1,
x1x

2
2`d?

1`x2
1

˙J

. The generator of Λspxq is

W pxq “
´

´x1,´
2`x2

1

1`x2
1
x2

¯J

. As associated quadruple of

Λs we have pW,λ, ρ, ψq “ pW pxq, e´sr, e3s, p1, e´sqJq.

For a C0,1
loc mapping H : Rn ˆ Rm Ñ Rp a C1-action Λs

defines a symmetry of H exactly as in Definition 5.1 on
account of the different meaning of the push-forward of
H.

5.3 Design of incremental symmetries for lower trian-
gular vector fields

It turns out that wide classes of nonlinear vector fields
and maps admit an incremental symmetry. In this sec-
tion we will construct an incremental symmetry in the
8-limit for lower triangular vector fields

F px, dq “

¨

˚

˚

˚

˚

˚

˝

F1px1q `G1px1qx2

...

Fn´1px
pn´1qq `Gn´1px1qxn

Fnpx
pnqq `Gnpx

pnqqd

˛

‹

‹

‹

‹

‹

‚

, (14)

with x P Rn, d P R, xpiq :“ px1, ¨ ¨ ¨ , xiq
J, i “ 1, . . . , n,

(I) C0,1
loc functions Fi, i “ 1, . . . , n, and Gn such that

Fip0q “ 0 and 0 ă Gnpxq for all x P Rn andC1-functions
Gi, i “ 1, . . . , n´ 1, such that:

1

θpiqp}x1}q
ď Gipx1q ď νpiq,

›

›

›

›

BGi
Bx1

px1q

›

›

›

›

ď µpiqp}x1}q,

for all x1 P R and for some θpiq, µpiq P Ką and νpiq ą 0.

Before stating the constructive result, for a given σ P L
find γ P Ką such that for all s ě 0 and i “ 1, . . . , n

}Ψpiqps, xpiqq ´Ψpiqps, zpiqq} ď γpsqσpsq}xpiq ´ zpiq}(15)

for all xpiq, zpiq P Ri : }x
piq
j }, }z

piq
j } ď 1, j “ 1, . . . , i, with

Ψpiqps, xpiqq :“ e´sΓips, x1qFi

ˆ

esx1

Γ1ps, x1q
, . . . ,

esxi

Γips, x1q

˙

`
xi

Γips, x1q

BΓi
Bx1

ps, x1q
`

e´sF1pe
sx1q `G1px1qx2

˘

(16)

and

Γ1ps, x1q :“ 1,Γips, x1q :“
i´1
ź

j“1

Gjpe
sx1q

Gjpx1q
, i “ 2, . . . , n.

For instance, we can pick any γ such that for all s ě 0
and i “ 1, . . . , n:

γpsq ě
1

σpsq
sup

}x
piq
j
},}z

piq
j
}ď1

j“1,...,i

}Ψpiqps, xpiqq ´Ψpiqps, zpiqq}

}xpiq ´ zpiq}
.

Also, if σp0q is taken properly, we can assume γp0q “ 1.

Also, from (I) we obtain the following upper bound: for
all ps, x1q P Rě ˆ R and i “ 1, . . . , n´ 1

›

›

›

›

B

Bx1

ˆ

Gipe
sx1q

Gipx1q

˙
›

›

›

›

ď θpiqp}x1}qpe
sµpiqpes}x1}q

`νpiqθpiqp}x1}qµ
piqp}x1}qq :“ µpiqp}x1}, sq P KKą. (17)

Proposition 5.2 Under assumption (I), any γF P KąX
C1, with γF p0q “ 1 and γF psq ě γpsq for all s ě 0, is
such that

Λspxq :“ pΓd0ps, e
´sx1qx1, ¨ ¨ ¨ ,Γdn´1

ps, e´sx1qxnq
J,

Γdj ps, x1q :“ e´sγ´jF psqΓj`1ps, x1q, (18)

is a GAS C1-action with non-uniform generator

W ps, xq :“ pW
p1q
ps, x1qx1, ¨ ¨ ¨ ,W

pnq
ps, x1qxnq

J,

where

W
piq
ps, x1q “

B ln Γdi´1

Bs
ps, x1q ´ x1

B ln Γdi´1

Bx1
ps, x1q (19)

and an incremental orbital symmetry in the 8-limit of
(14) with limit

F8px, dq “ pG1px1qx2, ¨ ¨ ¨ , Gn´1px1qxn, Gnpx1qdq
J(20)

and scaling factors pγF ,Γdq, where

Γdps, xq :“ e´sγ´nF psqΓnps, x1q
GnpΛ

´1
s pxqq

Gnpxq
. (21)

Proof. The constructive proof is by steps.

Step 1. First, we construct an incremental symme-
try Λ

p1q
s px1q for F p1qpx1, d1q “ F1px1q ` G1px1qd1

with disturbance d1 :“ x2. To this aim, consider
the GAS action Λ

p1q
s px1q “ e´sx1 with associated

7



quadruple pW p1q, λp1q, ρp1q, ψp1qq, where W p1qpx1q :“
´x1, λ

p1qpr, sq :“ e´sr, ρp1qpr, sq :“ es and ψp1qpsq :“ 1.
Let Γd1 be defined as in (18), Ψp1q as in (16) and pγ, σq
as in (15). With γF P Ką XC1 such that γF p0q “ 1 and
γF psq ě γpsq for all s ě 0, notice that

1

γF psq
Λ
p1q
s˚ F

p1q
`

x1,Γ
´1
d1
ps, x1qd1

˘

“
Ψp1qps, x1q

γF psq
`G1px1qd1. (22)

But γF psq ě γpsq, hence by (15)

1

γF psq
}Ψp1qps, x1q ´Ψp1qps, z1q} ď σpsq}x1 ´ z1} (23)

for all ps, x1, z1q P Rě ˆ R ˆ R such that }x1}, }z1} ď

ψp1qpsq “ 1. It follows from (22) and (23) that Λ
p1q
s is

an incremental symmetry in the 8-limit of F p1qpx1, d1q

with limit F p1q8 px1, d1q “ G1px1qd1 and scaling factors
pγF ,Γd1q. Moreover, using assumption (I) we have the
following inequalities (to be used in the subsequent
steps) for all ps, x1q P Rě ˆ R

}Γ´1
d1
ps, x1q}

γF psq
ďesνp1qθp1qpes}x1}q :“δ

p1,1q
p}x1}, sqPKKą,

}Γ´1
d1
ps, x1q

BΓd1
Bx1

ps, x1q} ď νp1qµp1qp}x1}, sqθ
p1qpes}x1}q

:“ λ
p1q
p}x1}, sq P KKą,

1

γF psq
}
BΓ´1

d1

Bx1
ps, x1q} ď λ

p1q
p}x1}, sqδ

p1,1q
p}x1}, sq

:“ δ
p1,2q

p}x1}, sq P KKą.

Step i ě 2. We construct an incremental symmetry
Λ
piq
s pxpiqq for the vector field

F piqpxpiq, diq :“pF
pi´1qJpxpi´1q, xiq, Fipx

piqq `Gipx1qdiq
J

with disturbance di :“ xi`1. To this aim, consider the
GAS C1-action

Λpiqs px
piqq :“ pΛpi´1q

s pxpi´1qq,Γdi´1
ps, e´sx1qxiq

J.

with associated quadruple pW piq, λpiq, ρpiq, ψpiqq, where

W piqps, xpiqq “ pW pi´1qps, xpi´1qq,W
piq
ps, x1qxi`1q

J,

λpiqpr, sq :“ λpi´1qpr, sq `

˜

i´1
ź

j“1

νpjqθpjqprq

¸

e´sr,

ρpiqpr, sq :“ ρpi´1qpr, sq

`γi´1
F psqδ

pi´1,1q
pr, sqp1` λ

pi´1q
pr, sqrq,

ψpiqpsq :“ pψpi´1qJpsq, γi´1
F psqqJ. (24)

Let Γdi be as in (18), Ψpiq as in (16) and pγ, σq as in (15).
Notice that

1

γF psq
Λ
piq
s˚F

piq
´

xpiq,Γ´1
di
ps, x1qdi

¯

“ (25)
¨

˝

1
γF psq

Λ
pi´1q
s˚ F pi´1q

´

xpi´1q,Γ´1
di´1

ps, x1qxi

¯

1
γi
F
psq

Ψpiqps,Γ
piq
F psqx

piqq `Gipx1qdi

˛

‚

where Γ
piq
F psq :“ diagt1, γF psq, ¨ ¨ ¨ , γ

i´1
F psqu. Since

γF psq ě γpsq by (15) we have

1

γiF psq
}Ψpiqps,Γ

piq
F psqx

piqq ´Ψpiqps,Γ
piq
F psqz

piqq}

ď σpsq}xpiq ´ zpiq} (26)

for all ps, xpiq, zpiqq P r0,`8q ˆ Ri ˆ Ri such that
}x
piq
j }, }z

piq
j } ď ψ

piq
j psq :“ γ´j`1

F psq, j “ 1, . . . , i. By (25)
and (26) and since Λ

pi´1q
s is an incremental symmetry

in the 8-limit of F pi´1q with limit F pi´1q
8 , Λ

piq
s is an

incremental symmetry in the 8-limit of the vector field
F piqpxpiq, diq with limit

F
piq
8 px

piq, diq “ pF
pi´1q
8

J

pxpi´1q, xiq, Gipx1qdiq
J

and scaling factors pγF ,Γdiq. Moreover, using assump-
tion (I) we have the following inequalities (to be used in
the subsequent steps) for all ps, x1q P Rě ˆ R

}Γ´1
di
ps, x1q}

γiF psq
ď νpiqθpiqpes}x1}qδ

pi´1,1q
p}x1}, sq

:“ δ
pi,1q

p}x1}, sq P KKą,

}Γ´1
di
ps, x1q

BΓdi
Bx1

ps, x1q} ď νpiqµpiqp}x1}, sqθ
piqpes}x1}q

`λ
pi´1q

p}x1}, sq :“ λ
piq
p}x1}, sq P KKą,

1

γiF psq
}
BΓ´1

di

Bx1
ps, x1q} ď λ

piq
p}x1}, sqδ

pi,1q
p}x1}, sq

:“ δ
pi,2q

p}x1}, sq P KKą.

Finally, i Ñ i ` 1 and jump to step i. The claim of the
Proposition is proved when i ą n. �

Remark 5.1 If the functions θpiq, i “ 1, . . . , n ´ 1, of
Assumption (I) are all bounded then λpiqpr, sq “ kpiqe´sr
for some kpiq ą 0 and for all i “ 1, . . . , n, hence Λs is a
GES action.

If, in addition to Assumption (I),Gn satisfies 1
θpnqp}x1}q

ď

Gnpxq ď νpnqp}x1}q for all x P Rn and for some
νpnq, θpnq P Ką and we define Γd slightly differently from
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(21) as follows:

Γdps, x1q :“ e´sγ´n`1´k
F psqΓnps, x1q

GnpΛ
´1
s pxqq

Gnpxq
(27)

for any k P p0, 1q, the scaling factor γF psqpě γpsqq can
be additionally selected so that the limit vector field is

F8px, dq “ pG1px1qx2, ¨ ¨ ¨ , Gn´1px1qxn, 0q
J.

This means that BF8
Bd |p0,0q “ 0, which is one of the con-

ditions ensuring practical error convergence of the ob-
server in the main result of Section 6.2. If Gnp0q “ 0
it would be still possible to have BF8

Bd |p0,0q “ 0 with Γd
as in (21) and F8 in (20). Also, notice that BF8

Bx |p0,0q “

diagtG1p0q, . . . , Gnp0quJ , where J is a Jordan matrix
and Gip0q ą 0 for all i “ 1, . . . , n.

Moreover, with Γd as in (27) and ρ P KKą being the
incremental rate of Λ´1

s pxq, for all ps, xq P Rě ˆ Rn we
have

}Γdps, x1q} ď
e´sνpnqpes}x1}q

γ´n`1´k
F psq

n´1
ź

j“1

νpjq
n
ź

j“1

θpjqp}x1}q,

}Γdps, x1q}ρp}x}, sq ď
νpnqpes}x1}q

γkF psq

n´1
ź

j“1

νpjq
n
ź

j“1

θpjqp}x1}q

ˆ

´

1` e´s
n
ÿ

j“2

δ
pj´1,1q

p}x}, sq
´

1` λ
pj´1q

p}x}, sq}x}
¯¯

and the scaling factor γF psqpě γpsqq can be further se-
lected so that for all ps, x1q P Rě ˆ R and for some
αd P Ką and γd ă 0:

}Γdps, x1q} ď αdp}x1}qe
γds (28)

and the following “small gain” condition is satisfied for
all ps, xq P Rě ˆ Rn and for some ω P Ką:

}Γdps, x1q}ρp}x}, sq ď ωp}x}q. (29)

Conditions like (28) and (29) will be required in the main
result of Section 6.2.

Finally, we remark that ifFi, i “ 1, . . . , n, are polynomial
and all the functions θpiq, νpiq and µpiq, i “ 1, . . . , n, of
Assumption (I) are bounded, γF is exponential. �

6 Main assumptions and results

In this section we list the main assumptions on (1) and
state the main result together with the observer equa-
tions and an upper bound for the asymptotic estimation
error.

6.1 Main assumptions

The first assumption is concerned with the existence of
orbital incremental symmetries Λs in the 8-limit for
F and H: this assumption takes care of the global be-
haviour of the nonlinear observer and prevents large or
even unbounded errors.

Assumption 2 The GES action Λs, with associated
quadruple pW,λ, ρ, ψq, is an orbital incremental symme-
try for F (resp. for H) in the 8-limit with scaling fac-
tors pγF ,Γdq (resp. pγH ,Γdq) and limit F8 (resp. H8).
Moreover, γF psq “ eγF s (resp. γHpsq “ eγHs) for some
γF ą 0 (resp. γH ą 0) and

}Γdps, xq} ď γdp}x}, sq :“ αdp}x}qe
γds, (30)

for all ps, xq P RnˆRě and for some αd P Ką and γd ă 0.

Our next assumption is on the observer’s capability of
tolerating the disturbances d in terms of the interaction
between the incremental rate ρ P KKą of Λ´1

s and the
scaling factor Γd of the disturbance d.

Assumption 3 There exists ω P Ką such that
γdpr, sqρpr, sq ď ωprq for all r, s P Rě.

Practical relevance of Assumptions 2 and 3 is substan-
tiated by the result of Section 5.3 on lower triangular
systems (see in particular Remark 5.1).

Assumption 4 There exists β P K such that for all
px, dq P Rn ˆ Rm

}F8px, dq ´ F8px, 0q ´
BF8
Bd

ˇ

ˇ

ˇ

p0,0q
d}

`}H8px, dq ´H8px, 0q ´
BH8
Bd

ˇ

ˇ

ˇ

p0,0q
d} ď βp}x}q}d}.

Assumption 5 There exist Π P Rnˆną and µ ą 0 such
that

Π
BF8
Bx

ˇ

ˇ

ˇ

p0,0q
`
BF8
Bx

ˇ

ˇ

ˇ

J

p0,0q
Π´

BH8
Bx

Jˇ
ˇ

ˇ

p0,0q

BH8
Bx

ˇ

ˇ

ˇ

p0,0q
ď ´µΠ.

Assumption 4 is satisfied for instance when F8 (resp.
H8) is linear with respect to d. Assumption 5 amounts to
the detectability of the pair p BH8

Bx |p0,0q,
BF8
Bx |p0,0qq. This

assumption takes care of the local behaviour of the non-
linear observer and guarantees local convergence.

The next assumption is on the existence of a state norm
estimator, which is needed to provide an on-line correc-
tion st of the parameter s of the symmetry Λs and keep
}Λstpxtq} small.

9



Assumption 6 The tuple pv, λ, α, δ, β, ζ, ξ, tq satisfies
a (SNE) condition for (1) with β, ζ P K1

8.

Assumption 6 is a (SNE) condition (section 4) reinforced
with the mild restriction β, ζ P K1

8, so that we can re-
shape β P K1

8 into any desired rβ P K1
8, while preserving

the (SNE) condition (Property (P3) at the end of sec-
tion 4).

6.2 Main result

We are now ready to state (and prove) the main result
of this paper. For a C0,1

loc saturation function σ
pc (see No-

tation section), we consider the composition σ
pcpsq of σpc

with the function pcpsq :“ cψpsq where c ą 0 is a de-
sign parameter and ψ “ pψ1, . . . , ψnq

J comes from the
quadruple associated with the incremental symmetry
Λs.

Theorem 6.1 Under Assumptions 1-6, for each ε ą 0

there exist c ą 0, ps P KąXC1, rα P K8 and rδ P Ką such
that along the solutions of (1) and

9
rzt “ Λst˚F pσpcpstqprztq, 0q `W pσpcpstqprztqq

Bps

Br

ˇ

ˇ

ˇ

pvt

9
pvt

`γF pstq

ˆ

BF8
Bx

|p0,0q ´K
BH8
Bx

|p0,0q

˙

przt ´ σ
pcpstqprztqq

`
γF pstq

γHpstq
K
´

yt ´ Λst˚Hpσpcpstqprztq, 0q
¯

, (31)

where K :“ Π´1 BH8
Bx

J
|p0,0q and st “ psppvtq with

9
pvt “ ´λpvt ` rαp}yt}q ` rδpd8q, pv0 ě 0, (32)

the estimation error et :“ xt´Λ´1
st pσpcpstqprztqq is bounded

for all times and

lim sup
tÑ`8

}et} ď ε`
6ωpncq}D}

a

λΠ
maxd8

µ
a

λΠ
min

, (33)

where D :“ BF8
Bd |p0,0q ´K

BH8
Bd |p0,0q.

The parameter c and the functions ps, rα and rδ are all
determined in the proof of Theorem 6.1 (subsections
(B.4.1)-(B.4.3) of the Appendix). The bound (33) de-
pends on D, ω, d8 and the (arbitrary) small number ε
and can be reduced by reducing the bound d8 on the
disturbance d and/or by taking smaller values of the
saturation level c (since ω P Ką). Remarkably, notice
that if in addition BF8

Bd |p0,0q “ 0 and BH8
Bd |p0,0q “ 0 then

D “ 0 and practical error convergence is achieved (i.e.
arbitrarily small asymptotic error). This happens, for
instance, in lower triangular systems with disturbance
affecting only the last state equation (see Section 5.3

and Remark 5.1). If we put this together with Exam-
ples 4.1 and 4.2 on state norm estimators, by Theorem
6.1 we conclude that practical error convergence can be
achieved for lower triangular systems with C0,1

loc nonlin-
earities, homogeneous or linear with respect to unmea-
sured state variables, and disturbance affecting only the
last state equation. Similar results with exact conver-
gence in finite time have been obtained in [8] for lower
triangular systems with Hölder nonlinearities satifying
suitable homogeneity conditions and in [31] for chain of
integrators with globally Lipschitz nonlinearities in the
last state equation.

6.3 State solutions with known bound

The observer (31) simplifies remarkably and gets closer
to a more familiar high-gain observer whenever a known
bound L ą 0 for the solutions of (1) is at hand, i.e.
}xt} ď L for all t ě 0. In this case, the “small gain”
condition of Assumption 3 and a state-norm estimator
are no more needed. Let pcpsq be as in Theorem 6.1.

Theorem 6.2 Under Assumptions 2, 4 and 5 and for
all state solutions of (1) such that }xt} ď L ă `8 for
all t ě 0, for each ε ą 0 there exist c ą 0 and sL ą 0
such that along the solutions of (1) and

9
rzt “ ΛsL˚F pσpcpsLqprztq, 0q

`γF psLq

ˆ

BF8
Bx

|p0,0q ´K
BH8
Bx

|p0,0q

˙

przt ´ σ
pcpsLqprztqq

`
γF psLq

γHpsLq
K
´

yt ´ ΛsL˚HpσpcpsLqprztq, 0q
¯

, (34)

where K :“ Π´1 BH8
Bx

J
|p0,0q, the estimation error et :“

xt ´ Λ´1
sL pσpcpsLqpΛsLpztqqq is bounded for all times and

lim sup
tÑ`8

}et} ď ε`
6ωpnc, sLq}D}

a

λΠ
maxd8

µ
a

λΠ
min

(35)

where ωpr, sq :“ γdpr, sqρpr, sq and D :“ BF8
Bd |p0,0q ´

K BH8
Bd |p0,0q.

If in addition BF8
Bd |p0,0q “ 0 and BH8

Bd |p0,0q “ 0 thenD “ 0
and practical convergence is achieved. With Section 5.3
and Remark 5.1 in mind, this proves that, as long as a
known bound for the state solutions is available, prac-
tical estimation error convergence can be achieved for
lower triangular systems with C0,1

loc nonlinearities and
disturbance affecting only the last equation. Similar re-
sults with convergence in finite time have been obtained
in [8] with C0 nonlinearities and in [21], [24] and [13] for
a chain of integrators px1, . . . , xnq with | 9xnptq| ď L for
all t ě 0 and for some known L ą 0.

The known bound L on the state solutions of (1) may be
more generally assumed time-varying, i.e. }xt} ď Lptq

10
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Figure 2. With xp0q “ p10,´10qJ: (left figure) state norm }x} of (36) and its estimate, (right figure) State x2 of (36) and its
estimate.

for all t ě 0, with suptě0 }
9Lptq{Lptq} ă `8. However,

if Lptq is unbounded, yet for error convergence we need
to satisfy the “small gain” condition of Assumption 3
and the observer has the form (31) with pvt :“ Lptq, al-
though we may experience serious implementation prob-
lems due to the unboundedly growing observer gains.
If in addition BF8

Bd |p0,0q “ 0 and BH8
Bd |p0,0q “ 0 practi-

cal convergence is achieved. State estimation in finite
time have been obtained in [21] and [24] using sliding
mode observers for a disturbance-free chain of integra-
tors px1, . . . , xnq with | 9xnptq| ď Lptq and 9Lptq ě 0 for all
t ě 0 and for some known Lptq: however, when Lptq is
unbounded the effect of bounded disturbances on 9xnptq
results in unbounded estimation errors.

6.4 Illustrative applications

6.4.1 An academic example

In this section we want to illustrate how to design (us-
ing the results of Theorem 6.1) a state observer for the
system:

9x “ F px, dq “ px2, F2pxq `G2pxqdq
J, y “ Hpx, dq “ x1

(36)

with F2pxq “ x1x2, G2pxq “
a

1` x2
1 and dptq “

10 sinptq. The solution xptq is unbounded if, for instance,
xp0q “ p10,´10qJ. For this type of systems and as long
as we want to design global state observer, we cannot
use the sliding-mode observers of [1], [2] or [31] because
F2 is not incrementally dissipative (nor Lipschitz) and
G2 is not bounded and we do not consider homogeneus
observers ( [4], [3]), since there is no (homogeneous)
function F 2 such that |F2px`eq´F2pxq| ď F 2peq for all

x, e, although F2pxq is itself homogeneous. Here, “global
observer” means that the estimation error converges
for any state and observer initial conditions. On the
other hand, if also semi-global state-observers (i.e. the
estimation error converges for any state and observer
initial conditions in a given bounded set D Ă Rn) come
into play, sliding-mode observers (in the simple version
of [21] and [24]) as well as homogeneous observers can
be used for (35) obtaining disturbance suppression with
finite-time error convergence. Our (global) observer will
suppress the disturbance d up to any given degree or
tolerance with asymptotic error convergence.

The vector field F px, dq has the form (14) with
F1px1q ” 0 and G1px1q ” 1. According to Proposi-
tion 5.2 (with Remark 5.1) we can find γF P K X C1

such that the decoupled linear action Λspxq :“
pe´sx1, e

´sγ´1
F psqx2q

J is GES with generator W pxq “
diagt´x1,´p1 `

d
ds ln γF psqqx2u and an incremental

orbital symmetry in the 8-limit of F with associated
quadruple pW, e´s, esγF , p1, γ´1

F qJq, limit F8 “ px2, 0q
J

and scaling factors pγF ,Γdq, where Γdps, xq :“ γ
´3{2
F psq.

Moreover, Λs and Γd should satisfy also (30) and As-
sumption 3. Hence, we get γF psq “ e2s. In addition, Λs
is also an incremental orbital symmetry in the 8-limit
of H with limit H8 “ x1 and scaling factors pγH ,Γdq,
with γH “ es. The linearization of F8 and H8 at x “ 0
is observable and satisfies Assumptions 4 and 5. A state
norm estimator for (36) (Assumption 6) is designed as
the output of 9

pv “ ´pv ` 20py2 ` 1q, pvp0q “ 0. A simu-
lation with xp0q “ p10,´10qJ using an observer of the
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form (31)-(32)

9
rz “ rs2

˜

rz2 `
4
rs py ´ rsrz1q ´

9
pv
rs3σ1prz1q

1
rsσrs´2prz2qσ1prz1q `

2
rs py ´ rsrz1q ´

3 9
pv

rs3 σrs´2prz2q

¸

where rs “ 50` pv, has been worked out and an estimate
z “ prsσ1pẑ1q, rs

3σ
rs´2pẑ1qq

J of x has been obtained with
an error tolerance ε “ 0.5 (in this case the upper bound
on the estimation error norm is exactly ε since D “ 0:
see (33)). The results for the }x}-estimate and the x2-
estimate are illustrated in Figure 2, in which we see how
the state norm estimator provides (after a very short
transient) an upper bound for the state norm }x}, while
the observer keeps track of x2 within the given error
tolerance using the upper bound on the state norm.

6.4.2 Cart pendulum system

Consider Hpx, dq “ y and

F px, dq “ ppG1pyqzq
J, pF2pxq `G2pyqdq

JqJ (37)

where x “ pyJ, zJqJ, y, z P R2, d P R with

F2pxq “ ΨJpyq∇φpyq, φpyq “ a cospy1q,

Ψpyq “

¨

˝

?
m?

m´b2 cos2py1q
0

´b cospy1q
?
m
?
m´b2 cos2py1q

1?
m

˛

‚, G2pyq “ ΨJpyq

˜

0

1

¸

with a ą 0 and 0 ă b ă
?
m. As far as we see, there is no

global observer design with disturbance suppression for
(37) available in the literature. Let us see how to design
our observer for (37) according to the lines of Theorem
6.1. By following the constructive procedure of section
5.3 (with vector-valued states x1, x2) we obtain that

Λspxq “ pe
´syJ, e´2spΨ´1pe´syqΨpyqzqJqJ (38)

where Γdps, yq “ e´2sΨ´1pyqΨpesyq, is an incremen-
tal symmetry in the 8-limit of F with scaling factors
pγF ,Γdq “ pes, e´2sG#

2 pyq Ψ´1pyqΨpesyqG2pe
syqq and

limit F8 “ ppG1pyqzq
J, 0JqJ and, at the same time, an

incremental symmetry in the 8-limit of H with scaling
factor γH “ es and limit H8 “ y. A state norm estima-
tor can be designed following Example 4.1. Ÿ

7 Conclusions

New classes of global observers with on-line adapted
gains have been presented based on state-norm estima-
tors and incremental orbital symmetries. The geometric
aspects and peculiarities of these symmetries reflect the
observer structure. Future works will be devoted to the
global output feedback stabilization problem using or-
bital symmetry-based observers and/or controllers.
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A Conditions for satisfying (PDI) and (ULB)

A.1 Closed-form solutions of (PDI)

In this section we study some general conditions under
which it is possible to construct time-varying solutions
vpx, tq of (PDI). To this aim, we discard finite exit times
from Rn for the backward solutions of (1).

(BWC). (Backward completeness) The solutions
xspx, t; dq of (1) are defined for all px, t, sq P Rn ˆ D ˆ
Rě ˆ r0, ts.

Let Yspx, t; dq :“ Hpxspx, t; dq, dsq ´Hp0, dsq.

Proposition A.1 Under Assumption (BWC) and for
any given λ ą 0 and α P K8, pv, λ, α, δq satisfies a (PDI)
condition for (1) with

vpx, tq :“

ż t

0

e´λpt´sqαp}Yspx, t; dq}qds (A.1)

and αpsq :“ αp2sq, δpsq :“ sup}d}ďs αp2}Hp0, dq}q.

The proof is deferred in section B.2 of the Appendix. The
paradigm we follow for the construction of the function
vpx, tq in (A.1) may be compared for similarities with
the one for constructing the map T px, tq in [9], although
the purpose and the use of vpx, tq is far different from
that of T px, tq. The function vpx, tq is defined using the
backward solutions of (1) and, implicitly, the function
dt.

A.2 Sufficient conditions for (ULB)

In order to have the function vpx, tq, defined in (A.1),
uniformly lower bounded as required in (ULB) , we in-
voke a sort of uniform (backward) state reconstructibil-
ity property from the outputs.

(BWR). (Uniform backward reconstructibility). There
exist t, b ą 0, α, β P K8 such that for all px, dq P RnˆD

ż t

0

αp}Yspx, t; dq}qds ě βp}x}q ´ b. (A.2)

A similar reconstructibility property was used in [30] in a
noise-free context for state-dependent solutions of differ-
ential Riccati equations. Also, comparisons can be made
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with [9], where a uniform backward reconstructibility
condition is used for the purpose of injectively recon-
structing the state x from the map T px, tq. Here, we in-
troduce the uniform backward reconstructibility condi-
tion for estimating the state norm }x} from the function
vpx, tq. A proof of the following result is given in section
B.3 of the Appendix.

Proposition A.2 UnderAssumptions (BWC)+(BWR)
and for any given λ ą 0 and α P K8 there exist t, b ą 0
and β P K8 such that pv` b, λ, α, δ` λb, β, tq satisfies a
(PDI)+(ULB) condition for (1) with v : RnˆRě defined
in (A.1) and α P K8 and δ P Ką as in Proposition A.1.

Using Proposition A.2, we can construct for instance
vpx, tq as in (A.1) satisfying a (PDI)+(ULB) condition
for the system 9x1 “ x2 ` x3

2, 9x2 “ 0, y “ x1 ` d (feed-
forward systems are in general amenable to this kind of
construction).

The (BWC)+(BWR) condition can be replaced by a con-
dition based on the Lie derivatives of the output map H
along the vector field F , which is very closely related to
strong differential observability (see for instance [9]).

B Proofs of main and auxiliary results

B.1 Proof of Property (P3)

Let pv, λ, α, δ, β, ζ, ξ, tq satisfies a (SNE) condition.
Given ra,rb ą 0 we will show how to construct a new
tuple prv, rλ, rα, rδ, rβ, rζ, rξ, tq, with rβpsq ” ras

rb and still sat-
isfying a (SNE) condition. First, we will construct a
tuple pv˝, λ˝, α˝, δ˝, β˝, ζ˝, ξ˝, tq with β˝psq ” s

rb and
satisfying a (SNE) condition.

Since β, ζ P K1
8 there exist βl, ζu ą 0 for which βl ď

s
βpsq

dβ
ds and s

ζpsq
dζ
ds ď ζu for all s ě 0: this implies blsβl ď

βpsq and ζpsq ď zus
ζu for all s ě 1 and for some bl, zu ą

0.Hence, up to modifications of β and ζ, we can assume
βpsq “ bls

βl and ζpsq “ zus
ζu for all s ě 1. Define the

new tuple pv, λ, α, δ, β, ζ, ξ, tq with v ” v ` 2bl, δ ” δ `

2bl, β ” bls
βl for βl :“ mintrb, βlu and ξ ” ξ`zu. Indeed,

since blsβl “ βpsq and ζpsq “ zus
ζu for all s ě 1, we

have blsβl´bl ď βpsq and ζpsq ď zus
ζu`zu for all s ě 0.

Hence, on account of the (ULB)+(UUB) condition on
pv, β, ζ, ξ, tq, for all px, d, tq P Rn ˆDˆ rt,`8q and any
βl P p0,mintrb, βlus

vpx, tq ě βp}x}q ě bl}x}
βl ´ bl ě βp}x}q ´ 2bl,

αp}Hpx, dtq}q ď ζpvpx, tqq ` ξpd8q ď zus
ζu ` zu ` ξpd8q.

This, on account of Property (P2), implies that
pv, λ, α, δ, β, ζ, ξ, tq satisfies a (SNE) condition. By con-
sidering the modified function v˝px, tq :“ pβ

´1
pvpx, tqqq

rb

and on account of the (PDI) condition on pv, λ, α, δq,
after some lengthy passages we get for all px, d, tq P
Rn ˆD ˆ Rě

Bv˝

Bx
px, tqF px, dtq `

Bv˝

Bt
px, tq ď ´λv˝px, tq

`
2

rb

βl
´1

λ
rb

βl
´1
b

rb

βl

l

”

α
rb

βl p}Hpx, dtq}q ` δ
rb

βl pd8q
ı

:“ ´λv˝px, tq ` α˝p}Hpx, dtq}q ` δ
˝pd8q, (B.1)

where we used Young inequality and the inequality |x`
y|p ď 2p´1||x|p ` |y|p| for all x, y P R and p ě 1. More-
over, on account of the (ULB) condition on pv, β, tq, we
obtain for all px, tq P Rn ˆ rt,`8q

v˝px, tq ě pβ
´1
pβp}x}qqq

rb “ }x}
rb :“ β˝p}x}q.

Upon the (UUB) condition on pv, ζ, ξ, tq, it follows for
all px, d, tq P Rn ˆD ˆ rt,`8q

α˝p}Hpx, dtq}q ď p4{λq
rb

βl
´1
b
´

rb

βl

l

”

ζ
rb

βl pblpv
βl
rb px, tqq ` ξ

rb

βl

ı

:“ ζ˝ppvpx, tqq ` ξ˝pd8q.

Moreover, since ζpsq “ zus
ζu for s ě 1, we have for s ě 1

ζ˝psq “ p4{λq
rb

βl
´1
pζpbls

βl
rb q{blq

rb

βl “ p4{λq
rb

βl
´1
ζpsq.

It follows that the tuple pv˝, λ, α˝, δ˝, β˝, ζ˝, ξ˝, tq with
β˝psq ” sµ satisfy a (SNE) condition and, on account
of Property (P1), the modified tuple prv, λ, rα, rδ, rβ, rζ, rξ, tq
“ ppsv˝, λ, psα˝, psδ˝, psβ˝, psζ˝, psξ˝, tq is the claimed one in
Property (P3) satisfying a (SNE) condition.

B.2 Proof of Proposition A.1

Notice that xspxt`∆tpx, t; dq, t`∆t; dq “ xspx, t; dq for
any ∆t P R. We have

vpxt`∆tpx, t; dq, t`∆tq ´ vpx, tq

∆t
“

´e´λ∆t ´ 1

∆t

¯

vpx, tq

`
e´λ∆t

∆t

ż t`∆t

t

e´λpt´sqαp}Yspx, t; dq}qds.

Letting ∆t tend to 0 we get

Bv

Bx
px, tqF px, dtq `

Bv

Bt
px, tq

“ ´λvpx, tq ` αp}Hpx, dtq ´Hp0, dtq}q

ď ´λvpx, tq ` αp}Hpx, dtq}q ` δp}dt}q,

where we used αps` rq ď αp2sq ` αp2rq for all s, r ě 0.
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B.3 Proof of Proposition A.2

Proof. Let t, b ą 0, α, β P K8 be as in (BWR) and
v : Rn ˆ Rě as in (A.1). For all t ě t we have

vpx, tq ě

ż t

t´t

e´λpt´sqαp}Yspx, t; dq}qds

ě e´λt
ż t

0

αp}Yψpx, t; dq}qdψ (B.2)

and dψ :“ dψ`t´t. But d P D and on account of (BWR),
vpx, tq ě e´λtpβp}x}q ´ bq :“ βp}x}q ´ b for all px, tq P
Rn ˆ rt,`8q, which proves that pv ` b, β, tq satisfy a
(ULB) condition. On the other hand, pv ` b, λ, α, δ `
λbq satisfies a (PDI) condition by proposition A.1 and
property pP2q.

B.4 Proof of Theorem 6.1

Let Λs be the GES action in Assumption 2 with asso-
ciated quadruple pW,λ, ρ, ψq and pcpsq :“ cψpsq, with
c P p0, 1s, be the function introduced before Theorem
6.1 with ps P Ką to be determined by the design.

We notice at once that, by the properties of C0,1
loc -

saturation functions (see also Notation section), for all
px, z, sq P Rn ˆ Rn ˆ Rě

}σ
pcpsqpxq} ď }pcpsq},

›

›σ
pcpsqpxq ´ σpcpsqpzq

›

› ď }x´ z}(B.3)

with }pcpsq} “ c}ψpsq} ď nc. By inspection of the state
norm estimator’s equation (32) and by forward com-
pleteness of (1) (Assumption 1), it follows that pvt has no
finite escape time (i.e. it is defined for all t ě 0). Also, by
inspection of the observer’s equation (31), since pvt has
no finite escape time and }σ

pcppvtqpΛpsppvtqpztqq} is bounded
by 2}pcppvtq} ď 2n, it is seen that Λ

psppvtqpztq (and therefore,
by completeness of the action Λs, also the observer’s so-
lution zt) has no finite escape time.

Define the following operators ∆,∆s acting on (respec-
tively,C1 andC0,1

loc ) vector fields F8, F : RnˆRm Ñ Rn:
for x P Rn, d P Rm and s P Rě

∆F8px, dq :“ F8px, dq ´
BF8
Bx

ˇ

ˇ

ˇ

p0,0q
x´

BF8
Bd

ˇ

ˇ

ˇ

p0,0q
d

∆spF, F8qpx, dq :“
1

γF psq
pΛsq˚F

`

x,Γ´1
d ps, xqd

˘

´ F8px, dq (B.4)

Similar definitions are adopted for mappingsH,H8. Us-
ing the mean value theorem, for all x, z P Rn, d P Rm

and s P Rě

}∆F8pσ
pcpsqpxq, 0q ´∆F8pσ

pcpsqpzq, 0q} (B.5)

ď

›

›

›

›

ż 1

0

B∆F8
Bx

ˇ

ˇ

ˇ

pθσ
pcpsqpxq`p1´θqσpcpsqpzq,0q

dθ

›

›

›

›

}x´ z},

Since B∆F8
Bx

ˇ

ˇ

ˇ

p0,0q
“ 0 and using (B.3), there exists some

α1 P K such that for all px, zq P Rn ˆ Rn and s P Rě

}∆F8pσ
pcpsqpxq, 0q ´∆F8pσ

pcpsqpzq, 0q} (B.6)
ď α1p}σ

pcpsqpxq} ` }σpcpsqpzq}q}x´ z} ď α1p2ncq}x´ z}

Since W is C0,1
loc and using (B.3), there also exists some

α2 P Ką such that for all px, zq P Rn ˆ Rn and s P Rě

}W pσ
pcpsqpxqq ´W pσpcpsqpzqq} (B.7)

ď α2p}σ
pcpsqpxq} ` }σpcpsqpzq}q}x´ z} ď α2p2ncq}x´ z}.

Moreover, by Assumption 4 and (B.3), we have β P K
such that for all px, dq P Rn ˆ Rm and s P Rě

}∆F8pσ
pcpsqpxq, dq ´∆F8pσ

pcpsqpxq, 0q} ď βpncq}d}.

On account of (B.3) and since Λs is by Assumption 2
an incremental symmetry of F in the 8-limit with limit
F8 and scaling factors pγF ,Γdq, we have λF P KLą such
that for all px, z, dq P Rn ˆ Rn ˆ Rm and s P Rě

}∆spF, F8qpσ
pcpsqpxq, 0q ´∆spF, F8qpσ

pcpsqpzq, 0q}

ď λF p0, sq}σ
pcpsqpxq ´ σpcpsqpzq} ď λF p0, sq}x´ z},

}∆spF, F8qpσ
pcpsqpxq, dq ´∆spF, F8qpσ

pcpsqpzq, 0q}

ď λF p}d}, sq}d}. (B.8)

The same inequalities can be worked out for H and H8.

B.4.1 Selection of parameter c

In this section we choose the parameter c P p0, 1s of the
function pc in (31). Let µ,Π be as in Assumption 5, γd P
KLą as in Assumption 2 and pick ε ą 0 (the estimation
error tolerance). Using inequalities (B.6)-(B.8) for F and
F8, together with the corresponding ones forH andH8,
find s0 ě 1 and δ0, c P p0, 1s such that for all x, z P Rn,
d P Rm and δ P R such that }d} ď γdpnc, 0qd8, |δ| ď δ0
and for all s ě s0:

Aspx, z; δq ď
µλΠ

min

4
, (B.9)

P spx; dq ď
εµλΠ

min

32ωpncqλΠ
maxd8

` }D}, (B.10)
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where D :“ BF8
Bd |p0,0q ´K

BH8
Bd |p0,0q and

Aspx, z; δq :“
}2ΠpAspσ

pcpsqpxq; δq ´Aspσpcpsqpzq; δq}

}x´ z}

`
}2ΠKpCspσ

pcpsqpxqq ´ Cspσpcpsqpzqqq}

}x´ z}

Aspx; δq :“ ∆F8px, 0q `∆spF, F8qpx, 0q ` δW pxq

Cspxq :“ ∆H8px, 0q `∆spH,H8qpx, 0q,

P spx; dq :“
}Pspσ

pcpsqpxq; dq ´KQspσpcpsqpxq; dq}

}d}
,

Pspx; dq :“
BF8
Bd

ˇ

ˇ

ˇ

p0,0q
d`∆F8px, dq ´∆F8px, 0q,

`∆spF, F8qpx, dq ´∆spF, F8qpx, 0q,

Qspx; dq :“
BH8
Bd

ˇ

ˇ

ˇ

p0,0q
d`∆H8px, dq ´∆H8px, 0q

`∆spH,H8qpx, dq ´∆spH,H8qpx, 0q. (B.11)

B.4.2 Selection of the functions ps P Ką, rα P K8 and
rδ P Ką in (32)

Since Λs is a GES action, by the (SM) property (9) of
Λs there exist k, h ą 0 such that for all ps, xq P RnˆRě

}Λspxq} ď λp}x}, sq :“ ke´hs}x}. (B.12)

On the other hand, by the (C) property (10) of Λs,
we obtain for each τ P L a function ps P Ką, psprq :“
1
h lnpkpr`1q

τprq q, such that

λpr ` 1, psprqq ď τprq, @r ě 0. (B.13)

Hence, choosing in particular τprq “ kpr`1q
pq`rqp , q, p ą 1, we

get the function psprq “ p
h lnpq ` rq in (31). The param-

eters q, p ą 1 are picked out later.

According to property (P3) (section 4), we can trans-
form the tuple pv, λ, α, δ, β, ζ, ξ, tq of Assumption 6, with
β P K1

8, into a new tuple prv, λ, rα, rδ, rζ, rβ, rξ, tq satisfying
a (SNE) condition with rβprq :“ r P K1

8 and state norm
estimate

}xt} ď rvpxt, tq ď pvt ` 1, t ě maxtt;Tx0,du, (B.14)

where pvt is the output of the filter (32), and

rζprq “ r`ζprq (B.15)

for all r ě 1 and for some r` ą 0. This determines the
functions rα and rδ in (32).

B.4.3 Selection of the parameters q, p ą 1 of the func-
tion ps

Let γF ą 0 and γd ă 0 be as in Assumption 2 and
ζ P K1

8 as in Assumption 6. Pick p ą 1 such that

lim
rÑ`8

p

h

r ` ζprq

r1` p
hγF

“ 0. (B.16)

By (B.16) it is possible to pick q ą maxte
s0h

p , pk{cq
1
p´1 , 1u

such that for all r ě q

p{h

r1` p
hγF

´

pλ` r`qpr ` ζprqq ` rξpd8q ` rδpd8q
¯

ď min

"

δ0,
µ

2p1` 4|γd|q

*

(B.17)

Since q ą pk{cq
1
p´1 and on account of (B.12) and (B.13)

@pr, xq P Rě ˆ Rn : }x} ď r ` 1

ñ }Λ
psprqpxq} ď λpr ` 1, psprqq ď τprq ď c. (B.18)

From (B.14) and (B.18), since c ď 1, λ P KL and the
(NUB) property (12) of Λs, it follows that for each i “
1, . . . , n and t ě maxtt;Tx0,du

|rΛstpxtqsi| ď
|rΛstpxtqsi|

λp}xt}, stq
λppvt ` 1, stq ď cψipstq ď ψipstq

where st :“ psppvtq. Hence, for all t ě maxtt;Tx0,du

σ
pcpstqpΛstpxtqq “ σcψpstqpΛstpxtqq “ Λstpxtq. (B.19)

By the (SNE) condition on prv, λ, rα, rδ, rζ, rβ, rξ, tq and
(B.14), we get rαp}yt}q ď rζppvt ` 1q ` rξpd8q for
t ě maxtt;Tx0,du. Hence, from (B.15) and (B.17), for
t ě maxtt;Tx0,du (and since pvt ě 0 for all t ě 0) we
obtain after few passages

| 9st|

γF pstq
ď min

"

δ0,
µ

2p1` 4|γd|q

*

. (B.20)

B.4.4 Estimation error convergence

Since Λs has generator W , mapping the system’s solu-
tions xt into rxt :“ Λstpxtq and rescaling the disturbances
dt as rdt :“ Γdpst, rxtqdt, we get for all t ě 0

9
rxt “Λst˚F prxt,Γ

´1
d pst, rxtq

rdtq `W prxtq 9st,

and finally, using (B.19) and definitions (B.11), for all
t ě Tx0,d and with δt :“ 9st

γF pstq

9
rxt “ γF pstq

!

BF8
Bx

ˇ

ˇ

ˇ

p0,0q
rxt `Astprxt; δtq ` Pstprxt;

rdtq
)

.
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Notice that on account of Assumption 2 and 3 and (B.19)

}rdt} ď }Γdpst, rxtq}d8 ď γdp}rxt}, stqd8 ď γdpnc, 0qd8.

(B.21)

On the other hand, from the observer’s equations (31)
with definitions (B.11) we get

9
rzt “ γF pstq

!

BF8
Bx

ˇ

ˇ

ˇ

p0,0q
rzt `Astpσpcpstqprztq; δtq

`

`K
BH8
Bx

ˇ

ˇ

ˇ

p0,0q
prxt ´ rztq

`K
´

Cstprxtq ´ Cstpσpcpstqprztqq `Qstprxt;
rdtq

¯)

.

Let re :“ rx´ rz, the estimation error, and V preq :“ reJΠre.
Using (B.20), (B.21), the fact that psp0q ě s0 (since q ą
e
s0h

p ) and (B.9) and (B.10) with (B.11), we get in the
end for all t ě maxtt;Tx0,du

9V ď γF pstq
!

´ µV `Astprxt, rzt; δtq}re}
2

`
4λΠ

max

µ
P

2

stprxt;
rdtq}rdt}

2
)

ď γF pstq
!

´
µ

2
V

`

´ε2λΠ
minµ

4ω2pncq
`

8}D}2λΠ
maxd

2
8

µ

¯

γ2
dpnc, stq

)

With rV :“ V
γ2
d
pnc,stq

and once more on account of (B.20)

and since γdpr, sq “ αdprqe
γds (Assumption 2), we find

9
rV ď γF pstq

!

´
µ

4
rV `

´ε2λΠ
minµ

4ω2pncq
`

8}D}2λΠ
maxd

2
8

µ

¯)

for all t ě maxtt;Tx0,du. Since λΠ
min}re}

2 ď V preq ď
λΠ
max}re}

2 for all re, it follows that for all t ě t˚ :“
maxtt;Tx0,du

}rxt ´ rzt} ď
”

a

λΠ
maxe

´
µ
4 pt´t

˚
q

a

λΠ
minγdpnc, st˚q

}rxt˚ ´ rzt˚}

`
ε

ωpncq
`

6}D}
a

λΠ
maxd8

µ
a

λΠ
min

ı

γdpnc, stq. (B.22)

On the other hand, on account of (B.3) and (B.19), the
(IR) property (11) of Λs and the mean value theorem,
we get for t ě maxtt;Tx0,du

}xt´Λ´1
st pσpcpstqprztqq}“}Λ

´1
st pσpcpstqprxtqq´Λ´1

st pσpcpstqprztqq}

ď

ż 1

0

›

›

›

›

BΛ´1
st

Bx

ˇ

ˇ

ˇ

θσ
pcpstq

prxtq`p1´θqσ
pcpstq

prztq

›

›

›

›

dθ ˆ

ˆ}σ
pcpstqprxtq ´ σpcpstqprztq} ď ρpnc, stq}rxt ´ rzt}. (B.23)

On account of (B.22) and ρpr, sqγdpr, sq ď ωprq for all
s, r ě 0 (Assumption 3), by applying lim suptÑ`8 to

the left and right part of (B.23) we prove the claim of
the theorem. Ÿ
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