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Abstract

We propose a framework for designing global observers for nonlinear systems with disturbances under geometric conditions
based on orbital symmetries. Under some additional restrictions these orbital symmetry-based conditions boil down to geometric
homogeneity (at infinity) conditions. Our observers are the result of the combination of a first filter, a state norm estimator,
with a second filter adaptively tuned by the first and when compared with the existing literature have a completely novel
structure, inherited by the orbital symmetry-based conditions. The observers exploits the geometric properties of orbital
symmetries which are one-parameter groups of transformations capable of mapping the system state into neighbourhoods with

parametrized width.
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1 Introduction

Among the various approaches to state estimation
for nonlinear systems observer with adaptive or time-
varying gains are by far the most popular [14]. Adap-
tive or time-varying gains allow to overcome classical
limitations of high/low-gain observers (HGO), distur-
bance observers (DBO) and extended state observers
(ESO) such as compact domains of error convergence
or bounded (with their derivatives) nonlinearities. An
adaptive high/low-gain observer is based on the idea
of selecting or dynamically updating its gains via par-
allel filters in such a way as to dominate the nonlinear
contribution to the dynamics of the estimation er-
ror. The combination of the tuning capabilities of the
extended Kalman filter approach with the high-gain
global stability properties is considered in [11]. Adap-
tive high-gain observers are investigated to achieve a
tradeoff between transient response in a noise-free set-
ting and sensitivity to disturbances in the presence of
noise [3], [6], [15], [17], [22], [29]. In particular, [3] is a
first attempt of mixing adaptive-based techniques with
homogeneity conditions. Homogeneity is a particular
type of symmetry, which is widely used in control the-
ory for system analysis, regulation and observer design
(see, for instance, [18], [25] for a geometric definition
of homogeneity and [4] for observer design techniques
based on weighted homogeneity). Such an interest to the
homogeneity concept is based on various useful features
of homogeneous systems. In particular, local stability
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properties are also global; the rate of convergence of ho-
mogeneous systems can be assessed by its homogeneity
degree and homogeneous systems are robust with re-
spect to external perturbations and time delays. All the
previous observer design results with weighted homo-
geneity require specific system structures, such as chains
of integrators, and in many cases restrictive conditions
on the increments of the nonlinearities ([4], [8] and ref-
erences therein). A symmetry-based approach has been
initiated in [12] and subsequently in [20] and [23] with
local asymptotic convergence results. A sliding-mode
approach is also well-studied and recently combined
with homogeneity in order to obtain (homogeneous)
sliding-mode observers, with convergence in finite time
and robustly with respect to bounded disturbances.
Application however is still limited to chains of integra-
tors with matched nonlinearities and disturbances and
known, constant or time-varying, bound on the state
trajectories ([13], [21]), globally Lipschitz nonlinearities
([31]) or incrementally dissipative nonlinearities ([1], [2]).

In this paper we follow and significantly improve the con-
ference paper [5] (which is presented without proofs) by
pointing out general observer design techniques result-
ing from mixing adaptive with symmetry-based method-
ologies. We stress the fact that our analysis and design
is aimed at global state observers, i.e. the estimation er-
ror converges for any state and observer initial condi-
tions, which are opposed to semi-global state observers,
i.e. the estimation error converges for any state and ob-
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server initial conditions in a given bounded set D < R™.
With these premises, the main points in favour of the
proposed results are:

i) Novel symmetry-based conditions for global observer
design. Under some additional restrictive assumptions
on the type of orbital symmetry involved, these con-
ditions boils down to well-known homogeneity condi-
tions (3], [4], [26]). Indeed, homogeneity is a particular
type of orbital symmetry. It follows that our results
are applicable to homogeneous systems but most im-
portantly may be used for systems which are not ho-
mogenous in the classical sense but still possess an or-
bital symmetry. Moreover, since symmetries are an in-
trinsic geometric notion it is possible to consider more
general systems on homogeneous spaces: exploiting
the symmetry structure has led to high performance
observers and filters ([20], [23]).

ii) Unlike previous cited works on homogeneous ob-
servers and sliding-modes with homogeneity, the pre-
sented results do not require special forms or system’s
decompositions (integrator chains, relative-degree
forms, etc) or restrictive/specific conditions on the
observer initialization (semi-global observers) and/or
on the state nonlinearities (globally Lipschitz nonlin-
earities, bounded state trajectories or incrementally
dissipative nonlinearities: [1], [2], [13], [21], [31]).

iii) Unlike other existing symmetry-based approaches,
we design observers with global convergence proper-
ties. Moreover, we consider the most general type of
orbital symmetry (i.e. a nonlinear one) in comparison
with more restricted classes of orbital symmetries (i.e.
linear ones: [25]).

iv) Our results take into account the presence of non-
vanishing disturbances and we give bounds for the es-
timation error, which can be potentially adjusted or
optimized by adjusting the observer parameters. In
this paper, the only information we use on the dis-
turbance is a known bound d, but our approach is
amenable to various generalizations to unbounded dis-
turbances (with known time-varying bound dq(t)). To
this aim, we introduce novel notions of symmetries for
systems with disturbances.

The paper is organized as follows: in Section 3 we present
the class of systems and we explain shortly the observer’s
structure (Figure 1), in Section 4 we discuss the exis-
tence of state-norm estimators with some constructive
tips for special classes of systems (Examples 4.1 and 4.2),
deferring to Section A of the Appendix the discussion
of more abstract conditions based on backward/strong
observability issues. In Section 5.1 we introduce actions,
push-forwards and symmetries, specifically for readers
less familiar with these issues, and a new notion of in-
cremental symmetry in the oo-limit, instrumental for
our observer design, by describing in detail how to con-
struct such types of symmetries for lower triangular vec-
tor fields (Section 5.3). We list the main assumptions
A2-A6 in Section 6.1 and state the main result Theorem

6.1 in Section 6.2, together with some important corol-
laries which can be compared with existing results us-
ing high-gain or sliding-modes observers. A simulation
for an academic unstable system is given in Section 6.4,
by illustrating how the observer is capable to track di-
verging states, and the main observer design steps are
sketched for the cart pendulum system.

2 Notation

(I) (vector spaces). R™ (resp. R™*™) is the set of n-
dimensional real column vectors (resp. n x m matrices).
R> (resp. R, resp. RZ) denotes the set of non-negative
real numbers (resp. positive real numbers, resp. column
vectors of n positive real numbers). GL(n) (general lin-
ear group) is the set of nonsingular matrices A € R"*"
and I,, is the identity element. For any A € R™*™ we
denote by A% we denote the Penrose pseudoinverse and
A# = (AT A)71 AT when the rank of A is m. For any vec-
tor v € R™ we denote by v; or [v]; the i-th element of v
and diag {v1,...,v,} denotes the n x n diagonal matrix
with 4-th diagonal element v;. C (resp. C™) is the set of
complex numbers (resp. with negative real part), Re{\}
denotes the real part of A € C and &(5) < C denotes
the spectrum of S € R™*"™. RZ*™ (resp. RL*") is the set
of symmetric positive definite (resp. semi-definite) ma-
trices S € R™*™ with A\J . = min{\ : A\ € &(9)} and
A = max{\: e &(9)}.

max

(IT) (norms). |v| denotes the absolute value of v € R,

[v] := VvTv denotes the euclidean norm of v € R”
and the induced norm of S € R™*" is ||S]| :=

sup en (| Sz|l/|z])-

(III) (monotone functions). Let K~ (resp. I, resp. Ko)
be the set of continuous non-decreasing (resp. strictly
increasing) functions f : Ry — Ry such that f(0) > 0
(resp. such that f(0) = 0, resp. such that f(0) = 0 and
lims_, 1o f(s) = +0). Let £ be the set of continuous
strictly decreasing functions f : Ry — R. such that
lims_, o f(s) = 0. Finally, let KL (resp. KL~ be the
set of continuous functions f : Ry x Ry — Ry such that
f(-,8) € K (resp. f(+,8) € K<) and f(r,-) € L for each
r,s € Ry and K (resp. KK~ ) be the set of continuous
functions f : Ry x R — R such that f(-,s) € K and
f(r,) € K (resp. f(-,s) € K~ and f(r,-) € K-) for each
r,seRs.

Continuous, continuously differentiable and locally Lip-
schitz functions on a domain X are denoted by C°(X),

CH(X) and Cpl(X), respectively, and we will omit
the domain X when clear from the context. Let KL

be the set of functions f € Ky n C'(Rs) such that

i s df s df
0 < infs~g (5) ds (s) < §1>118 (5) ds (s) < 4o0. The set
KL is not standard but it is dense in K. Monotoni-
cally increasing powers, roots, polynomials and rational
functions are all in KL .
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Figure 1. The structure of the observer O (shaded area) and
the estimate z of x. S is the system, SNE the state norm
estimator, As the symmetry for S and I's the scaling factor
for the disturbance d.

(IV) (saturation functions). A C’loo’i—function o: R" x
RZ — R, (¢,x) — o.x) = (o1(z1,c1), -,
on(Tn,cn))T, is a Cloo’cl—saturation function with satu-
ration levels ¢ € RZ if o;(x;,¢;) = x; for z; € [—¢;, ¢,
loi(zi, ;)| < ¢; and |0y (i, ¢;) — 04(2i, ¢;)| < |z — 24| for
all x;,z; e R

3 Class of systems

Consider a nonlinear system of the general form
& =F(x,d), y = H(x,d), (1)

with state z € R", measurements y € RP and distur-
bance vector d. We assume that the disturbances d are
continuous and bounded functions d : R — D < R™ of
a space denoted by D and endowed with the sup norm
ld|o = supeg |d(t)| uniformly bounded by a known
d38>0.F:R"me—>R"andH:R”me—>R”are
Cpl-mappings with F(0,0) = 0 and H(0,0) = 0.

For stressing dependence on time, we will sometimes de-
note x(t),y(t) (with initial state 2(0) = zo at ¢ = 0)
and d(t) by z;,y; and, respectively, d;. In particular,
x¢(x, s;d) (resp. y:(x, s; d)) will denote the value at time
t of the unique solution (resp. output) of system (1)
with input d and initialized at point x at time s, i.e.
xs(x, s;d) = x. Throughout the paper, we assume for-
ward completeness of (1).

Assumption 1 (Forward completeness). The solutions
x¢ of (1) are defined for all (zg,d,t) € R™ x D x Rs.

In order to formulate our assumptions on (1) which make
possible our observer design, we discuss two key issues
which are fundamental in the observer structure: a) the
design of a state-norm estimator for (1) (which is less
demanding than a full-state or reduced observer) and b)
the construction of symmetries for (1), which basically
are one-parameter groups of transformations. The struc-
ture of the observer is explained in Figure 1. The system

(1), represented as S, is mapped into the system S by

a symmetry I := Ag(x) (parametrized by s) together
with a disturbance rescaling d = I's(z)d. The parameter

s of the symmetry is adapted on-line by a state norm
estimator, labeled as (SNE), which keeps the norm of

T = As(x) (as well as the values of d) within prescribed
small values ¢ . Taking advantage of the fact that |Z|

and |d| are small, an estimate 3 of ¥ is computed by a

local observer O and a global observer O is readily ob-
tained by mapping Z back into z through A;! after a
pre-saturation o, (shaded area in Figure 1).

4 Design of state norm estimators

In this section we discuss the design of a state norm
estimator (SNE). To this aim, we propose the following
set of conditions:

(SNE). There exist a C'-function v : R™ x Rz — R,
A>0,a,8,( €Ky, 8, € K< and t = 0 such that:

o for all (z,d,t) e R" x D x Ry

ov

ov
(@ OF (e dy) + 5 (a.) (PDD)

< —M(z,t) + o |[H(z, dy)|) + 6(deo),
o for all (z,d,t) € R™ x D x [t, +0)

vz, t) = B(|l]),
a([H(z,dy)]) < C(v(z,t)) + &(dop).

(ULB)
(UUB)

We also say that the tuple (v, A\, @, d, 3, (, &, t) satisfies a
(SNE) condition for (1) and we use separate or combined
terminologies as well: (v, A, «, 0) satisfies a (PDI) (par-
tial differential inequality) condition, (v, 3,t) satisfies a
(ULB) (uniform lower bound) condition, (v, A, &, d, 3, t)
satisfies a (PDI) +(ULB) condition, etc. etc.

Notice that v(z,t) is not required to be non-negative for
all ¢ = 0, still by (ULB) it must be positive only for
t = ¢. Our interest in the (PDI) + (ULB) condition is
motivated by the following result (a similar result was
originally proposed by [19] in slightly different terms and
we omit the proof).

Proposition 4.1 Assume (v, «,0,0,t) satisfy a

(PDI) + (ULB) condition for (1). For each (xg,d) €
R™ x D there exists Ty, q = t such that for t = T, 4:

lwe] < 87 (v(@e, 1)) < B~ (@ + 1), (2)

where v, is the output of the filter

0y = —=X\0; + aye]) + 8(dws), To = 0. (3)



Proposition 4.1 proves that a (PDI)+(ULB) condition
for (1) is sufficient for the existence of a filter of the
form (3) capable of estimating the state norm of (1) and
clarifies in which sense, specified by (2), a state norm
estimate for (1) has to be meant.

Remark 4.1 For implementing the state norm estima-
tor (2)-(3) we need the functions o, and B. A general
approach (inspired by linear systems) is to stabilize (1) by
output injection ¢(y) and find a corresponding Lyapunov
functionv(z). Fromv and ¢ we get the functions o, and
8. For instance, for a detectable linear system © = Ax,
y = Cuz, if K is such that A — KC' is Hurwitz and P €
R™2*" such that P(A—KC)+(A—KC)TP < 0, then with
v(z) = 2T Px and ¢(y) = Ky we getv < —\v+ald(y)|?
for some A\, a > 0. Moreover, v(z) = AL . x| := B(|z]).
Below (Examples 4.1 and 4.2) we give a sketch of the con-
structive procedure for some important classes of nonlin-
ear systems.

Another approach (discussed in section A) is to pick a,
define a time-varying v (using « and the backward solu-
tions of (1)) and from a and v find § and (under certain
observability conditions) S.

The functions ¢ € K and & € K. satisfying the
(UUB) (uniform upper bound) condition can be ob-
tained from the functions 5 and « as follows: define
T(s,7) = sup”xugﬁfl(s)’”d”@«a(HH(m,d)H) and pick
¢ € K and £ € K- such that ((s) = 7(s,s) and
§(s) = 7(s, ). <

Example 4.1 (Systems linear with respect to unmea-
sured state variables). Consider systems (1) of the form

(4)

F(z,d) := (A“)mm + B<1>(w1>d1> :

A®) (331)1‘2 + B® (xl)dl

H(z,d) := x1+ds, withxy,z2,d1,dy € R andA(l)(xl) >
0 for all x1. By direct computations, we can construct a
tuple (v, A\, v, 0, 8,¢,&,0) satisfying a (SNE) condition,
withv(x) := ca(x2+(x1))2 +c1(¢*(x1) + 2%) + co where
o(xy) == — 53 (AP (s) + 1)A(1)71(5)ds and for suitable
co, 1,2 > 0. By iterating this constructive paradigm, we
come to a tuple (v, \,, 9,53, &,0) satisfying a (SNE)
condition for a n-dimensional lower triangular system

AW (212 + BD (a1)dy
3 AD (21)a; + B (xy)d
Fla,d) = | <7270 Y L 6

Zn Agn) (.’171)5(}]‘ + B(")(xl)dl

j=2

H(z,d) := z1 + do, with 1, -+ ,zy,d1,da € R and
Ag?l(xl)>O,i=1,...,n71,fo7"allx1. <

Example 4.2 (Homogeneous systems). Consider (1)
with

F(z,d) := Az + ®(x) + d1, H(z,d) :==Cx +dy  (6)

with (C, A) in observer canonical form and |®;(x)| <
aZ;:1 |:Ej\’"f/”, i=1,...,n, withry == 1,7 == v +
i1, 1 = 2,...,m, a,¥ = 0 and for all x € R™. By
borrowing some basic results on homogeneity from [4]

we can construct a tuple (v, A\, a, 0, 8, ¢, €, 0) satisfying a
(SNE) condition with

n—=1 nc;x; S Yv—Ti .

_ ) — Ti41 ol

v(z) =co+ Z J- o (™ =2, " )dh + cplzg|™
j=1vY%it1

for sufficiently large co, -+ ,Cn, Yo > 0 (by r° we mean
|r|*sgn(r)). Notice that the case v, = 0 amounts to
being a globally Lipschitz lower triangular vector field.

Remark 4.2 For symplifying the design of the functions
v, B and «, it is possible to weaken the (PDI) condition
as follows:

v
j(x,t)F(xadt)JrE(xat) (7)

< —Av(z, 1) + o[ H (2, dr)]) + 6(deo)

where X is a K-class function for which there exist ¢y, co =
0 and cg > 0 such AM((1 4+ c1)r + ¢2) = (14 ) A(r) + ¢3
for all r = 0. For instance, the K-class function \(r) =

1 satisfies this additional condition. It is easy to see

that a simpler function v(x,t) = In(1 + 27 Px), with
P e R2*"™ and B(r) = In(1 + r), satisfies (7) for the
system (5). Under condition (7) the filter (3) is modified
as Uy = —A(0y) + al|ye]) + 6(dwo) and fort = Ty, q we
have |z¢| < B7H((1 + ¢1)0; + c2).- <

Examples 4.1 and 4.2 provide functions v(x, t) which are
not time-varying. Notice that the function v(z,t) must
satisfy (PDI), (ULB) and (UUB) for alld € D (i.e. v(z, t)
is the same whatever d € D is). However, v(x,t) may de-
pend on d € D as well, in the sense that for each d € D we
find v(x, t) satisfying (PDI), (ULB) and (UUB). Indeed,
these functions v(z,t) are obtained along the backward
solutions of (1). This different definition of v(z,t) will
not affect the result of Proposition 4.1. For not distract-
ing the reader from the main flow of the presentation, we
discuss in section A of the Appendix, supported by sim-
ple examples, how and under which conditions (related
to backward/strong observability issues) it is possible in
principle to construct time-varying v(x,t) and satisfy-
ing (PDI)+(ULB). We only list below some useful and
important properties, which we use for our main result:

(P1). Let (v, A\, 6, 8,¢, &, t) satisfy a (SNE) condition
for (1). The tuples (cv, A, ca, ¢f8,cC(2),c€,),t) or (v +

s
c



b, A\, a, 8 + b\, 3,(,t), with any b,c > 0, still satisfy a
(SNE) condition for (1) (this trivially follows from the
definition). In other words, we can change v by adding

or multiplying by positive numbers while preserving the
(SNE) condition.

(P2). Let (v, \, , 6, 8, (, &, t) satisty a (PDI) + (UUB)
condition and v(x,t) = B(|z|) — b for some b > 0 and
for all (z,t) € R™ x [¢,+0). The tuple (v + b, A\, e, 6 +
Ab, B3, ¢, t) satisfy a (SNE) condition for (1) (this follows
from (P1)).

(P3). Given &,3 > 0, it is possible to re-design a
tuple (v,\,,6,0,¢,€,%), with 8,( € Kl and sat-
istying a (SNE) condition for (1), into a new tu-
ple (5,5\,&75, 3, 5, 5,%), with 5(5) = as® e Kl and
C(s) = £((s) for all s = 1 and for some £ > 0 (depending
on A\, B, ¢, @ and b), still satisfying a (SNE) condition
for (1) (the proof is available in Section B.1 of the Ap-
pendix). In other words, we can change 3 € K, into any

other 3 € K1 while preserving the (SNE) condition.

5 Incremental orbital symmetries

A second key ingredient in our setup is to construct some
types of symmetries for (1). Symmetries have a long his-
tory: see the recent book of Olver [27] for an introduction
to symmetries in a differential geometric framework and
with regard to their potential applications to nonlinear
control systems. A breakthrough under this regard dates
back to [18], where symmetries are linked to homogene-
ity, and more recently some developments for linear sym-
metries are contained in [25]. For defining a symmetry
or any of its variant, we need some basic notions which
we recall here for readers less familiar with these issues.

5.1 An excursus on actions and relevant properties

Let A : R x R — R", (s,z) — A(s,z) := As(z), be
a one-parameter group of C'-transformations (i.e. a C
action A : G x R" —» R™ with § = (R, +), the addi-
tive group of real numbers) with complete C’IOO’C1 infinites-
imal generator W (i.e. the action is transitive). In equiv-
alent terms, As has the group property Ag, (Ag,(z)) =
Ag, 45, (2) for all (s1,s9,2) € R x R x R and satisfies
the differential equation

& M) = WA@)), Aola) = 0
for all (s,z) € R x R™. As a consequence of the group
property, A, : R® — R” is for each s € R a C''- transfor-
mation with inverse C'!-transformation A;' = A_;. In
what follows, we use the more generic term “action” in
place of “one-parameter group of transformations”.

If W(z) = Wa, with W € R"*" then Ay(z) = W
and we say that Ay is a linear action. If, in addition,
W e R™*™ is diagonal we say that A, is a decoupled
linear action. For our purposes we consider actions Ag
with the following specific properties:

(Stability margin (SM)). There exists A\ € KL such that
for all (s,z) e Ry x R"

[As (@) < A, ). 9)

The (SM) property asks for the origin of (8) being
globally asymptotically stable: we say that the action
A, is GAS. If (9) holds with A(r,s) = ke™"*r for some
k,h > 0, we say that the action A4 is GES (i.e. the ori-
gin of (8) is globally exponentially stable). A GAS linear
action A,(z) = e*Wx is such that W is Hurwitz, hence
it is also GES.

(Contraction (C)). For each T € L there exist § € K<
such that for all r € Rs

Ar+1,5(r)) < 7(r) (10)

For each 7 € L the function § € K. can be always
obtained from the stability margin A € KL: indeed,
there always exist aj,as € Ky and a > 0 such that
A(r,s) < ag(ag(r)e™®®) for all r,s € Rs (see for in-
stance [16], Lemma 7) and § can be readily obtained as
3(r) = (1/a)In(az(r + 1)/ay ' (7(r))). For example, for

a GES action we get $(r) = +In (k(:(ij)l)) for all r = 0.

(Incremental Rate (IR)). There exists p € KK~ such
that for all (s,z) € Ry x R™

or

2] < pllel (1)

The incremental rate property is a direct consequence
of A;! being C!. For a linear action we get for instance
plr,5) = eVl

(Normalized upper bounds (NUB)). There exist a C°

function ¥ : R> — RZ, 9(s) = (d1(s),-, ¥nl(s))T,
such that for all (s,z) € Ry x R"™
Mé%(s)él,izl,...,n. (12)

Allz], s)

The (NUB) property is a direct consequence of the

(SM) property (since /‘\V(‘Hl(”m ZH) < 1 for all (s,z) € Ry x

R™). Each 1; can be either a £- or a K -class function
(bounded by 1) and represents an upper bound, normal-
ized by the stability margin, for each component of the
vector Ag(x). A trivial choice of 1; is clearly 1.




Throughout this paper, for a GAS action with generator
W as in (8) and (A, p, ¢) satisfying (9), (11) and (12) we
say that the action Ag is GAS with associated quadruple
(W, X\, p, ).

We mention an important generalization of an ac-
tion A, suitable for allowing non-uniform generators
W (s, ) which we may come across in general nonlin-
ear contexts. More in detail, A : R x R x R* — R"”,
(s,z) — A(s,t,x) = Ass(z), be a Cl-map such
that As, ((Ars, () = A, s, (z) for all (s1,t,s0,2) €
R x R x R x R"™ and satisfying the differential
%As7t(l') = W(S,As)t(l')), At7t(l‘> = g for all
(as,t,z) € R x R x R™ In this case, we lose the
one-parameter structure and group property, still
Ast @ R" — R” is for each pair (s,t) € R x R a C'-
transformation with C'-inverse AS_% = A . The (non-
uniform) generator of Ag; is W(s,z) and we still say
(with some abuse of terminology) that A, is a C!-
action (with associated quadruple (W, A, p,)). For our
purposes, the second parameter ¢ is not important and
we may set t = 0 and consider A;(z) = A(s,0, z).

5.2 Incremental orbital symmetries and some examples

An action A, transforms vector fields and maps as fol-
lows. For a given C’IOO’C1 vector field F' : R™ x R™ — R™,
the push-forward of F' by A is defined as A F(z,d) :=

aaA; (2)F(z, d)|z=AS_1(x), while, for a given CIOO’C1 mapping

H : R" x R™ — RP, the push-forward of H by A is
AgiH(z,d) := H(z,d)|,_x-1(,)-

According to previous notions of symmetry (see for in-
stance [18]), an orbital Cl-symmetry for a C’IOO’C1 vector
field F : R — R" is a GAS Cl-action A4(z) such
that Ay F(z) = €7F5F(x) for all (s,z) € Rs x R"
and for some 7y € R. The above definition has the
following drawbacks: a) it requires the exact equality
Asy F(x) = €775 F(x) which may be somewhat restric-
tive for our purposes, b) it is not suitable for vector fields
with exogenous inputs and ¢) no insight is given on the
incremental behaviour of Ay, F'(z) at different points,
which is a key information for observer and contraction-
based design. Under this regard, we propose the follow-
ing definition of orbital incremental symmetry.

Definition 5.1 A GAS Cl'-action Ag(z) with asso-
ciated quadruple (W, p,v) is an incremental or-

bital symmetry in the co-limit of a CIOO’C1 vector field
F : R" x R™ — R" with scaling factors (vr,Tq)
and C' limit vector field F,, : R"® x R™ — R",
F,(0,0) = 0, if there exist C° functions yp : R — R,
Iy : R x R™ — GL(m) and Ap € KL~ such that for all
s€Rs, x,z € R ¢ |ay], 2] < ¥i(s),1=1,...,n, and
de R™

|@(s,z,d) = @(s,2,0)| < Ar([d], s)(|« — 2] + |d]) (13)

1 1 _ x
b (e ) - Pl

When ®(s,x,d) =0 for all (s,z,d) € Ry x R" x R™ we
say that Ag(x) is an orbital symmetry of F' with scaling
factors (yp,Tq). In this case, (13) is trivially satisfied

and, since Ag(x) = x and aa/; s=0 = %, it follows that
Falayd) = — (@15 0,2)d)
z,d) = ——F(x, ,w)d).
. 7r(0) a

Hence, F, is a rescaled version of F. In view of this
particular case, it is clear from (13) that an incremental
orbital symmetry in the co-limit can be seen as an orbital
symmetry both in an “approximating” sense (quantified
by Ar € KL-) and “incremental” sense (quantified by
the increments of ®).

A necessary and sufficient condition for a C'-action
Ag(x) with Cl-generator W(x) to be an orbital sym-
metry of a disturbance-free vector field F(x) is given
by the following result which we state without proof
([F,W](x) denotes the Lie bracket between the vector
fields F(z) and W (x)).

Proposition 5.1 A Cl-action Ag(z) with generator
W (x) is an orbital symmetry of a Cl-vector field F(z)
with exponential scaling factor yr(s) = €7 if and only
if [F,W](z) = FpF(x) for all x € R™.

Proposition 5.1 provides the geometric definition of ho-
mogeneity with degree ¥ given in [18] for a disturbance-
free vector field F'(z). Hence, definition 5.1 extends in
many directions the geometric definition of homogene-
ity of a vector field. In classical homogeneity frameworks
([3], 4], [26], [28]) only decoupled linear actions are con-
sidered with exponential scaling factors while in more
general contexts ([25]) also non-decoupled linear actions
are taken into account.

Below we give directly some examples of incremental
symmetries, which can be also computed with the more
general methodology given later in Section 5.3.

Example 5.1 (Decoupled linear actions: homogene-
ity revisited). Consider the wvector field F(x,d) =
(w2, —z22% + d)T. The decoupled linear action Ag(z) =
eVer with W = diag(—1,—3) is an orbital symme-
try of F with scaling factors (yr,Lq) = (€25 e7°%).
As associated quadruple of As we have (W, A, p,v) =
(Wx, e *r,e®*,(1,e7*)T). The wvector field F(x,0) is
homogeneous with weigths (1,3) and degree 2. <

actions).

2 2
2 zizstzi+d
Tor/1 + xy, —3=—"—
(2 U ita?

Example 5.2 (Nonlinear Consider  the
T

vector field F(x,d) =



There is no linear action Ag which is a symme-
try of F: in particular, F(x,0) is not even homoge-
neous. On the other hand, the GES nonlinear action

— 1+x2 _ . .
As(z) = (e7%1,4 [ Tro=mime 2529) T s an incremen-
1

tal orbital symmetry in the co-limit of F with scaling
factors (vp,Tq) = (e5,e73%) and limit Fy(z,d) =

¢
(z2«/1+x1,w1w2/+d> . The generator of As(x) is

W) = (o1, -3
Ay we have (W, X\, p, ) =

-

1_”; xg) . As associated quadruple of
1

(W (z), e *r,e3, (1,e=%)T).

For a C'IOO’C1 mapping H : R” x R™ — R? a C'-action A,
defines a symmetry of H exactly as in Definition 5.1 on

account of the different meaning of the push-forward of
H.

5.8 Design of incremental symmetries for lower trian-
gular vector fields

It turns out that wide classes of nonlinear vector fields
and maps admit an incremental symmetry. In this sec-
tion we will construct an incremental symmetry in the
oo-limit for lower triangular vector fields

Fl(xl) + Gl(xl)xg

Fn 1( (n—l)) +GrL 1($1)$n

Fo(z(™) + G (2(M)d

with z e R?, de R, ) := (z,--- ,2;)T,i=1,...,n,

0] C’IOO’C1 functions F;, i = 1,...,n, and G,, such that
F;(0) = 0and 0 < Gy, (x) for allz € R™ and C*-functions
Gi,i=1,...,n— 1, such that:

_
0@ (Jl4)

for all 1 € R and for some H(i),ﬁ(i) e K~ and v > 0.

0G;
0371 (xl)

< Gyar) < v, <9 (|z1]),

Before stating the constructive result, for a given o € £
find ¥ € K< such that foralls >0andi=1,...,n
[0 (5,2) = WO (5, 20) | < F(s)o ()] — 2O (15)

for all (), 2() e R? : Hx? [, ||z](z) | <1,5=1,...,4, with

T (s, 20) =

g e‘xy ex;
e °Ty(s, 1) F; ( R )
(s, 1) "Ty(s, 1)
T
bt T (s,21) (e

T, (s, 21) 071 TUR(e'n1) + Gi(a1)zs)  (16)

and

1—1 s
Ty(s,21) = 1T (s, ) o= | ] S22 5

For instance, we can pick any 7 such that for all s > 0
andi=1,...,n:

[w0 (s, 2) — w0 (s, 20)|
[e® = 20]

1
¥(8) = —= sup
5
(s) “)u Hz")u<1

Also, if ¢(0) is taken properly, we can assume 7(0) = 1.

Also, from (I) we obtain the following upper bound: for
all (s,z1) eRs xRandi=1,...,n—1

i M (4) s—(i) (s
‘%1 ( Gi(z1) > < 0D (| ) (e B (|21 ])
+v 0D (o )T (|1 ])) =

Proposition 5.2 Under assumption (I), anyyr € K= N
CL, with yr(0) = 1 and yr(s) = 7(s) for all s = 0, is

V(1] 5) € KK~ (17)

such that
AS( ) 1—‘do( $,€ )‘Tla Fdn 1( € sxl)xn)—r7
Fdj (3,131) =€ SV; (3)Fj+1($,l’1), (18)

is a GAS C'-action with non-uniform generator

W(s,a) = (W (s,00)zr, - W (s,00)0) T,

where

— (i olnTl i1 OlnT i1

W( )(s,:m) = T;(S,fh) - 331(77;(3’331) (19)

and an incremental orbital symmetry in the co-limit of
(14) with limit

FOO(I, d) = (Gl(Il)I’Q, R ,Gn_l(Il)LEn, Gn(fﬂl)d)T(QO)

and scaling factors (yr,Tq), where

GO @)y

Fd(sv‘r) =e S’Y;n( )fn(s,acl) Gn($)

Proof. The constructive proof is by steps.

Step 1. First, we construct an incremental symme-
try A (1) for FO(zy,dy) = Fi(a1) + Gi(z1)dy
with disturbance d; := 5. To this aim, consider
the GAS action Agl)(xl) = e *z; with associated



quadruple (W™ XD o) M) swhere W (2;) =
—z21, AV (r,s) := e=5r, pM(r,s) := e* and V) (s) := 1.
Let T'y, be defined as in (18), ¥(!) as in (16) and (7, o)
as in (15). With v € K~ n C* such that y#(0) = 1 and
vr(s) = F(s) for all s = 0, notice that
1

*VT(S)A‘E?F(I) (21,05 (s, 21)d1)

_ \I/(l) (Sa 1'1)

’}/F(S) + Gy (xl)dl. (22)

But vz (s) = 7(s), hence by (15)

[0 (s,1) = ¥ (s, 21)| < o(s)Jwr — 2] (23)

VF(s)
for all (s,z1,21) € Rx x R x R such that [z1]], |21] <
D (s) = 1. Tt follows from (22) and (23) that AL is
an incremental symmetry in the oo-limit of F(M (21, d;)
with limit Fo(ol)(xl,dl) = G1(x1)d; and scaling factors
(vF, T4, ). Moreover, using assumption (I) we have the

following inequalities (to be used in the subsequent
steps) for all (s,z1) e R x R

IT,, (s, 1)
Yr(s)

— aFd s
I3 o) 2 )] < oV ], )90 i )

<e MM (e [):=5"" (a1 |, s) e KK,

—(1
=23 (1], 5) € KK,

1 or;t —(1) —~(1,1)
,YT(S)H 8;11 (s;z)| <A (Jza], 8)0 " (2] 5)

=5 (|21, 5) € KK

Step z > 2. We construct an incremental symmetry
AP (z() for the vector field

FO @ g):= (FE-DT (20D 1), Fi(2®) + Gy(z1)di)T

with disturbance d;
GAS C'-action

:= x;41. To this aim, consider the

AP @) = (LD (@), T,y (s, )a) T

with associated quadruple (W& A® p) @) where
200), W (s, 21)i0) T

W@ (s,2®) = (W5,

AD(r,5) := AED(r, 5) (1—[ v (r )

p® (r,s) = p(i_l)(r,ls) ‘
i) s 1+ X (),

PO (s) 1= (D (),9171(s) T (24)

Let Ty, be asin (18), () asin (16) and (7, o) as in (15).
Notice that

AD p@) (L0 p-1 N = 9
’YF(S) Sk (x ' d; (S7x1>dl) ( 5)

1 A(sl**l)F(l—l) (x(i—1)7rgi1_1(s7x1>xi)

vr(s)

%\IJU) (S,F%)(S)l‘(z)) + G,(l‘l)dl
where Fg)(s) = diag{1,yr(s), - ,v="'(s)}. Since

vr(s) = F(s) by (15) we have
1 i i i i i i
IV TE (0)2) - 106 T (9):0)]
F

< o(s)z@ — =) (26)
for all (s z(® z(i) € [0,+0) x R* x R such that
170171 <057 (0) 1= 9 o i. By (25)
and (26) and since AS is an incremental symmetry
in the oco-limit of F(i’l) with limit Fo(é_l), Agl) is an

incremental symmetry in the co-limit of the vector field
FO (2™ d;) with limit

,j=1,...,

[ i i— T i—
F @D, d;) = (FEY (209, 2), Gi(w1)d;) T

and scaling factors (yg,'g,). Moreover, using assump-
tion (I) we have the following inequalities (to be used in
the subsequent steps) for all (s,z1) € Ry x R
T (s, 1) s —(i—1,1)
— o (€*]lz1])o
Vr(s)
7(1‘71)
=5 (o], ) € KK,

% (s, 20) | < vt (a1 [, )09 (e )

< v (l]; )

or
T3, (s, 21)

8.131
~(i-1) =0
A (@] s) == A (s, ) € KK,
1 or;t —(9) —(i,1)
(s, )| < N (2], 5)8 " (], )

v (s) ” 0x1
502
(21l s) € KK~

Finally, ¢ — ¢ + 1 and jump to step i. The claim of the
Proposition is proved when i > n. O

Remark 5.1 If the functions ), i = 1,. —1, of
Assumption (I) are all bounded then )\(1 (T s) = k(l) oy

for some k@ > 0 and for alli =1,...,n, hence A, is a
GES action.

If, in addition to Assumption (I), G,, satisfies m <

Gn(x) < v (|x1|) for all x € R™ and for some
v 90 e Ko and we define T'q slightly differently from



(21) as follows:

Gn(AT (@)

S

Ta(s,xy1) := e_sfy;”H*k(s)fn(s,xl) (@)

(27)
for any k € (0,1), the scaling factor vr(s)(= 7(s)) can

be additionally selected so that the limit vector field is

Foo(a:,d) = (Gl(l‘l)$2,' . ,Gn_1($1)$n,0)T.

This means that 65100 l(0,0) = 0, which is one of the con-
ditions ensuring practical error convergence of the ob-
server in the main result of Section 6.2. If G,(0) = 0
it would be still possible to have agd l0,0) = 0 with Ty
as in (21) and Fy, in (20). Also, notice that 22| o) =
diag{G1(0),...,Gn(0)}J, where J is a Jordan matmx
and G;(0) >0 foralli=1,...,n

Moreover, with T'q as in (27) and p € KK~ being the
incremental rate of A;1(x), for all (s,x) € R x R™ we
have

e~5u (n) sHmIH - n (3)
ITa(s, z1)] < —7,n+1 2 l_[ DTV (),
ik} ol

F
-1

«(14 e 259 (a0 (1 - X“’l <||x\|,s>uxu) )

Jj=2

ITa(s, z1)lp(l], s) <

and the scaling factor yr(s)(= 7(s)) can be further se-
lected so that for all (s,z1) € Rs x R and for some
ag € Ks andyg < 0:

[Ta(s, z1)]| < calflz1])e™ (28)

and the following “small gain” condition is satisfied for
all (s,z) € Ry x R™ and for somew € K~ :

ITa(s, z1)lp(lz], s) < w(|z])- (29)

Conditions like (28) and (29) will be required in the main
result of Section 6.2.

Finally, we remark thatif F;,1 =1, .. ., are polynomial
and all the functions 0, v and T, i = 1,...,n, of
Assumption (I) are bounded, vr is exponential.

6 Main assumptions and results

In this section we list the main assumptions on (1) and
state the main result together with the observer equa-
tions and an upper bound for the asymptotic estimation
error.

H&Foo +6Foo T H_(?HOOT’ 0H,,

6.1 Main assumptions

The first assumption is concerned with the existence of
orbital incremental symmetries Ag in the oo-limit for
F and H: this assumption takes care of the global be-
haviour of the nonlinear observer and prevents large or
even unbounded errors.

Assumption 2 The GES action A,, with associated
quadruple (W, A, p, 1), is an orbital incremental symme-
try for F' (resp. for H) in the oo-limit with scaling fac-
tors (yp,Lq) (resp. (vu,T4q)) and limit Fy, (resp. Hy ).
Moreover, yr(s) = €7r* (resp. yu(s) = €71%) for some
Fg >0 (resp. ¥ > 0) and

ITa(s, )| < ya(llz], s) = callz])e, (30)

for all (s, z) € R" xR and for some ag € K~ and7,; < 0.

Our next assumption is on the observer’s capability of
tolerating the disturbances d in terms of the interaction
between the incremental rate p € KK~ of A;1 and the
scaling factor I'y of the disturbance d.
Assumption 3 There exists w € K. such that
va(r, 8)p(r, s) < w(r) for allr,s € Rs.

Practical relevance of Assumptions 2 and 3 is substan-
tiated by the result of Section 5.3 on lower triangular

systems (see in particular Remark 5.1).

Assumption 4 There exists § € K such that for all
(z,d) e R x R™

0Fy,

Foo z,d) — FQO x, - d
+|Heo(w,d) — Hop(,0) — E (070)03 < B(|=[)|d|-

Assumption 5 There exist I € R2*™ and p > 0 such
that

< —pdl

ox l,00 0oz 1(0,0) ox 00 o0z 1(0,0)

Assumption 4 is satisfied for instance when Fy, (resp.
H,) is linear with respect to d. Assumption 5 amounts to
the detectability of the pair (2= 210,005 az = (0,0)- This
assumption takes care of the local behaviour of the non-
linear observer and guarantees local convergence.

The next assumption is on the existence of a state norm
estimator, which is needed to provide an on-line correc-
tion s; of the parameter s of the symmetry A, and keep
|As, (z¢)] small.



Assumption 6 The tuple (v, a,d,3,(, &, ) satisfies
a (SNE) condition for (1) with 3,¢ € KL,

Assumption 6 is a (SNE) condition (section 4) reinforced
with the mild restriction 3,¢ € KL, so that we can re-
shape 8 € KL into any desired 3 € KL, while preserving
the (SNE) condition (Property (P3) at the end of sec-
tion 4).

6.2 Main result

We are now ready to state (and prove) the main result
of this paper. For a Cloo’cl saturation function o (see No-
tation section), we consider the composition o) of oz
with the function ¢(s) := ci)(s) where ¢ > 0 is a de-
sign parameter and ¢ = (11,...,%,)  comes from the

quadruple associated with the incremental symmetry
As.

Theorem 6.1 Under Assumptions 1-6, for each € > 0
there exist ¢ > 0,5 K= nCY, & € Ko, and 6 € K~ such
that along the solutions of (1) and

0s
orls

(o,o)> (Z — Ua(st)(zt))

o= Moy F(02(s) (32),0) + W (oagsy (3) 5| 0t
oF, 0H
+7rF(t) < aw l0,0) — K axoo

VF(St) ~
+ Kyt — As,xH(045,)(Z4),0) ), 31
o K (= A H (000 (20),0)) (31)
where K := 1" 165‘;} l(0,0) and s; = 5(0;) with
Ve = =8¢ + &y ]) + 8(du), Do >0, (32)

the estimation errore; := x; —As_t1
for all times and

(04(s,)(2t)) is bounded

7’LC HDH V )‘gaxdao
H/ Agun

O0H,
KS#0,0)-

(33)

limsup [e]| < e
t—+00

OF,, o
od |(0’0)

where D :=
The parameter ¢ and the functions 5, & and 5 are all
determined in the proof of Theorem 6.1 (subsections
(B.4.1)-(B.4.3) of the Appendix). The bound (33) de-
pends on D, w, dy, and the (arbitrary) small number
and can be reduced by reducing the bound d, on the
disturbance d and/or by taking smaller values of the
saturation level ¢ (since w € K). Remarkably, notice
that if in addition %RQO) =0 and %\(070) = 0 then
D = 0 and practical error convergence is achieved (i.e.
arbitrarily small asymptotic error). This happens, for
instance, in lower triangular systems with disturbance
affecting only the last state equation (see Section 5.3

10

and Remark 5.1). If we put this together with Exam-
ples 4.1 and 4.2 on state norm estimators, by Theorem
6.1 we conclude that practical error convergence can be
achieved for lower triangular systems with CIOO’C1 nonlin-
earities, homogeneous or linear with respect to unmea-
sured state variables, and disturbance affecting only the
last state equation. Similar results with exact conver-
gence in finite time have been obtained in [8] for lower
triangular systems with Holder nonlinearities satifying
suitable homogeneity conditions and in [31] for chain of
integrators with globally Lipschitz nonlinearities in the
last state equation.

6.3 State solutions with known bound

The observer (31) simplifies remarkably and gets closer
to a more familiar high-gain observer whenever a known
bound L > 0 for the solutions of (1) is at hand, i.e.
|ze]] < L for all ¢ > 0. In this case, the “small gain”
condition of Assumption 3 and a state-norm estimator
are no more needed. Let ¢(s) be as in Theorem 6.1.

Theorem 6.2 Under Assumptions 2, 4 and 5 and for
all state solutions of (1) such that ||z;| < L < 400 for
all t = 0, for each € > 0 there exist ¢ > 0 and sy, > 0
such that along the solutions of (1) and

Zo = Moy uF (025, (30),0)

+1r(s1)( 5200 = K52 k0o ) G = a0 (0)
DL (1~ Ay H (001 (3).0)). (34)

where K := | , the estimation error e; :=

xy — A oy SL)( ( ))) is bounded for all times and

6w (nc, s1)| Dllv/ Az doo

limsup |e;|| < e+ 35
t—>+oop ” tH um ( )

where w(r, s) = 4(r,$)p(r,s) and D := a(fil“°|(070) —
oH.,

K5 0.0)-

If in addition %RQO) = 0and %\(070) =0thenD =0

and practical convergence is achieved. With Section 5.3
and Remark 5.1 in mind, this proves that, as long as a
known bound for the state solutions is available, prac-
tical estimation error convergence can be achieved for
lower triangular systems with Cﬁ)cl nonlinearities and
disturbance affecting only the last equation. Similar re-
sults with convergence in finite time have been obtained
in [8] with C? nonlinearities and in [21], [24] and [13] for
a chain of integrators (z1,...,x,) with |2, (t)| < L for
all t > 0 and for some known L > 0.

The known bound L on the state solutions of (1) may be
more generally assumed time-varying, i.e. x| < L(t)
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Figure 2. With z(0) = (10, —10) ": (left figure) state norm |z of (36) and its estimate, (right figure) State z2 of (36) and its

estimate.

for all t > 0, with sup,~, |L(t)/L(t)| < +oo. However,
if L(t) is unbounded, yet for error convergence we need
to satisfy the “small gain” condition of Assumption 3
and the observer has the form (31) with 9, := L(¢), al-
though we may experience serious implementation prob-
lems due to the unboundedly growing observer gains.
If in addition 06%'(0»0). = 0 and %{Tm\.(o,o) = 0 practi-
cal convergence 1s achieved. State estimation in finite
time have been obtained in [21] and [24] using sliding
mode observers for a disturbance-free chain of integra-
tors (x1,...,T,) with |2, (t)| < L(t) and L(t) = 0 for all
t = 0 and for some known L(t): however, when L(t) is
unbounded the effect of bounded disturbances on %, (t)
results in unbounded estimation errors.

6.4 Illustrative applications

6.4.1 An academic example

In this section we want to illustrate how to design (us-
ing the results of Theorem 6.1) a state observer for the
system:

i = F(z,d) = (22, Fp(z) + Gao(2)d) ", y = H(z,d) = 2,
(36)

with Fy(x) = z122, Go(z) = /14 2% and d(t) =
10sin(¢). The solution x(t) is unbounded if, for instance,
2(0) = (10, —10) ". For this type of systems and as long
as we want to design global state observer, we cannot
use the sliding-mode observers of [1], [2] or [31] because
F; is not incrementally dissipative (nor Lipschitz) and
(G5 is not bounded and we do not consider homogeneus
observers ([4], [3]), since there is no (homogeneous)

function Fy such that |Fy(x +¢) — Fo(z)| < Fa(e) for all

11

x, e, although Fy(z) is itself homogeneous. Here, “global
observer” means that the estimation error converges
for any state and observer initial conditions. On the
other hand, if also semi-global state-observers (i.e. the
estimation error converges for any state and observer
initial conditions in a given bounded set D < R™) come
into play, sliding-mode observers (in the simple version
of [21] and [24]) as well as homogeneous observers can
be used for (35) obtaining disturbance suppression with
finite-time error convergence. Our (global) observer will
suppress the disturbance d up to any given degree or
tolerance with asymptotic error convergence.

The vector field F(z,d) has the form (14) with
Fi(z1) = 0 and G1(z1) = 1. According to Proposi-
tion 5.2 (with Remark 5.1) we can find vz € K n C?
such that the decoupled linear action Ag(xz) :=
(e™%z1,e*yn' (s)x2) | is GES with generator W (z) =
diag{—=z1,—(1 + % Inyp(s))x2} and an incremental
orbital symmetry in the co-limit of F' with associated
quadruple (W, e™%, e®*~p, (1, 'y}?l)-'—)7 limit Fp = (22,0)"
and scaling factors (yg,['y), where T'y(s, z) := 7;3/2(5).
Moreover, As; and I'y should satisfy also (30) and As-
sumption 3. Hence, we get vr(s) = €. In addition, A
is also an incremental orbital symmetry in the co-limit
of H with limit H,, = x; and scaling factors (yg,Tq),
with vy = e®. The linearization of F, and Hy, at x = 0
is observable and satisfies Assumptions 4 and 5. A state
norm estimator for (36) (Assumption 6) is designed as
the output of ¥ = —0 + 20(y* + 1), 9(0) = 0. A simu-
lation with z(0) = (10,—10)" using an observer of the



form (31)-(32)

52+%(y—§51)—§%01(51) )

2
zZ =S EY
(éa'gQ (52)0'1(31) + %(y — ggl) - %O’gfz (2’2)

where § = 50 + 7, has been worked out and an estimate
z = (301(21),3%05-2(%1)) " of 2 has been obtained with
an error tolerance £ = 0.5 (in this case the upper bound
on the estimation error norm is exactly € since D = 0:
see (33)). The results for the ||x|-estimate and the zo-
estimate are illustrated in Figure 2, in which we see how
the state norm estimator provides (after a very short
transient) an upper bound for the state norm |z|, while
the observer keeps track of x5 within the given error
tolerance using the upper bound on the state norm.

6.4.2 Cart pendulum system
Consider H(x,d) = y and
F(z,d) = (Gi(y)2) ", (Fa(x) + Ga(y)d) ") "

where x = (y7,27)7, y, 2 € R?, d € R with

(37)

Fa(z) = U7 (y)Vo(y), o(y) = acos(yy),
Jm

v O
_ m—>b? cos? . 0
YW = | Vet 4 | G =W

\/H\/mflﬂ cos?(y1) Vm

with a > 0and 0 < b < y/m. As far as we see, there is no
global observer design with disturbance suppression for
(37) available in the literature. Let us see how to design
our observer for (37) according to the lines of Theorem
6.1. By following the constructive procedure of section
5.3 (with vector-valued states x1, z2) we obtain that

As(a) = (e7y T, e (T e *y)U(y)2) )T (38)
where T'y(s,y) = e 2U~1(y)¥(e®y), is an incremen-
tal symmetry in the co-limit of F' with scaling factors
(v, Ta) = (¢*,e7GY (y) ¥ (y)¥(e*y)Ga(e’y)) and
limit Flp, = ((G1(y)2)T, 07)T and, at the same time, an
incremental symmetry in the co-limit of H with scaling
factor vy = e® and limit Hy, = y. A state norm estima-
tor can be designed following Example 4.1. <

7 Conclusions

New classes of global observers with on-line adapted
gains have been presented based on state-norm estima-
tors and incremental orbital symmetries. The geometric
aspects and peculiarities of these symmetries reflect the
observer structure. Future works will be devoted to the
global output feedback stabilization problem using or-
bital symmetry-based observers and/or controllers.
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A Conditions for satisfying (PDI) and (ULB)

A.1  Closed-form solutions of (PDI)

In this section we study some general conditions under
which it is possible to construct time-varying solutions
v(x,t) of (PDI). To this aim, we discard finite exit times
from R™ for the backward solutions of (1).

(BWC). (Backward completeness) The solutions
xs(x,t;d) of (1) are defined for all (x,t,s) € R™ x D x
R; X [O,t]

Let Ys(z,t;d) := H(zs(z,t;d),ds) — H(0,ds).

Proposition A.1 Under Assumption (BWC) and for
any given A > 0 and a € Ko, (v, \, @, 0) satisfies a (PDI)
condition for (1) with

v(z,t) = f e M=oYy (2, t; d)|)ds (A1)

0
and a(s) 1= a(2s), 0(s) := supjq < (2] H(0,d)|).
The proofis deferred in section B.2 of the Appendix. The
paradigm we follow for the construction of the function
v(z,t) in (A.1) may be compared for similarities with
the one for constructing the map T'(z,t) in [9], although
the purpose and the use of v(z,t) is far different from
that of T'(z,t). The function v(z,t) is defined using the

backward solutions of (1) and, implicitly, the function
dy.

A.2  Sufficient conditions for (ULB)

In order to have the function v(z,t), defined in (A.1),
uniformly lower bounded as required in (ULB) , we in-
voke a sort of uniform (backward) state reconstructibil-
ity property from the outputs.

(BWR). (Uniform backward reconstructibility). There
exist t,b > 0, a, B € Ko, such that for all (x,d) € R* x D

len@@®M@>mwm—a (A2)

0

A similar reconstructibility property was used in [30] in a
noise-free context for state-dependent solutions of differ-
ential Riccati equations. Also, comparisons can be made



with [9], where a uniform backward reconstructibility
condition is used for the purpose of injectively recon-
structing the state = from the map T'(z, ). Here, we in-
troduce the uniform backward reconstructibility condi-
tion for estimating the state norm |z| from the function
v(z,t). A proof of the following result is given in section
B.3 of the Appendix.

Proposition A.2 Under Assumptions (BWC)+(BWR)
and for any given A > 0 and o € Ko, there exist t,b > 0
and B € Ko, such that (v+ b, A\, @, d + Ab, 3, t) satisfies a
(PDI)+(ULB) condition for (1) withv : R™ x Rs defined
in (A.1) and @ € Ko, and 6 € K~ as in Proposition A.1.

Using Proposition A.2, we can construct for instance

v(x,t) as in (A. 1) satlsfymg a (PDI)+(ULB) condition
for the system @1 = x9 + 23, @9 = 0, y = 71 + d (feed-
forward systems are in general amenable to this kind of
construction).

The (BWC)+(BWR) condition can be replaced by a con-
dition based on the Lie derivatives of the output map H
along the vector field F', which is very closely related to
strong differential observability (see for instance [9]).

B Proofs of main and auxiliary results
B.1  Proof of Property (P3)

Let (v, A\ «,0,8,¢,&,t) satisfies a (SNE) condition.
Given 5,E > 0 we will show how to construct a new
tuple (55,&,5, B, Z;g,%), with B( ) = as® and still sat-
isfying a (SNE) condition. First, we will construct a
tuple (v°,A°, a°,0°,8°,¢°,£°,t) with 5°(s) = sb and
satisfying a (SNE) condition.

Since 3, € lCl there exist 8;,(, > 0 for which §; <
ﬁ(g 3 fls and (S) ds < ¢y for all s > 0: this implies b;s% <
B(s) and ¢(s) < z,5% for all s > 1 and for some by, 2, >
0.Hence, up to modifications of § and ¢, we can assume
B(s) = bis® and ((s) = z,5% for all s > 1. Define the
new tuple (7, A, @, 0, 3,¢,&,t) withT=v +2b, 0 =6 +
20, B = bysP for B := min{b, f;} and £ = £+ 2,,. Indeed,
since bys® = B(s) and ((s) = z,5% for all s > 1, we
have b;s% —b; < (s) and ((s) < 2,5% + 2z, for all s > 0.
Hence, on account of the (ULB)+(UUB) condition on
(v,8,¢,&,t), for all (z,d,t) € R x D x [t,4+00) and any

B, € (0,min{d, 4}]

v(z,t) = B(lz]) = bill|® — b = B(|z]) — 28,
a(|H(z,dp)[)) < C(u(z,) + E(do) < 208" + 20 + E(doo).
This, on account of Property (P2), implies that

(W, A\, o, 6, 3,(, &, T) satisfies a (SNE) condition. By con-
(@, 0)"

sidering the modified function v°(z,t) := (5

and on account of the (PDI) condition on (7, \, ,4),
after some lengthy passages we get for all (z,d,t) €
R™ x D x Ry

o0v° ov° o
. (x,t)F(x,d) + W(m,t) < —2(x,t)

—1

"J-\\‘o-t

26
+

[0 (JH (2, d0)1) + 37 (do)]

Ib\‘cﬂ

b
A8 b
= —v° (:L‘ t) + (| H(z,dy)|) + 6°(ds), (B.1)
where we used Young inequality and the inequality |z +
y|P < 2P~ |z|P + |y|P| for all x,5y € R and p > 1. More-
over, on account of the (ULB) condition on (7, 3,), we
obtain for all (x,t) € R x [¢, +o0)

1

vz, )= @ Blz]) = ||’ = 5°(|z])-

Upon the (UUB) condition on (v,(,&,t), it follows for
all (x,d,t) e R™ x D x [¢, +0)

1’5

o ([H @ d)l) < 4Ny, [ 05 (@, 0) + €7
1= (°(0(, 1)) + € (deo)-

Moreover, since ((s) = z,s% for s > 1, we have for s > 1

-1

¢°(s) = (/NP (s T) /b))% = (/NP ¢(s).

It follows that the tuple (v°, A\, a°,6°, 3°,¢°,£°,¢) with
B°(s) = s* satisfy a (SNE) condition and, on account
of Property (P1), the modified tuple (7, \, &, 6, 8, ¢, &, )
= (5v°, \,5a°,86°,53°,5¢°,56°,t) is the claimed one in
Property (P3) satisfying a (SNE) condition.

By
7

m“s‘?
Q\‘c-a
Q“@‘?

B.2  Proof of Proposition A.1

Notice that zs(ziyac(z,t;d),t + At;d) = zs(z, t;d) for
any At € R. We have

v(ziyac(w,t;d),t + At) —v(z,t) (e_)‘At -
At B At

t+At
| e ey tanas
t

1)U(x,t)

e—)\At

AL

Letting At tend to 0 we get

51} 61}
= —/\v(:z: t) o |H (IIT,dt) - Hf((),dﬂ”)
< —M(z,t) + a(|[H(z, de)) + 0(]de),

where we used (s + ) < a(2s) + a(2r) for all s, = 0.



B.8  Proof of Proposition A.2

Proof. Let t,b > 0, a, 8 € Ky be as in (BWR) and
v:R™ x Rs asin (A.1). For all ¢ > ¢ we have

e M|V (@, t5d) ) ds

> f oYy (@, @) )do (B.2)

and dy, := dyy3- But d € D and on account of (BWR),
v(z,t) = e M(B(|z]) = b) := B(llz]) — b for all (x,t)
R™ x [t, +00), which proves that (v + b, 3, 1) satisfy a
(ULB) condition. On the other hand, (v + b, A\, @,0 +

Ab) satisfies a (PDI) condition by proposition A.1 and
property (P2).

B.4  Proof of Theorem 6.1

Let As; be the GES action in Assumption 2 with asso-
ciated quadruple (W, A, p,%) and ¢(s) := ci(s), with
¢ € (0,1], be the function introduced before Theorem
6.1 with s € K. to be determined by the design.

We notice at once that, by the properties of ol

loc~
saturation functions (see also Notation section), for all

(r,2,8) e R" x R" x R

loags) (@) < 1&()]s [oaes) (x) — oas)(2)] < & — 2] (B-3)

with |e(s)|| = ¢[|yr(s)|| < nc. By inspection of the state
norm estimator’s equation (32) and by forward com-
pleteness of (1) (Assumption 1), it follows that 0; has no
finite escape time (i.e. it is defined for all t = 0). Also, by
inspection of the observer’s equation (31), since 0y has
no finite escape time and oz, (Ass,)(2¢))] is bounded
by 2[¢(v;)|| < 2n, it is seen that Ags,)(2¢) (and therefore,
by completeness of the action Ay, also the observer’s so-
lution z;) has no finite escape time.

Define the following operators A, A acting on (respec-
tively, C' and C%!) vector fields F.o, F : R" x R™ — R

loc

forze R", de R™ and s € Ry

0F, o0F,
AF. = F Y= _ Y=
(@, d) (@ d) ox (0,0)33 od ‘(0,0)
Ay (F, Fy)(x,d):= L(AS)*F (x,rgl(s,;v)d)
v (s)
— Fy(z,d) (B.4)

Similar definitions are adopted for mappings H, Hy,. Us-
ing the mean value theorem, for all x,z € R", d € R™
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and s € Ry
|AF.(0z(5)(7),0) — AFy (055 (2), 0)| (B.5)
1
O0AF,
< f = | |z — z|,
0 0% (00 (2)+(1-0)02()(2),0)
Since a%&‘ = 0 and using (B.3), there exists some
* 1(0,0)

a1 € K such that for all (z,2) e R" x R™ and s € R

[AFy(0a(s)(2),0) — AFy(0a(5)(2), 0) (B.6)
< a1(oas (@) + loas () D]z — 2] < ar(2ne) |z — 2|

Since W is Cloo’cl and using (B.3), there also exists some

ag € KCo. such that for all (z,2) e R x R™ and s € R>

W (o2(s) () = W(oes)(2))l (B.7)
< a2([logs) (@) + oz (2) Dz — 2] < az(2nc)|z — 2.

Moreover, by Assumption 4 and (B.3), we have g € K
such that for all (z,d) e R™ x R™ and s € R

|AF(03(s) (7). d) = AFp(05(5) (%), 0) | < B(ne)|d].

On account of (B.3) and since A is by Assumption 2
an incremental symmetry of F' in the co-limit with limit
F, and scaling factors (v, T'q), we have Ap € KL~ such
that for all (z,z,d) € R™ x R” x R™ and s € R>

[As(F, Foo ) (02(5) (), 0) — As(F, o) (055 (2), 0)
< AR(0, 8)[oas) (7) — oas) (2) | < Ar(0, 8)||lz — 2],
IAS(F, Fo)(oa(s) (%), d) — As(F, Fio ) (055 (2), 0)
< Ap([d], s)[d]. (B.8)

The same inequalities can be worked out for H and H,.

B.4.1 Selection of parameter ¢

In this section we choose the parameter ¢ € (0, 1] of the
function ¢ in (31). Let u,II be as in Assumption 5, v4 €
KL asin Assumption 2 and pick € > 0 (the estimation
error tolerance). Using inequalities (B.6)-(B.8) for F' and
F, together with the corresponding ones for H and H,
find sop = 1 and dg, ¢ € (0,1] such that for all z, z € R",
d € R™ and ¢ € R such that ||d| < v4(ne, 0)de, 0] < o
and for all s > sq:

II
A, 6) < Mmin, (3.9)
— 5/1,)\1_[»
Py(x;d) < ———F2min 4D, B.1
(a:d) < gt 4 D] (3.10)



where D := %RQO) — K%ko,o) and
A2 5) = [2TT(As (oz(s) (SCT;CSzZ”As(Ua(S)(Z); 5)|
N |I2TTK (Cs (055 (%)) — Cs(oas)(2))) |
lz — 2|
As(z50) := AF(2,0) + Ay(F, Fyp)(,0) + W (x)
Cs(z) := AHyp(2,0) + As(H, Hy)(x,0),
Pt - [P0 Q.o D,
0F,
Py(z;d) := d (o,o)d + AFy(z,d) — AFy(2,0),
+A5(Fa FOO)(xa d) - AS(Fa FOO)('L 0)?
0H,,
Qs(z;d) = a0 (070)d + AHy(z,d) — AHyp(z,0)

+AG(H, Hyp)(z,d) — Ay(H, Hy)(2,0).  (B.11)

B.4.2 Selection of the functions § € K., & € Ky and
de K- in (32)

Since A, is a GES action, by the (SM) property (9) of
A, there exist k, h > 0 such that for all (s,z) € R" x R

[As @) < A(z], 8) := ke™"* ]

On the other hand, by the (C) property (10) of As,
we obtain for each 7 € £ a function § € K., 5(r) :=

(B.12)

+1In( (T(+)1)) such that
Ar+1,5(r)) < 7(r), Vr = 0. (B.13)
. . . _ k(r+1)
Hence, choosing in particular 7(r) = i P> 1, we

get the function 5(r) = £ In(g +r) in (31). The param-
eters ¢,p > 1 are picked out later.

According to property (P3) (section 4), we can trans-
form the tuple (v, A\, a, 8, 3, ¢, €, ) of Assumpt10n6 with

B e KL, into a new tuple (U, \, @, 5,C,B, €, t) satisfying

a (SNE) condition with 3(r) := r € KL, and state norm
estimate

@] <V(my,t) <O + 1, t = max{t; Ty}, (B.14)
where 7 is the output of the filter (32), and
¢(r) = 2(r) (B.15)

for all » > 1 and for some 7 > 0. This determines the
functions & and ¢ in (32).
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B.4.8 Selection of the parameters q,p > 1 of the func-
tion §

Let ¥ > 0 and 7; < 0 be as in Assumption 2 and
¢ € KL as in Assumption 6. Pick p > 1 such that

pr+c(r) _
rtw b R (B16)
By (B.16) it is possible to pick ¢ > max{e > (k/c)P T 1}
such that for all » > ¢
DI (34 B + <) + Eldo) + B(d0))
Pt ETE * *
I
< min< §p, —————~ B.17
(oo 5357 ) (A7

Since ¢ > (k/c)ﬁ and on account of (B.12) and (B.13)

V(r,z) e Ry x R™:
= [|As (@)] <

From (B.14) and (B.18), since ¢ < 1, A € KL and the

(NUB) property (12) of A, it follows that for each i =
1,...,n and ¢t = max{t; Ty, a}

A, ()]
N

where s; := §(0;). Hence, for all t >

|z] <r+1

AMr+1,8(r) <7(r)<ec (B.18)

[[As, ()]sl < (0 +1,50) < cipi(se) < i)

max{t; Ty, qa}

Ta(s) (As, (71)) = Oey(s) (As, (1)) = As, (). (B.19)
By the (SNE) condition on (17,)\7&5, ¢, B, Ej) and
(B.14), we get &(|y:) < C(@ + 1) + &(dy) for
t > max{t; Ty, q}. Hence, from (B.15) and (B.17), for
t = max{t; Ty, 4} (and since v, > 0 for all ¢ > 0) we
obtain after few passages
|t { p }

< min < S EYT G B.20

(0 <™ AT 4D (20

B.4.4 FEstimation error convergence

Since A; has generator W, mapping the system’s solu-
tions x; into & := A, (z+) and rescaling the disturbances

dy as dy := T g(s¢, Tt)dy, we get for all t >0
= Ao F (30, T3 (51, F)dy) + W (3050,

Ty

and finally, using (B.19) and definitions (B.11), for all

t > Ty q and with 6, :=

0F, ~
Ty = —_— Ty + A, (T30 P, (Z4;d }
Ty ’YF(St){ P ’(070)% + As, (T4 6¢) + Ps, (Ty: dt)



Notice that on account of Assumption 2 and 3 and (B.19)

el < [Tals, )| doo < va(|F2], 5t)doo < va(nc, 0)dos.
(B.21)

On the other hand, from the observer’s equations (31)
with definitions (B.11) we get

- 0Fy - ~
Zy = 'YF(St){T;C‘(O O)Zt + As, (02(s,) (31); 0t)
+

0H ~ o~
K _
ox 1(0,0) (@ —2)

+ K(Cst (Te) = Cs, (02(s0) (22)) + Qs (Tt g’f)) }

Let € := ¥ — Z, the estimation error, and V (¢) := &' II¢.
Using (B.20), (B.21), the fact that $(0) > so (since ¢ >
h

e%) and (B.9) and (B.10) with (B.11), we get in the
end for all ¢ > max{t; Ty, 4}
V < mls){ = uV + A, (@, 5.0 o)

4AEL(I“L72 o d ),
+Tpst($t§dt)”dtH2} s 7F(St){ - gv

62/\22'71” 8HDH2A£’[L(LJ,d2
( 4w?(ne) o “ ) va(ne s1) }

With V 1= ¥
Ya

(ne,st)

and since v4(r, s) = aq(r)e’2® (Assumption 2), we find

and once more on account of (B.20)

. 23\ II 2\ 72

& o (E A mintt | 8PP A nasd

V g { _ 7V ( min max )}
r(se) T 4w?(nc) * 1

for all t > max{t; Ty, 4} Since AL |g)> < V(&) <

A

we|€]? for all &, it follows that for all t > t* :=
max{t; Ty, a}

/\IT — (¥
Amaace 4( )

m-zl<| For — Zp
Ht ! )‘an’Yd(nC, St*)H ' =
5 6| D)/ AL ,..d
o(nc) + | /N Oc]fyd(nc, St). (B.22)

On the other hand, on account of (B.3) and (B.19), the
(IR) property (11) of As and the mean value theorem,
we get for ¢ = max{t; Ty, a}

lze— AL (e Gl = |AF, (0o () — AL os,) (Z)]
< fl aAgtl

0l 0% 100a0,)@)+(1-0)0c(s,) ()
X |loas,) (Tt) = oa(s,) (Z) || < pne, s) [T — Z].-

df x

(B.23)

On account of (B.22) and p(r, s)ya(r, s) < w(r) for all
s,7 = 0 (Assumption 3), by applying limsup,_, ., to

the left and right part of (B.23) we prove the claim of
the theorem. <
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