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Abstract. In this paper, we propose state predictors for stable genuinely nonlinear systems
with time-varying measurement delay, with no restriction on its bound or serious limitations on the
growth of the nonlinearities. The measurement delay is assumed to be continuous. A state prediction
is generated by chains of nonlinear dynamic observers operating at di↵erent layers. On each layer,
these observers reconstruct the unmeasurable state vector at di↵erent delayed time-instants, which
partition the maximal variation interval of the time-varying delay. This partition determines the
number of observers in the layer. Transitions from a layer to the next one are triggered by a on-line
estimate of the magnitude of the state. Consistently, in passing to the next layer the partition is
refined and the number of observers increased. In this sense, our predictor is nonlinear and adaptive.
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1. Introduction. A challenging problem is the state estimation in the presence
of time-varying delayed output measurements. In this case it is important to imple-
ment some kind of state prediction based on the delayed measurements and take into
account that the measurements are delayed di↵erently at each time.

A first approach, limited to constant delays, is the one which introduces integral
terms ([8], [9] see the survey paper [12] and references therein): this approach is
computationally prohibitive for real-time applications and the open-loop structure
of the integral predictor makes it sensitive to uncertainties and modeling errors. In
addition, this approach cannot be directly extended to the case of time-varying delays.

The second approach is based on dynamic observers that reconstruct the unmea-
surable state vector at di↵erent delayed time-instants within the time-delay window
introduced by the output measurements ([3], [7], [13], [6], [15]). The observers ex-
hibits a chained structure and each observer estimates the unmeasurable state vector
at delayed time-instants which di↵er each other by a su�ciently small amount. Each
observer delivers its estimate to the next observer in the chain, until the last observer
which gives an asymptotic estimate of the undelayed state. In [3] the innovation pro-
cess of each observer varies according to the current value of the time-varying delay.
The limitation of this approach is that only globally Lipschitz systems are considered
and linear observers are used. In the case of constant measurement delays, more re-
cently we have [10] where a modified version of the chained observers, introduced in
[5] and [11], is adopted: however, a known compact absorbing set (plus some technical
additional assumptions) is assumed for all the system trajectories. In [2] chained non-
linear observers for nonlinear stable systems are studied, removing globally Lipschitz
and compact absorbing set assumptions by introducing techniques based on incremen-
tal homogeneity properties. The approach of [2] and [10] cannot be extended to the
case of time-varying measurement delays. Moreover, approximating the time-varying
delay with piecewise constant delays may deteriorate the performances especially in
the case of fast-varying delays.

In this paper, we remove globally Lipschitz assumptions by using techniques based
on incremental homogeneity ([1]) and consider stable nonlinear systems with time-
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varying measurement delays by using a completely di↵erent approach from [2] and
being inspired from the observer chain introduced in [3] for globally Lipschitz systems.
Basically, in [2] we proposed an observer chain of constant length and, moreover, the
structure of each observer in the chain does not depend on time (since the delays
are constant). In this paper, a state estimation is generated by chains of nonlinear
dynamic observers operating at di↵erent layers. At each layer the length of the chain
increases. The multi-layer structure is one of the novelty of our approach and it is a
specific tool for coping with strong nonlinearities of the system. Another important
di↵erence with [2] is that the structure of each observer in the chain changes with time.
In particular, according to the position of the time-varying delay inside its maximal
variation interval, each observer of the chain uses di↵erent innovation processes. This
switching structure, together with the variable length of the chain at di↵erent layers,
stands as a basic di↵erence with [2] and requires also completely di↵erent stability
analysis tools (Krasovski-Lyapunov or Razumichin-Lyapunov functions and switching
system’s analysis). The partition of the maximal variation interval of the time-varying
delay determines the number of observers in each layer. Transitions from a layer to
the next one are triggered by a on-line estimate of the state magnitude. Consistently,
during the transition to the next layer the partition is refined and the number of
observers increased. Larger the estimated state magnitude is, finer the partition (and
the length of the observer chain) of the maximal variation interval of the time-varying
delay must be. Therefore, the length of the observer chain varies adaptively according
to a on-line estimation of the state magnitude (multilayer structure): this is very
natural when considering nonlinear systems with weak growth restrictions. Another
novelty of our state predictor in comparison with the literature is the use of nonlinear
observers with saturated estimates where the saturation levels are dynamically tuned
according to the on-line estimation of the state magnitude.

2. Notation.
(N1) Rn (resp. Rnˆs) is the set of n-dimensional real column vectors (resp. n ˆ s

matrices). R• (resp. Rn

•, Rnˆs

• ) denotes the set of non-negative real numbers
(resp. vectors in Rn, matrices in Rnˆs, with non-negative real elements). R°
(resp. Rn

°) denotes the set of positive real numbers (resp. vectors in Rn with
real positive entries). pRn

q

˚ is the dual space of Rn (space of row vectors).
(N2) For any matrix A P Rpˆn we denote by A

i,j

the pi, jq-th element of A and
for any vector v P Rn (or v P pRn

q

˚) we denote by v
i

the i-th element of
v. Also, we may write vectors v P Rn as pv

1

, . . . , v
n

q

T , vectors w P pRn

q

˚

as pw
1

, . . . , w
n

q and matrices A P Rsˆn either as A “ rv
1

, . . . , v
n

s (i.e. by
columns) or A “ rwT

1

, . . . , wT

s

s

T (i.e. by rows). Moreover, for each v P Rn

diagtvu is the diagonal matrix with diagonal elements v
1

, . . . , v
n

and for each
m-tuple of matrices A

1

, . . . , A
m

diagtA
1

, . . . , A
m

u is a block-diagonal matrix
with diagonal blocksA

1

, . . . , A
m

. Also, |a| denotes the absolute value of a P R,
}a} denotes the euclidean norm of a P Rn with }a}

M

:“
?

aTMa, }A} denotes
the norm of A P Rnˆn induced from } ¨ }. For any matrix A (resp. vector
v) xAy denotes the matrix (resp. vector) with xAy

i,j

:“ |A
i,j

| (resp. with
xvy

i

:“ |v
i

|). For any vectors x, y P Rn we write x ® y if and only if x
i

§ y
i

for all i “ 1, . . . , n. We retain the same notation for matrices A,B P Rnˆm:
A ® B if and only if A

ij

§ B
ij

for all i “ 1, . . . , n and i “ 1, . . . ,m. On the
other hand A § B (resp. A † B) for matrices A,B P Rnˆn if and only if
A ´ B is negative semidefinite (resp. negative definite).
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(N3) We denote byC0

pX ,Y q, X Ä Rn and Y Ä Rp, the set of continuous functions
f : X Ñ Y , L8

pX ,Y q the set of functions f P C0

pX ,Y q such that
sup

✓PX }fp✓q} † `8. For each d P L8
pX ,Y q, we have the sup norm of d

defined as }d}8 :“ sup
✓PX }dp✓q}. Moreover, K denotes the set of functions

f P C0

pR•,R•q strictly increasing and such that fp0q “ 0, L denotes the set
of functions f P C0

pR•,R•q strictly decreasing, and KL denotes the set of
functions f P C0

pR• ˆR•,R•q such that fps, ¨q, P L and fp¨, sq, P K for each
s P R•.

(N4) A saturation function sat with saturation levels l P Rn

° is a function satpx, lq :“
psatpx

1

, l
1

q, . . . , satpx
n

, l
n

qq

T , x P Rn and l P Rn

°, such that for each i “

1, . . . , n and x
i

P R:

satpx
i

, l
i

q “

"
x
i

|x
i

| § l
i

signpx
i

ql
i

otherwise.
(1)

It is easy to prove the following inequalities:

xsatpx, lq ´ satpy, lqy ® 2 xsatpx ´ y, lqy ® 2l,(2)

xsatpx, lqy ® xxy(3)

for all x, y P Rn and l P Rn

°.
(N5) For any vectors x P Rn, r P Rn

° and z P R°, we define

zr – pzr1 , ¨ ¨ ¨ , zrnq

T , zr ˛ x – pzr1x
1

, ¨ ¨ ¨ , zrnx
n

q

T(4)

viz. zr ˛ x is the dilation of a vector x with weights r.

3. The class of systems and problem statement. We consider nonlinear
systems with delayed outputs y and each output is measured together with the delay.
The measurement delay is time-varying but known and bounded by a known constant
�
max

:

9x
t

“ F px
t

q :“ Ax
t

` �px
t

q, t • ´�
max

,(5)

y
t

“ Hpx
t´�

t

q :“ Cx
t´�

t

, t • 0,(6)

with state x
t

P Rn, initial state x´�

max

, output y
t

P Rp and measurement delay
�
t

P R•. We assume that A “ diagtA
1

, . . . , A
p

u, with Brunovskii forms A
i

, C “

diagtC
1

, . . . , C
p

u, with C
i

“ p1, 0 . . . , 0q, and � is locally Lipschitz. The problem
we want to solve in this paper is to design a dynamical estimator for the state of (5)
using the delayed measurements (6). For simplicity, we consider only one measurement
delay and no output nonlinearities, but the extension to multiple delays and output
nonlinearities is straightforward although more complex. Also, it is possible to include
the input vector in (5) at no additional technical cost.

3.1. Continuous versus discontinuous delays. The measurement delay �
t

is known and it is known at the same time t at which y
t

is measured. This means
that the information available for processing at time t • 0 is the pair ty

t

, �
t

u. The
assumption that the delay is known is realistic in many applications. A common case
is that of networked control systems, when the measurements are bu↵ered and then
sent over a reliable network that introduces a variable delay. In this case, the delay is
typically computed by comparing the time at which the packet is delivered with the
time-stamp included in the packet at the sender side.

We assume that �
t

is bounded by �
max

and continuous. A useful property of
continuous delays is the following ([3]). Let y˚

t

be the undelayed outputs, i.e. y˚
t´�

t

“

y
t

.
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Lemma 1. If �
t

is continuous, when for each t ° �
max

and � : �
t

§ � § t
Dt̄ § t : y

¯

t

“ y˚
t´�

.

In other words, when the delay �
t

is continuous, all the measurements previous
to y

t

are available. When the delay is discontinuous, not all the outputs are available.
For example, in the case of sampled outputs with sampling period T the outputs in
between jT and pj ` 1qT , j “ 0, 1, . . . , are not available.

4. The structure of the predictor and main result. The state predictor
we propose consists of a certain number of layers, each layer consisting of a certain
number of chained observers. These observers are chained in the sense that each
observer delivers a certain amount of information (like its own estimate) to the next
one in each chain. These observer chains run at the same time on di↵erent layers and
the number of chained observers on each layer varies (and it is increasing) according to
the depth of the layer itself. For consistency, the observers which run inside a certain
layer with depth k are also running inside any layer with depth ° k and, moreover,
it is possible to go from layer k to layer k ` 1 (and not viceversa). The observers of
the layer with depth k are 2km, where m is the number of observers of the layer with
depth 0.

Correspondingly to the layer with depth k, a partition of the interval r0, �
max

s

into a sequence of points t�pkq
j

u

jPJ
k

ÄQ is considered and this partition is refined at

each deeper layer, with the consistency condition that �pkq
j

“ �pk´1q
j

and J
k

Ä J
k`1

,
i.e. the partition at layer with depth k is a sub-partition of the one at preceding
layers. We remark that the indexes of the sequence are in general rational (not
integer) numbers since at each deeper layer the sequence is refined and its indexes
are divided by an integer number (see definition 3). According to this partition, each

observer of a layer with depth k computes an estimate of xpjq
t

:“ x
t´�

pkq
j´1

, denoted

by x̂
pjq
t

, with the consistency condition x
t´�

pkq
j´1

“ x
t´�

pk´1q
j´1

. Therefore, the observer

which computes x̂
pjq
t

at some layer is the same which computes x̂
pjq
t

at the next
layer. In other words, di↵erent (and consecutive) layers correspond to di↵erent (and
consecutive) time intervals over which the same observer runs and this is consistent
with the fact that it is possible to go from layer k to layer k ` 1 (and not viceversa).
Therefore, the number of observers increases in time from some layer to the next one
but a suitable stabilization mechanism (which will be explained later) will make this
number tend to a steady state value.

Each layer is activated by a reference signal ẑ
t

which provides an estimate of the

magnitude of xpmq
t

. In this sense the chain of observers is adaptive. Larger is the

magnitude of xpmq
t

, finer the partition t�pkq
j

u and deeper the layer must be. In other
words, going from one layer to the next deeper one we must increase the number of

the observers or in other words we need split the delay in between x
pjq
t

and x
pj´1q
t

into
smaller pieces and compute estimates of the state with these smaller delays: for this
reasons the number of observers increases with the depth of the layer. The reference
signal ẑ

t

generates a signal ŵ
t

which provides, for each observer j (preceding and)

following x
pmq
t

in the chain, an estimate of the magnitude of xpjq
t

. The reference signal
ẑ
t

reaches a steady state value (which depends on the initial condition of the system)
for which no more transitions to deeper layers are possible.

The delayed state xpjq
t

is defined for t • �pkq
j´1

and satisfies the di↵erential equation

x
pjq
t

“ Ax
pjq
t

` �px
pjq
t

q with x
pjq
0

:“ x´�

pkq
j´1

. The last element of the observer chain
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inside each layer is an observer which provides the desired estimate x̂p1q
t

of the current

state x
p1q
t

:“ x
t

. Moreover, each observer of the chain, say the j-th observer of the
chain, is fed by either one or both of the following type of information:

‚ a suitable transformation of the available information ty
t

, �
t

u

‚ the estimate x̂pj`1q
t

provided by the preceding observer in the chain, according

to the relative position of the delay �
t

with respect to the interval r�pkq
j´1

,�pkq
j

s.
Di↵erent transformations of the above type of information determine di↵erent inno-
vation processes for each observer to guarantee convergence of the estimate to the
delayed state (in conceiving these transformations we are inspired by the algorithm
proposed in [3]).

Before plunging into the technical details of the multilayer predictor, we need to
make precise what a partition of an interval and any its refinement is.

Definition 2. A sequence t�
j

u

0,1,...,m

is a m-partition (m ° 1) of an interval
r0, as if it is strictly increasing, �

0

:“ 0 and �
m

:“ a.

Definition 3. A sequence t�pSq
j

u

0,

1

h

,

2

h

,...,q

is a h-refinement (h P p1,`8q) of a

m-partition t�
j

u

0,1,...,q

of an interval r0, as if it is strictly increasing, �
j

“ �pSq
j

for

each j “ 0, 1, . . . ,m and �
j`1

´ �
j

“

∞
h´1

i“0

p�pSq
j`1´ i

h

´ �pSq
j`1´ i`1

h

q for each j “

0, 1, . . . ,m ´ 1.

Notice that a h-refinement must satisfy a consistency condition (i.e. same points of
the partition and its refinement must coincide) and each interval of the partition is
divided into h parts in the h-refinement.

Let ↵, ⌫ P R°, g P Rn

° and Z
0

° 1 be design parameters and let t�p0q
j

u

0,1,...,m

be
a m-partition of the interval r0, as, with a ° �

max

, such that

�p0q
m´1

“ �
max

,

max
j“1,...,m

p�p0q
j

´ �p0q
j´1

q †

⌫
´
2↵´1

pZ↵

0

` ↵�↵
max

q

¯ | min

i

g
i

|`3| max

i

g
i

|
↵

.(7)

For notational convenience, let

F̂ p�, ⇣q :“ A� ` �
´
satp�, � ˛ ⇣rq

¯

4.1. The structure of the multilayer predictor. The multilayer predictor
consists of a certain number of layers, each one showing a chain of observers. Let
g P Rn, r P Rn

°, � P R° and diagonal positive definite � P Rnˆn be design parameters.
Depth-0 observer chain. The first observer of the depth-0 chain, which we

refer to as depth-0 master observer, is

9̂xpmq
t

“ F̂ px̂
pmq
t

, ẑ
t

q ` P´1

pẑ
t

qCTRpẑ
t

q✏
pm,0q
t

, t • t
0

:“ 0,

9̂z
t

“ ẑ
t

sat
´›››ẑ´r`g

t

˛

´
x̂

pmq
t

´ satpx̂pmq
t

, � ˛ ẑr
t

q

¯›››
2

` }ẑ´r`g
t

˛ ✏
pm,0q
t

}

2,
1

ẑ↵
t

¯
, t • t

0

,(8)

with initialization

x̂
pmq
✓

:“ 0, ẑ
✓

:“ 1, ✓ P rt
0

´ �
max

, t
0

s,(9)

and

P pẑq “ pI ´ GpẑqAT

q

Tdiagtẑ´2r
upI ´ GpẑqAT

q,

Rpẑq “ Cdiagtẑ´r
uGpẑqdiagtẑ´r

uCT , Gpẑq “ diagtẑgu�diagtẑgu.(10)
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for some innovation process ✏pm,0q
t

to be defined below.

Remark 4.1. While the signal x̂pmq
t

is an estimate of xpmq
t

and it is provided by

the first equation in (8), the signal ẑ
t

is an estimate of the magnitude of xpmq
t

and it
is provided by the second equation in (8) interconnected with the first equation. The
initialization of ẑ

t

requires that ẑ
✓

“ 1 for ✓ P rt
0

´ �
max

, t
0

s. Since 9̂z
t

• 0 for all
t • t

0

, we have ẑ
t

• 1 for all t • t
0

for which ẑ
t

is defined (actually, as it will be
shown ẑ

t

is bounded in time). The observer gains are tuned and suitably rescaled by
the dynamic parameter ẑ

t

(this is the first adaptive feature of our predictor, while the
second is the increase of the chain’s length according to the values of ẑ

t

).

Going down the depth-0 chain, we find the j-th observer (j “ 2, . . .m), which we
refer to as depth-0 j-th slave observer,

9̂xpm´j`1q
t

“ F̂ px̂
pm´j`1q
t

, ŵ
t

q ` P´1

pŵ
t

qCTRpŵ
t

q✏
pm´j`1,0q
t

, t • t
0

,

x̂
pm´j`1q
✓

:“ 0, ✓ P rt
0

´ �
max

, t
0

s,(11)

for some innovation process ✏pm´j`1,0q
t

to be defined below and with

ŵ
t

:“ 2
↵´1

↵

´
ẑ↵
t

` ↵�↵
max

¯ 1

↵

.(12)

Remark 4.2. The signal ŵ
t

is defined through the reference signal ẑ
t

, generated
by the master observer, and provides, for each depth-0 j-th slave observer, an esti-

mated upper bound for the magnitude of xpm´j`1q
t

. The structure of (12) is motivated
by the fact that 9̂z

t

§ ẑ´↵

t

in time so that, by this simple di↵erential inequality, an

estimation (in excess) ŵ
t

of the magnitude of xpm´j`1q
t

can be obtained as the ↵-root

of the sum of the ↵-power estimation ẑ
t

of the magnitude of xpmq
t

plus the di↵erence

between the two delays �p0q
m´1

´ �p0q
m´j

§ �
max

.

The innovation process for the j-th observer of the depth-0 chain, j “ 1, . . . ,m,
is defined for j “ 1 (the depth-0 master observer) as

✏
pm,0q
t

“ y˚
t´�

p0q
m´1

´ Hpx̂
pmq
t

q(13)

(remember y˚
t

is the undelayed output) and for j “ 2, . . . ,m (the depth-0 slave ob-
servers) as

✏
pm´j`1,0q
t

“

$
’’’&

’’’%

y˚
t´�

p0q
m´j

´ Hpx̂
pm´j`1q
t´�

pm´j`1,0q
t

q if �
t

P r0,�p0q
m´j

s,

y˚
t´�

t

´ Hpx̂
pm´j`1q
t´�

pm´j`1,0q
t

q if �
t

P r�p0q
m´j

,�p0q
m´j`1

s,

Hpx̂
pm´j`2q
t

q ´ Hpx̂
pm´j`1q
t´�

m´j`1,0q
t

q if �
t

P r�p0q
m´j`1

,�p0q
m

s.

(14)

where

�
pm´j`1,0q
t

“

$
’&

’%

0 if �
t

P r0,�p0q
m´j

s,

�
t

´ �p0q
m´j

if �
t

P r�p0q
m´j

,�p0q
m´j`1

s,

�p0q
m´j`1

´ �p0q
m´j

if �
t

P r�p0q
m´j`1

,�p0q
m

s.

(15)

Remark 4.3. Notice that when �
t

P r0,�p0q
m´j`1

q, j “ 1, . . . ,m, the measured
output y

t

“ y˚
t´�

t

(y˚
t

is the undelayed output) is further delayed and y
¯

t

(t̄ † t)
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is used for the innovation ✏
pm´j`1,0q
t

instead of y
t

where t̄ “ t ` �
¯

t

´ �p0q
m´j

, in

other words y
t

is delayed by an additional �p0q
m´j

´ �
¯

t

. The estimate x̂
pm´j`1q
t

is not

delayed (�pm´j`1,0q
t

“ 0) in the innovation process. This is also the case of the master
observer. Notice that for the implementation of this step we need the past outputs y

¯

t

(t̄ † t) and this requires the continuity of �
t

(see lemma 1).

When �
t

P r�p0q
m´j

,�p0q
m´j`1

s, j “ 1, . . . ,m, the available output y
t

is not modified

but the estimate x̂
pm´j`1q
t

is delayed by the amount �pm´j`1,0q
t

“ �
t

´ �p0q
m´j

.

When �
t

P r�p0q
m´j`1

, �
max

s, j “ 2, . . . ,m, the available output y
t

is replaced by

Hpx̂
pm´j`2q
t

q, where x̂
pm´j`2q
t

, computed by the preceding observer in the chain, is an

estimate of xpm´j`2q
t

. The estimate x̂
pm´j`1q
t

is delayed by the amount �pm´j`1,0q
t

“

�p0q
m´j`1

´ �p0q
m´j

in the innovation process.

The reason for which the first observer of the chain is identified as a master
observer is accounted for by the definition of ✏pm,0q

t

and the structure of the observer
itself: the first observer receives as information only ty

t

, �
t

u and provides the reference

signal ẑ
t

. According to the definition of ✏pj,0q
t

, any subsequent observers j in the chain

receives as information not only ty
t

, �
t

u but also the estimate x̂
pj`1q
t

of the preceding
observer in the chain and ŵ

t

which is a suitable transformation of the reference signal.
Depth-k (k • 1) observer chain. The decision rule for switching to the next

layer is the following. Let t
k

° t
k´1

be the time for which

ẑ
t

k

“ Z
k´1

(16)

(if ẑ
t

† Z
k´1

for all t • t
k´1

we will set t
k

:“ `8). Notice that ẑ
t

(since 9̂z
t

• 0) is
non-decreasing in time so that our definition of t

k

is consistent.
Set

Z
k

:“ 2
1

| min

i

g
i

|`3| max

i

g
i

| Z
k´1

.(17)

Let t�pkq
j

u

0,

1

2

k

,

2

2

k

,...,m

be a 2-refinement of the m-partition t�pk´1q
j

u

0,

1

2

k´1

,

2

2

k´1

,...,m

at layer k ´ 1 defined as follows: for each j “ 0, 1

2

k´1

, 2

2

k´1

, . . . ,m ´ 1 ´

1

2

k´1

,m ´ 1

�pkq
j` 1

2

“ �pk´1q
j

`

�pk´1q
j`1

´ �pk´1q
j

2
.(18)

(in the refinement we add the mean points of each interval r�pk´1q
j

,�pk´1q
j`1

s: this is
just one of the possible choices).

Remark 4.4. The signal z
t

is the reference signal which activates the k-depth,

according if it exceeds 2
1

| min

i

g
i

|`3| max

i

g
i

| times its past value at t “ t
k´1

. By the

boundedness of xpmq
t

, as it will be shown, the sequence of times tt
k

u is always finite
and there will be always a k˚ (depending on the state initial conditions) such that
ẑ
t

† Z
k

˚ for all t • t
k

˚´1

so that t
k

˚
“ `8.

The first 2k chained observers of the depth-k chain, which we refer to as master
observer for the last one and slave observers for the first 2k ´ 1 ones, are

9̂x
pm`1´ j

2

k

q
t

“ F̂ px̂
pm`1´ j

2

k

q
t

, ẑ
t

q ` P´1

pẑ
t

qCTRpẑ
t

q✏
pm`1´ j

2

k

,kq
t

,

t • t
k

, j “ 1, . . . , 2k,(19)
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with

9̂z
t

“ ẑ
t

sat
´›››ẑ´r`g

t

˛

´
x̂

pmq
t

´ satpx̂pmq
t

, � ˛ ẑr
t

q

¯›››
2

` }ẑ´r`g
t

˛ ✏
pm,kq
t

}

2,
1

ẑ↵
t

¯
, t • t

k

,

(20)

for some innovation ✏
pm`1´ j

2

k

,kq
t

to be defined below and with initialization

x̂
pm`1´ j

2

k

q
✓

“

#
x̂

pm`1´ j{2
2

k´1

q
✓

, ✓ P rt
k

´ �
max

, t
k

s, if j “ 2, 4, 6, . . . , 2k,
0, ✓ P rt

k

´ �
max

, t
k

s else.

This initialization reflects the fact that an observer which run in the chain of layer k
will be running in the chain of the next layer (initialized with its past values).

Remark 4.5. If an observer is a (slave/master) j-th observer in the pk´1q-depth
layer, then it will become a (slave/master) 2j-th observer in the k-depth layer and it
will be active for t • t

k

(all subsequent layers) and initialized with past estimates
over rt

k

´ �
max

, t
k

s (preceding layer). The other (slave) observers become active from
t “ t

k

and initialized arbitrarily.

Going down the chain of the layer k we find the remaining 2kpm ´ 1q observers,
which we refer to as slave observers,

9̂x
pm`1´ j

2

k

q
t

“ F̂ px̂
pm`1´ j

2

k

q
t

, ŵ
t

q ` P´1

pŵ
t

qCTRpŵ
t

q✏
pm`1´ j

2

k

,kq
t

,

t • t
k

, j “ 2k ` 1, . . . , 2km,(21)

for some innovation ✏
pm`1´ j

2

k

,kq
t

to be defined below and with initialization

x̂
pm`1´ j

2

k

q
✓

“

#
x̂

pm`1´ j{2
2

k´1

q
✓

, ✓ P rt
k

´ �
max

, t
k

s if j “ 2k ` 2, 2k ` 4, . . . , 2km,
0, ✓ P rt

k

´ �
max

, t
k

s else.

Remark 4.6. If an observer is a slave j-th observer in the pk ´ 1q-depth layer,
then it will become a slave 2j-th observer in the k-depth layer and it will be active for
t • t

k

(all subsequent layers) and initialized with past estimates over rt
k

´ �
max

, t
k

s

(preceding layer). The other (slave) observers become active from t “ t
k

and initialized
arbitrarily.

An illustration of how the 0- and 1-depth levels are organized is given in Fig. 1 if
m “ 3 and �

t

P r�
1

,�
3{2s for all t • t

0

. Notice that the master observer, labeled 1 in
layer 0, becomes the master observer labeled 2 in layer 1 (see vertical dotted arrows).
The slave observers, labeled 2 and 3 in layer 0, become the slave observers labeled
4 in layer 6 in layer 1. Slave observers, labeled 1, 3 and 5, are the ones which start
running from layer 1 and correspond to the 2-refinement of the partition of layer 0.

The innovation for the j-th observer, j “ 1, . . . , 2km, of the depth-k chain is
defined as for j “ 1, . . . , 2k

✏
pm`1´ j

2

k

,kq
t

“ y˚
t´�

pkq
m´ j

2

k

´ Hpx̂
pm`1´ j

2

k

q
t

q(22)
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Fig. 1. depth 0 and depth 1 observer chains when m “ 3 and �t P r�1,�3{2s.

and for j “ 2k ` 1, . . . 2km

✏
pm`1´ j

2

k

,kq
t

“

$
’’’’’’’’’’’’’’’’’&

’’’’’’’’’’’’’’’’’%

y˚
t´�

pkq
m´ j

2

k

´ Hpx̂
pm`1´ j

2

k

q

t´�

pm`1´ j

2

k

,kq
t

q

if �
t

P r0,�pkq
m´ j

2

k

s,

y˚
t´�

t

´ Hpx̂
pm`1´ j

2

k

q

t´�

pm`1´ j

2

k

,kq
t

q

if �
t

P r�pkq
m´ j

2

k

,�pkq
m´ j´1

2

k

s,

Hpx̂
pm`1´ j´1

2

k

q
t

q ´ Hpx̂
pm`1´ j

2

k

q

t´�

pm`1´ j

2

k

,kq
t

q

if �
t

P r�pkq
m´ j´1

2

k

,�pkq
m

s,

(23)

where

�
pm`1´ j

2

k

,kq
t

“

$
’’’&

’’’%

0 if �
t

P r0,�pkq
m´ j

2

k

s,

�
t

´ �pkq
m´ j

2

k

if �
t

P r�pkq
m´ j

2

k

,�pkq
m´ j´1

2

k

s,

�pkq
m´ j´1

2

k

´ �pkq
m´ j

2

k

if �
t

P r�pkq
m´ j´1

2

k

,�pkq
m

s.

(24)

Remark 4.7. Similar remarks for the depth k can be made on the innovations
of the k-depth observer chain, keeping in mind that the partition of r0, as at depth k
is a two 2-refinement of the partition at depth k ´ 1 so that at layer k the value of

9



the delay �
t

is compared with smaller intervals (actually, half the old ones). It should
be worth noting that, by definition of the partition and its subsequent refinements,

✏
pm`1´ j

2

k´1

,kq
t

“ ✏
pm`1´ j

2

k´1

,k´1q
t

for all k • 1 and j “ 1, . . . , 2k´1. In other words,
the innovation does not switch from layer k ´ 1 to the next one for the first 2k´1

observers (see also Fig. 1).

In the overall the predictor equations are given by (8)-(9), (11)-(12), (19)-(21) and
(21)-(22).

4.2. Main assumptions and results. Our assumptions on the system (5) are
the following (see a review of incremental homogeneity in the appendix A).
(H0) (incremental homogeneity)

(i) AT� is incrementally homogeneous in the upper bound (i.h.u.b.) with
quadruples pr, r ´ g, g, AT�px1, x2

qq, with lower triangular �p0, 0q,
(ii) pI ´ AAT

q� is i.h.u.b. with quadruple pr, pI ´ AAT

qpr ` gq, g, pI ´

AAT

q�px1, x2
qq,

(iii) the degrees g and weights r satisfy for each j “ 2, . . . , n

2pg
j

´g
j´1

q`g
j´1

` r
j´1

§ r
j

´ g
j

§g
j´1

` r
j´1

,

(H1) (state boundedness) xp¨, x
0

q P L8
pR•,Rq for each x

0

P Rn, where xpt, x
0

q is
the solution of (5) with initial condition x

0

.
These assumptions are enough general for coping with genuinely nonlinear systems
and were adopted in [1], together with an extra observability condition, for designing
state estimators for system with constant measurement delays. It is not di�cult
to check for assumption (H0). In general, it amounts to solve a set of algebraic
inequalities in the unknowns r P Rn

° and g P Rn.

Theorem 4. Under assumptions (H0)-(H1) there exist design parameters ↵, ⌫ P

R°, Z0

° 1, � P R° and � P Rnˆn such that
(i) the solution ẑ

t

of the multilayer predictor (8)-(9), (11)-(12), (19)-(21) and (21)-
(22) is bounded for all t • 0 and there exists k˚

• 1 such that the number of
layers is exactly k˚,

(ii) the solutions x̂
pjq
t

, j “ 1, . . . , 2k
˚
m, of the multilayer predictor (8)-(9), (11)-(12),

(19)-(21) and (21)-(22) are bounded for all times and

lim
tÑ`8

px
pjq
t

´ x̂
pjq
t

q “ 0.(25)

In what follows, we prove two results which are instrumental to prove the main theo-
rem 4. First, we need the following lemma (the proof is omitted for reasons of space
and follows from simple but lengthy matrix algebra). Recall that A ® B, A,B P Rmˆl,
means A

ij

§ B
ij

for all i “ 1, . . .m, j “ 1, . . . , l, and max
✓PN Ap✓q, Ap✓q P Rmˆl for

each ✓ P Rn and compact N Ä Rn, represents any matrix M such that Ap✓q ® M
for all ✓ P N . If N p�q is a family of compact sets N p�q Ä Rn for each � P Rn

° and
such that N p�q Ñ t0u as � Ñ 0 then max

✓PN p�q Ap✓q is taken in such a way that
max

✓PN p�q Ap✓q Ñ Ap0q as � Ñ 0.

Lemma 5. Let � be as in (H0). For each � P Rn

° and positive definite diagonal

10



� P Rnˆn define

Np�q :“ A ` pI ` �AT

qA
n´1ÿ

j“1

p�AT

q

j(26)

Lp�q :“ 2↵ max
i

|g
i

|�AT

n´1ÿ

j“0

p�AT

q

j(27)

M
�

p�q :“ 2pI ` �AT

q max
´�®x

1
,x

2®�

�px1, x2
qpI ´ �AT

q

´1(28)

and

K
�

p�q :“ I ´ 2� ` Np�q ` M
�

p�q ` Lp�q ` pNp�q ` M
�

p�q ` Lp�qq

T .(29)

There exists a choice of � and � such that

K
�

p�q § ´I(30)

For the stated purposes, consider the “auxiliary” system

9x
t

“ Ax
t

` �px
t

q, t • T ´ a,(31)

yaux
t

“ Hpx
t

q ` d
t

, t • T,(32)

where a ° �
max

and d
t

, t • T´a, represents a bounded disturbance or uncertainty and
T • 0. For this auxiliary system we consider two types of observers which correspond
in our multilayer predictor to master and, respectively, slave observers and we prove
convergence of the observation error under di↵erent assumptions. In our context, the
disturbance in (32) models the mismatch between the switching innovation ✏ of each
(master or slave) observer and a fixed innovation equal to the undelayed estimation
error Hpx

t

q´Hpx̂
t

q. This mismatch varies with the relative position of �
t

with respect
to the current partition of r0, as (see the definition of the innovation processes). In the
case of master observers we will have d

t

“ 0 and in the case of slave observers a more
complicated term, which however may depend only on the following estimation errors:
delayed and undelayed estimation error of the observer itself and delayed estimation
error of the preceding observer in the chain (see assumption (H2) in the following
proposition). This last error is modeled as an exogenous input for the slave observer
(�̂

t

in assumption (H2)).
Let � be as in (H0) and � P Rn

° and � P Rnˆn be selected as in lemma 5 and
define

⇥ :“ }C�CT

}p}Q} ` }C�CT

}q(33)

where

Q :“ C
´
A ` max

´�®x

1
,x

2®�

�px1, x2
q

¯
pI ´ �AT

q

´1.(34)

4.2.1. Error convergence for slave observers. The first kind of observer we
consider for (31) is a slave-type observer

9̂x
t

“ F̂ px̂
t

, ŵ
t

q ` P´1

pŵ
t

qCTRpŵ
t

q

´
yaux
t

´ Hpx̂
t

q

¯
, t • T,(35)

with initialization

x̂
✓

“ �
✓

P C0

prT ´ a, T s,Rn

q, ✓ P rT ´ a, T s,(36)

11



where ŵ
t

, t • T ´ a, is a bounded exogenous signal. The initialization (36) reflects
the fact that the slave-type observer may be running already at a previous layer. We
state and prove the following convergence result. Recall that xxvyy, v P Rn, means
p|v

1

|, . . . , |v
n

|q

T .

Proposition 6. Under assumptions (H0)-(H1), if � P Rn

° and � P Rnˆn are
selected as in lemma 5 and if, in addition,
(H2) for all t • T

xxd
t

yy ® xx�̂
t

yy `

AA
Hpx

t

q ´ Hpx̂
t

q ´

´
Hpx

t´⌧

t

q ´ Hpx̂
t´⌧

t

q

¯EE

where �̂
t

, t • T , is a bounded exogenous signal such that

lim
tÑ`8

�̂
t

“ 0(37)

and ⌧
t

is a bounded delay such that
(H3) 0 § ⌧

t

†

1

8⇥ŵ

| min

i

g
i

|`3| max

i

g
i

|
t

for all t • T ,

(H4) 0 §

9̂w
t

ŵ
t

§

2↵´1

ŵ↵

t

for all t • T and ŵ
t

• 1 for all t P rT ´ a, T s, with ↵ •

2|max
i

g
i

| ` 1,

(H5) lim
tÑ`8

´
x
t

´ satpx
t

, � ˛ ŵr
t

q

¯
“ 0,

the solutions px
t

, x̂
t

q of (31)-(32)-(35) are bounded for all t • T and

lim
tÑ`8

px
t

´ x̂
t

q “ 0.(38)

Proof. For simplicity of notation, we write satp¨q instead of satp¨, � ˛ ŵr
t

q. Let

e “ x ´ x̂, ⌘ :“ pI ´ GpŵqAT

qe,(39)

V pe, wq :“ eTP pwqe.(40)

We also write V
t

instead of V pe
t

, w
t

q, P
t

instead of P pŵ
t

q, R
t

instead of Rpŵ
t

q and G
t

instead of Gpŵ
t

q. Moreover, for notational convenience we use the following operator
r acting on functions f P C0

pRn,Rn

q

rfp�
1

,�
2

q :“ fp�
1

q ´ fp�
2

q.(41)

All the inequalities involving time functions are meant to hold for t • T (if not
otherwise stated). We prove proposition 6 by successive steps.

(A) An upper bound for the time derivative of V
t

along the trajectories of (31)-
(32)-(35). We have using properties B.1 and B.2 of Appendix B

9V
t

|p31q´p32q´p35q

“

p1qhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

2p⌘
t

˛ ŵ´r
t

q

T

!
diagtŵ´r

t

upI ´ G
t

AT

qAe
t

´ CTCG
t

diagtŵ´r
t

uCTCe
t

)

`

p2qhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj
2p⌘

t

˛ ŵ´r
t

q

Tdiagtŵ´r
t

upI ´ G
t

AT

qrp� ˝ satqpx
t

, x
t

´ e
t

q

´

p3qhkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkj
2p⌘

t

˛ ŵ´r
t

q

TCTCG
t

diagtŵ´r
t

uCT d
t

`

p4qhkkikkj
eT
t

9P
t

e
t

`

p5qhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj
2p⌘

t

˛ ŵ´r
t

q

Tdiagtŵ´r
t

upI ´ G
t

AT

qr�px
t

, satpx
t

qq(42)
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We majorize the terms under graphs in the above inequality. Let’s begin with
the bracketed term p1q in (42). Using properties B.1 and B.2 of Appendix B with (i),
(iii) of lemma 10

p1qhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

2p⌘
t

˛ ŵ´r
t

q

T

!
diagtŵ´r

t

upI ´ G
t

AT

qAe
t

´ CTCG
t

diagtŵ´r
t

uCTCe
t

)

§ 2xx⌘
t

˛ ŵ´r`g
t

yy

T

!
´ � ` A ` pI ` �AT

qA
n´1ÿ

j“1

p�AT

q

j

)
xx⌘

t

˛ ŵ´r`g
t

yy

“ xx⌘
t

˛ ŵ´r`g
t

yy

T

!
´ 2� ` Np�q ` NT

p�q

)
xx⌘

t

˛ ŵ´r`g
t

yy,(43)

with Np�q as in (26). Let’s consider the bracketed term p2q in (42). Notice that for
all x P Rn and ŵ • 1

´� ® ŵ´r
˛ satpxq ® �.(44)

On account of (2), using properties B.2 of Appendix B and (ii), (iv) and (v) of lemma
10

p2qhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj
2p⌘

t

˛ ŵ´r
t

q

Tdiagtŵ´r
t

upI ´ G
t

AT

qrp� ˝ satqpx
t

, x
t

´ e
t

q

§ 4xx⌘
t

˛ ŵ´r`g
t

yy

T

pI ` �AT

q�
ˇ̌
ˇ
x

1“ŵ

´r
t

˛satpx
t

q
x

2“ŵ

´r
t

˛satpx̂
t

q

pI ´ �AT

q

´1

xx⌘
t

˛ ŵ´r`g
t

yy

§ xx⌘
t

˛ ŵ´r`g
t

yy

T

pM
�

p�q ` M
�

p�q

T

qxx⌘
t

˛ ŵ´r`g
t

yy(45)

with M
�

p�q as in (28). Next, we majorize the bracketed term p3q in (42). Using
Young’s inequality

´

p3qhkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkj
2p⌘

t

˛ ŵ´r
t

q

TCTCG
t

diagtŵ´r
t

uCT d
t

§

1

2
}⌘

t

˛ ŵ´r`g
t

}

2

`2}C�diagtŵ´r`g
t

uCT d
t

}

2.

Now, we majorize the bracketed term p4q in (42). We have from (vi) of lemma 10 and
(H4)

p4qhkkikkj
eT
t

9P
t

e
t

§ ´4
9̂w
t

ŵ
t

p⌘
t

˛ ŵ´r`g
t

q

Tdiagtg ˛ ŵ´2g
t

udiagtŵ´r`g
t

uG
t

AT

pI ´ G
t

AT

q

´1⌘
t

§ 4
9̂w
t

ŵ
t

max
i

|g
i

|ŵ
2| max

i

g
i

|
t

xx⌘
t

˛ ŵ´r`g
t

yy

T

´
�AT

n´1ÿ

j“0

p�AT

q

j

¯
xx⌘

t

˛ ŵ´r`g
t

yy

§ xx⌘
t

˛ ŵ´r`g
t

yy

T

pLT

p�q ` Lp�qqxx⌘
t

˛ ŵ´r`g
t

yy(46)

with Lp�q as in (27). Finally, the bracketed term p5q in (42) is upper bounded via
similar passages used for the bracketed term p2q and using Young’s inequality:

p5qhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

2p⌘
t

˛ ŵ´r
t

q

Tdiagtŵ´r
t

upI ´ G
t

AT

q

!
�px

t

q ´ �psatpx
t

qq

)
§ p1{2q}⌘

t

˛ ŵ´r`g
t

}

2

`2
›››pI ` �AT

q�
ˇ̌
ˇ

x

1“ŵ

´r
t

˛x
t

x

2“ŵ

´r
t

˛satpx
t

q

n´1ÿ

j“0

p�AT

q

j

)
xxŵ´r`g

t

˛ px
t

´ satpx
t

qqyy

›››
2

.
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Collecting all the above majorizations

9V |p31q´p32q´p35q § xx⌘
t

˛ ŵ´r`g
t

yy

TK
�

p�qxx⌘
t

˛ ŵ´r`g
t

yy

`2}C�diagtŵ´r`g
t

uCT d
t

}

2

` ⇢
p0q
t

(47)

with K
�

p�q as in (30) and

⇢
p0q
t

:“ 2
›››pI ` �AT

q�
ˇ̌
ˇ

x

1“ŵ

´r
t

˛x
t

x

2“ŵ

´r
t

˛satpx
t

q

n´1ÿ

j“0

p�AT

q

j

AA
ŵ´r`g

t

˛ px
t

´ satpx
t

qq

EE›››
2

bounded and such that lim
tÑ`8 ⇢

p0q
t

“ 0 (on account of (H4)-(H5) and (H0)). But
� P Rn

° and � P Rnˆn are selected as in lemma 5 so that K
�

p�q § ´I. As a result of
(47)

9V |p31q´p32q´p35q § ´}⌘
t

˛ ŵ´r`g
t

}

2

` 2ŵ2| max

i

g
i

|
t

}C�diagtŵ´r
t

uCT d
t

}

2

` ⇢
p0q
t

.(48)

Now, we compute an upper bound for the second term on the left of (48). Let
⇧

t

:“ C�diagtŵ´r
t

uCT and ⌧
max

:“ �

6⇥

. Notice that ⇧
t

is diagonal and positive
definite for each t. By (H2)

xx⇧
t

d
t

yy ® ⇧
t

xx�̂
t

yy ` ⇧
t

ª
t

t´⌧

t

AA d

ds

´
Hpx

s

q ´ Hpx̂
s

q

¯EE
ds(49)

for all t • maxtT, ⌧
max

u (⌧
max

is an upper bound for ⌧
t

by (H4)), recalling that≥
t

1

t

2
d

ds

v
s

ds “ v
t

1
´ v

t

2 . On account of properties B.3 of Appendix B, for all s § t

⇧
s

CP´1

s

CTR⇧´1

s

§ ŵ
2| max

i

g
i

|
t

C�CT , ⇧
t

⇧´1

s

§ I.(50)

Continuing from (49) and applying once again (H2) it follows that

xx⇧
t

d
t

yy ®
ª

t

t´⌧

t

p7qhkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkj

⇧
s

C
AAde

s

ds
` P´1

s

CTR
s

d
s

EE
ds

`ŵ
2| max

i

g
i

|
t

C�CT

ª
t

t´⌧

t

p8qhkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkj

⇧
s

´
xxCe

s

yy ` xxCe
s´⌧

s

yy

¯
ds ` ⇢

p1q
t

(51)

where

⇢
p1q
t

:“ C�CT

´
xx�̂

t

yy ` ŵ
2| max

i

g
i

|
t

C�CT

ª
t

t´⌧

t

xx�̂
s

yyds
¯

(52)

is a bounded signal such that lim
tÑ`8 ⇢

p1q
t

“ 0 (on account of (H5), boundedness
from above and below of ŵ

t

by (H4) and boundedness of ⌧
t

by (H3)).
Next, we obtain a majorant for the bracketed terms (7) and (8) in (51). For the

term (7) for all s P rt ´ ⌧
t

, ts we have, on using properties B.3 of Appendix B,

⇧
s

C
AAde

s

ds
` P´1

s

CTR
s

d
s

EE

® ⇧
s

C
AA

ApI ´ G
s

AT

q

´1⌘
s

` �psatpx
s

qq ´ �
´
sat

´
x
s

´ pI ´ G
s

AT

q

´1⌘
s

¯¯EE

`⇧
s

C�diagtŵ2g
s

uCT

xxC⌘
s

yy ` ⇧
s

Cxx�px
s

q ´ �psatpx
s

qqyy(53)
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With (44) and (ii) and (vi) of lemma 10 we obtain for all s P rt ´ ⌧
t

, ts

⇧
s

C
AAde

s

ds
` P´1

s

CTR
s

d
s

EE
® ŵ2| max

i

g
i

|
s

C�CTQxx⌘
s

˛ ŵ´r
s

yy ` ⇢p2q
s

(54)

with Q as in (34) and bounded

⇢p2q
s

:“ ŵ| max

i

g
i

|
s

C�CTC�
ˇ̌
ˇ

x

1“ŵ

´r
s

˛x
s

x

2“ŵ

´r
s

˛satpx
s

q

pI ´ �AT

q

´1

xxpx
s

´ satpx
s

qq ˛ ŵ´r`g
s

yy

such that lim
tÑ`8 ⇢

p2q
t

“ 0 (on account of (H5), boundedness of x
t

and boundedness
(from above and below) of ŵ

t

by (H4)).
As to the bracketed term (8) in (51), for all s P rt ´ ⌧

t

, ts

⇧
s

xxCe
s

yy ` ⇧
s

xxCe
s´⌧

s

yy ® C�CT

´
xx⌘

t

˛ ŵ´r
t

yy ` xx⌘
s´⌧

s

˛ ŵ´r
s´⌧

s

yy

¯
.(55)

Finally, using (51), (54) and (55) and recalling the definition of V
t

“ }⌘
t

˛ ŵ´r
t

}

2, we
get the desired majorant for ⇧

t

d
t

}⇧
t

d
t

} § ŵ
2| max

i

g
i

|
t

⇥

ª
t

t´⌧

t

p

a
V
s

`

a
V
s´⌧

s

qds ` }⇢
p1q
t

} `

ª
t

t´⌧

t

}⇢p2q
s

}ds(56)

with ⇥ as in (33) and for all t • maxtT, ⌧
max

u.
(B) Asymptotic convergence of ⌘

t

and, therefore, e
t

By Jensen’s and Young’s inequalities

´ ª
t

t´⌧

t

p

a
V
s

`

a
V
s´⌧

s

q

¯
2

§ 2⌧
t

ª
t

t´⌧

t

pV
s

` V
s´⌧

s

qds.(57)

From (48), (56) and (107), boundedness of ŵ
t

and Young’s inequality it follows that
for t • maxtT, ⌧

max

u

9V
t

§ ´ŵ
´2| min

i

g
i

|
t

V
t

` 8ŵ6| max

i

g
i

|
t

⇥2⌧
t

ª
t

t´⌧

t

pV
s

` V
s´⌧

s

qds ` ⇢
t

(58)

with

⇢
t

:“ 4ŵ2| max

i

g
i

|
t

´
}⇢

p1q
t

} `

ª
t

t´⌧

t

}⇢p2q
s

}ds
¯
2

` ⇢
p0q
t

such that

(59) lim
tÑ`8

⇢
t

“ 0.

We apply Razumikhin theorem to (58) (theorem 2.4 of [4] or theorem 1 of [14]) and
for proving asymptotic convergence of ⌘

t

we can assume that t • maxtT, ⌧
max

u. To
this aim, set

↵
1

psq :“ �2s, ↵
2

psq :“ 4psup
t•T

ŵ
t

q

2| min

i

g
i

|s, ↵
3

psq “

1

2
psup
t•T

ŵ
t

q

´2| min

i

g
i

|s,(60)

with � P p0, 1q such that

⌧
t

†

�

8⇥ŵ
3| max

i

g
i

|`| min

i

g
i

|
t

, @t • T(61)
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(the choice of � is feasible by (H3)). All the above functions are K-class functions.
Moreover, ↵

1

psq † s for s ° 0. If for each t • maxtT, ⌧
max

u

V
t

• ↵
1

pV
t`✓

q ` ↵
2

p⇢
t

q, ✓ P r´2⌧
max

, 0s,

then on account of (H3)

9V
t

§ ´↵
3

pV
t

q.

By virtue of theorem 2.4 of [4] (or theorem 1 of [14]) it follows

V
t

§ �
1

p}V }rmaxtT,⌧

max

u´2⌧

max

,maxtT,⌧

max

us, t ´ maxtT, ⌧
max

uq

`�
2

p}⇢}rmaxtT,⌧

max

u,`8qq, t • maxtT, ⌧
max

u(62)

for some �
1

P KL and �
2

P K (}v}

I

denotes sup
tPI }v

t

}). Actually, we claim that
lim

tÑ`8 V
t

“ 0, which proves our theorem since z
t

is bounded from below and above
and

lim
tÑ`8

V
t

“ lim
tÑ`8

}⌘
t

} “ lim
tÑ`8

}e
t

} “ 0.(63)

Indeed, by passing to the limit for t Ñ `8 in (62)

lim sup
tÑ`8

V
t

§ �
2

p}⇢}rmaxtT,⌧

max

u,`8qq(64)

Fix ✏ ° 0 and let h ° 0 be such that �
2

phq † ✏. On account of (59) there exists T̄ • 0
such that ⇢

t` ¯

T

§ h for all t • maxtT, ⌧
max

u.

lim sup
tÑ`8

V
t

“ lim sup
tÑ`8

V
t` ¯

T

§ �
2

p}⇢}r ¯T`maxtT,⌧

max

u,`8qq § �
2

phq † ✏(65)

which by letting ✏ Ñ 0 gives 0 § lim sup
tÑ`8 V

t

§ �
2

plim sup
tÑ`8 ⇢

t

q “ 0.

4.2.2. Error convergence for master observers. The second kind of ob-
server we consider for (31) is a master-type observer

9̂x
t

“ Ax̂
t

` �
´
satpx̂

t

, � ˛ ŵr
t

q

¯
` P´1

pŵ
t

qCTRpŵ
t

q

´
yaux
t

´ Hpx̂
t

q

¯
, t • T,

9̂z
t

“ ẑ
t

sat
´

}ẑ´r`g
t

˛ px̂
t

´ satpx̂
t

, � ˛ ẑr
t

qq}

2

` }ẑ´r`g
t

˛ pyaux
t

´ Hpx̂
t

qq}

2

q,
1

ẑ↵
t

¯
, t • T,

(66)

with initailization

x̂
✓

“ �
✓

P C0

prT ´ a, T s,Rn

q, ẑ
✓

“ 1, ✓ P rT ´ a, T s,(67)

where a ° �
max

. . The initialization (67) reflects the fact that the master-type
observer may be running already at a previous layer. We state and prove the following
convergence result.

Proposition 7. Under assumptions (H0)-(H1) and if � P Rn

° and � P Rnˆn are
selected as in lemma 5, the solutions px

t

, x̂
t

, ẑ
t

q of (31)-(32)-(66), with d
t

“ 0, are
bounded for all t • T and

lim
tÑ`8

px
t

´ x̂
t

q “ 0,(68)

lim
tÑ`8

px̂
t

´ satpx̂
t

, � ˛ ẑr
t

qq “ 0.(69)
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Proof. We adopt the same notations and simplifications of the proof of proposition
6. Let e, ⌘ and V be as in the proof of proposition 6, with ŵ replaced by ẑ. Properties
in the appendices B.2 and B.3 remain valid (with ŵ replaced by ẑ). The estimates x̂

t

and ẑ
t

are defined over rT,`8q. In particular, for all t • T from (66)

0 §

9̂z
t

§

1

ẑ↵´1

t

§ 1(70)

(since satpv, 1

ẑ

↵

t

q §

1

ẑ

↵

t

for all v P R). Following the same lines for the proof of (58) in
proposition 6

9V
t

§ ´}ẑ´r`g
t

˛ ⌘
t

}

2

` ⇢
t

(71)

with

⇢
t

:“ 2
›››pI ` �AT

q�
ˇ̌
ˇ

x

1“ẑ

´r
t

˛x
t

x

2“ẑ

´r
t

˛satpx
t

q

n´1ÿ

j“0

p�AT

q

j

)AA
ẑ´r`g
t

˛ px
t

´ satpx
t

qq

EE›››
2

Since ẑ
t

is non-decreasing, we have either lim
tÑ`8 ẑ

t

† `8 or lim
tÑ`8 ẑ

t

“ `8.
Assume by absurd that lim

tÑ`8 ẑ
t

“ `8. By (H0) it follows the existence of T̄ • T
such that

x
t

´ satpx
t

q “ 0, @t • T̄ .(72)

and, consequently, ⇢
t

“ 0, @t • T̄ . Following (71), for all t • T̄

9V
t

§ ´}ẑ´r`g
t

˛ ⌘
t

}

2.(73)

This implies that for all t • T̄
ª

t

¯

T

}ẑ´r`g
s

˛ ⌘
s

}

2ds § V
¯

T

.(74)

Next, we find a majorant for ẑ
t

. To this aim, using once again (72) with (iv) of lemma
10

}ẑ´r`g
t

˛ px̂
t

´ satpx̂
t

qq} § 2}pI ´ �AT

q

´1

}}ẑ´r`g
t

˛ ⌘
t

}.(75)

In the same way,

}ẑ´r`g
t

˛ pyaux
t

´ Hpx̂
t

qq} § 2}pI ´ �AT

q

´1

}}ẑ´r`g
t

˛ ⌘
t

}.(76)

Finally, using (74) and (75)-(76) and integrating 9̂z
t

, for all t • T̄

ẑ
t

§ ẑ
¯

T

` 8}pI ´ �AT

q

´1

}

2

ª
t

¯

T

}ẑ´r`g
s

˛ ⌘
s

}ds § ẑ
¯

T

` 8}pI ´ �AT

q

´1

}

2V
¯

T

.

But this contradicts lim
tÑ`8 ẑ

t

“ `8. Therefore, lim
tÑ`8 ẑ

t

† `8.
Next, from (73) with the boundedness of x

t

and ẑ
t

it follows that x̂
t

is bounded
and uniformly continuous. By integration of 9̂z

t

and Barbalat lemma we obtain that
lim

tÑ`8px̂
t

´ satpx̂
t

qq “ 0 which proves the first claim of our proposition and gives
that lim

tÑ`8 ⇢
t

“ 0. According to the same lines of the proof of (63) in proposition
6

lim
tÑ`8

V
t

“ lim
tÑ`8

⌘
t

“ lim
tÑ`8

e
t

“ 0

which proves the second part of our proposition.
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4.2.3. Proof of theorem 4. We will use throughout the notation e
pjq
t

:“ x
pjq
t

´

x̂
pjq
t

. Let � P Rn

° and � P Rnˆn be selected as in lemma 5. Choose the design
parameters Z

0

and ⌫ (see (7)) as follows: set Z
0

:“ 2 (the initial guess for Z
0

may be
also greater) and ⌫ :“ 1

8⇥

with ⇥ as in (33) and pick any ↵ • 2max
i

tg
i

u ` 1.
Consider the first (master) observer of the 0-depth layer, given by equations (8)

for t • r0, t
1

q, t
1

the time at which ẑ
t

1

“ Z
0

. This observer becomes the 2k-observer
in the k-depth layer, k • 1, with equations given by (19) for t • rt

k

, t
k`1

q, where t
k

is the time at which ẑ
t

k

“ Z
k´1

. Moreover, it can be directly checked from (14), (15)
that

✏
pm,0q
t

“ ✏
pm,kq
t

“ Hpx
pmq
t

q ´ Hpx̂
pmq
t

q “ Ce
pmq
t

(77)

for all k ° 0 (see also remark 4.7). In the overall, we can consider all these observers
running over the intervals rt

k´1

, t
k

q, k “ 1, . . . , as the same observer running over
r0,`8q.

Taking into account (77), we notice that (8) and (19) (which are the same observer

at di↵erent layers) have the form (66) if in (66) we let x̂
t

correspond to x̂
pmq
t

and in

(31)-(32) we let x
t

and d
t

correspond, respectively, to x
pmq
t

and 0. From proposition
7 we conclude that

lim
tÑ`8

e
pmq
t

“ 0,

lim
tÑ`8

px̂
pmq
t

´ satpx̂pmq
t

, � ˛ ẑr
t

qq “ 0(78)

and ẑ
t

is bounded. From (78) it also follows that

lim
tÑ`8

px
pmq
t

´ satpxpmq
t

, � ˛ ẑr
t

qq “ 0.(79)

On account of the algorithm which activates each subsequent layer, ẑ
t

bounded implies
that the sequence tt

j

u of layer activation times is finite and the number of activated
layers is finite. Let’s denote this number by k˚ and set t

k

˚`1

“ `8.
Consider the first 2k ´ 1 observers of each k-depth layer, given by equations (19)

for t • rt
k

, t
k`1

q, 1 § k § k˚. The j-th one of these observers, j “ 1, . . . , 2k ´ 1,
becomes the p2h´kjq-th observer in the h-depth layer, h ° k, with equations given by
(19) for t • rt

h

, t
h`1

q. Moreover, it can be directly checked from (23), (24) that

✏
pm`1´ j

2

k

,kq
t

“ ✏
pm`1´ j

2

k

,hq
t

“ Hpx
pm`1´ j

2

k

q
t

q ´ Hpx̂
pm`1´ j

2

k

q
t

q “ Ce
pm`1´ j

2

k

q
t

(80)

for all j “ 1, . . . , 2k ´ 1 and 1 § k § k˚ (see also remark 4.7). In the overall, we can
consider all these observers running over the intervals rt

h

, t
h`1

q, h “ k, . . . , k˚, as the
same observer running over rt

k

,`8q.
We notice that (19) has the form (35) if in (35) we let x̂

t

and ŵ
t

correspond,

respectively, to x̂
pm`1´ j

2

k

q
t

and ẑ
t

and in (31)-(32) x
t

and d
t

correspond, respectively,

to x
pm`1´ j

2

k

q
t

and 0. Moreover, since x
pm`1´ j

2

k

q
t

“ x
pmq
t´�

m´ j

2

k

`�

m´1

, from (78) we

have

lim
tÑ`8

px̂
pm`1´ j

2

k

q
t

´ satpx̂
pm`1´ j

2

k

q
t

, � ˛ ẑr
t´�

m´ j

2

k

`�

m´1

qq “ 0.(81)

18



Since ẑ
t

and the sequence t�
j

u are increasing and ´�
m´ j

2

k

` �
m´1

† 0 for j “

1, . . . , 2k ´ 1,

ẑ
t´�

m´ j

2

k

`�

m´1

§ ẑ
t

(82)

for all t • t
k

and j “ 1, . . . , 2k ´ 1. Therefore,

lim
tÑ`8

px̂
pm`1´ j

2

k

q
t

´ satpx̂
pm`1´ j

2

k

q
t

, � ˛ ẑr
t

qq “ 0.(83)

for j “ 1, . . . , 2k ´ 1. Moreover, (see (70) and recall the choice of ↵ at the beginning
of the proof) for all t • t

k

0 §

9̂z
t

ẑ
t

§

1

ẑ↵
t

(84)

We see that (H2)-(H5) of proposition 6 are met with ⌧
t

“ 0 so that we conclude that

lim
tÑ`8

e
pm`1´ j

2

k

q
t

“ 0, j “ 1, . . . , 2k ´ 1.(85)

Finally, consider the last 2km ´ 2k observers of each k-depth layer, given by equa-
tions (21) for t • rt

k

, t
k`1

q, 0 § k § k˚. The j-th one of these observers, j “

2k ` 1, . . . , 2km, becomes the p2h´kjq-th observer in the h-depth layer, h ° k, with
equations given by (21) for t • rt

h

, t
h`1

q. In the overall, we can consider all these
observers running over the intervals rt

h

, t
h`1

q, h “ k, . . . , k˚, as the same observer

running over rt
k

,`8q with switching innovations ✏
pm`1´ j

2

k

,hq
t

, h “ k, . . . , k˚. Again,
we notice that (21) has the form (35) if in (35) we let x̂

t

correspond, respectively, to

x̂
pm`1´ j

2

k

q
t

and in (31)-(32) x
t

, d
t

and ⌧
t

correspond, respectively, to x
pm`1´ j

2

k

q
t

,

d
t

“ C

$
’’’’’’’’’’’’’’&

’’’’’’’’’’’’’’%

0

if �
t

P r0,�phq
m´ j

2

k

s, j “ 2k ` 1, . . . , 2km ´ 1,

´e
pm`1´ j

2

k

q
t

` e
pm`1´ j

2

k

q

t´�

pm`1´ j

2

k

,hq
t

if �
t

P r�phq
m´ j

2

k

,�phq
m´ j´1

2

k

s, j “ 2k ` 1, . . . , 2km,

´e
pm`1´ j

2

k

q
t

q ` e
pm`1´ j

2

k

q

t´�

pm`1´ j

2

k

,hq
t

` e
pm`1´ j´1

2

k

q
t

if �
t

P r�phq
m´ j´1

2

k

,�phq
m

s, j “ 2k ` 1, . . . , 2km,

and

⌧
t

“

$
’’’’’’’’’’’&

’’’’’’’’’’’%

0

if �
t

P r0,�phq
m´ j

2

k

s, j “ 2k ` 1, . . . , 2km ´ 1,

�
t

´ �phq
m´ j

2

k

if �
t

P r�phq
m´ j

2

k

,�phq
m´ j´1

2

k

s, j “ 2k ` 1, . . . , 2km,

�phq
m´ j´1

2

k

´ �phq
m´ j

2

k

if �
t

P r�phq
m´ j´1

2

k

,�phq
m

s, j “ 2k ` 1, . . . , 2km.

(86)
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Indeed, from (23) when �
t

P r0,�phq
m´ j

2

k

q

✏
pm`1´ j

2

k

,hq
t

“ Hpx
pm`1´ j

2

k

q
t

q ´ Hpx̂
pm`1´ j

2

k

q
t

q “ Ce
pm`1´ j

2

k

q
t

.(87)

When �
t

P r�phq
m`1´ j

2

k

,�phq
m´ j´1

2

k

s

✏
pm`1´ j

2

k

,hq
t

“ Hpx
pm`1´ j

2

k

q

t´�

pm`1´ j

2

k

,hq
t

q ´ Hpx̂
pm`1´ j

2

k

q

t´�

pm`1´ j

2

k

,hq
t

q “ Ce
pm`1´ j

2

k

q

t´�

pm`1´ j

2

k

,hq
t

(88)

and when �
t

P r�phq
m´ j´1

2

k

,�phq
m

s

✏
pm`1´ j

2

k

,hq
t

“ Hpx̂
pm`1´ j´1

2

k

q
t

q ´ Hpx̂
pm`1´ j

2

k

q

t´�

m`1´ j

2

k

,hq
t

q

“ ´Ce
pm`1´ j´1

2

k

q
t

` Ce
pm`1´ j

2

k

q

t´�

pm`1´ j

2

k

,hq
t

.(89)

We can see that (H2)-(H5) of proposition 6 are met. Indeed, by definition of ŵ
t

(see
(12)) and (70)

9̂w
t

ŵ
t

“

2
↵´1

↵

ŵ
t

´
ẑ↵
t

` ↵�↵
max

¯ 1´↵

↵

ẑ↵´1

t

9̂z
t

“

2↵´1

ŵ↵

t

ẑ↵´1

t

9̂z
t

§

2↵´1

ŵ↵

t

(90)

for all t • t
k

, which is (H3). Also, with ⌧
t

as in (86)

0 § ⌧
t

†

1

8⇥ŵ
| min

i

g
i

|`3| max

i

g
i

|
t

(91)

for all t • t
k

. Indeed, for each j “ 3, . . . ,m (layer 0) and for all t P r0, t
1

q

⌧
t

§ �p0q
m´j`1

´ �p0q
m´j

§ max
i“1,...,m

p�p0q
i

´ �p0q
i´1

q

†

⌫
”
2

↵´1

↵

´
Z↵

0

` ↵�↵
max

¯ 1

↵

ı| min

i

g
i

|`3| max

i

g
i

|

†

⌫
”
2

↵´1

↵

´
ẑ↵
t

` ↵�↵
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¯ 1

↵
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i

g
i

|`3| max

i

g
i

| “

1

8⇥ŵ
| min

i

g
i

|`3| max

i

g
i

|
t

(92)

on account of (7), definition of ⌫ and ⌧
t

in (86) and since ẑ
t

† Z
0

for t P r0, t
1

q (by
definition of t

1

). Moreover, for each k • 1 and j “ 2k ` 1, . . . , 2km (layer k) and for
all t P rt

k

, t
k`1

q

⌧
t

§ �pkq
m´ j´1

2

k

´ �pkq
m´ j

2

k

§

1

2k
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i“1,...,m

´
�p0q

i
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i´1
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”
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ẑ↵
t

` ↵�↵
max

¯ 1

↵

ı| min

i

g
i

|`3| max

i

g
i

| “

1

8⇥ŵ
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on account of (7), (18), definition of ⌫ and ⌧
t

and since ẑ
t

† Z
k

for t P rt
k

, t
k`1

q (by

definition of t
k`1

) where Z
k

:“ 2
k

| min

i

g
i

|`3| max

i

g
i

| Z
0

by (17). This proves (H4).
Finally, we must prove (H5). Notice that by (70) and since ´�

m´ j

2

k

`�
m´1

° 0

for j “ 2k ` 1, . . . , 2km,

ẑ
t´�

m´ j

2

k

`�

m´1

§

´
ẑ↵
t

` ↵p´�
m´ j

2

k

` �
m´1

q

¯ 1

↵

§ 2
↵´1

↵

´
ẑ↵
t

` ↵�↵
max

¯ 1

↵

“ ŵ
t

Using once again (81)

0 “ lim
tÑ`8

px̂
pm`1´ j

2

k

q
t

´ satpx̂
pm`1´ j

2

k

q
t

, � ˛ ẑr
t´�

m´ j

2

k

`�

m´1

qq

“ lim
tÑ`8

px̂
pm`1´ j

2

k

q
t

´ satpx̂
pm`1´ j

2

k

q
t

, � ˛ ŵr
t

qq(94)

for j “ 2k ` 1, . . . , 2km, which proves (H5).

5. Example and simulations. For testing our predictor we consider a Van Der
Pol oscillator

9x
1,t

“ x
2,t

9x
2,t

“ ´x
1,t

` p1 ´ x2

1,t

qx
2,t

, y “ x
1,t´�

t

(95)

where the measurement delay �
t

(Fig. 2) models the following situation: the mea-
surements are taken over intervals of the form r1.1k, 1.1k ` 1s for k “ 0, 1, . . . at low
rate 1 and are supplied at a high rate 10 during the time interval r1.1k`1, 1.1pk`1qs.
By approximating �

t

with a (mean) constant delay (using techniques in [2]) we would
have a significant error in the state prediction, especially during the time intervals
with high rate delivery. The maximum delay is 1 so that �

max

“ 1 and a “ 1.3. Sys-
tem (95) satisfies assumptions (H0) and (H1) of theorem 4 with r

1

“ 1{4, r
2

“ 3{4,
g
1

“ g
2

“ 1{4.

Fig. 2. Time-varying delay �t.

A state predictor has been designed according to our procedure and a first sim-
ulation has been worked out with initial conditions xp0q “ p´5,´4q

T . With these
state initial conditions an observer chain with three observers (m “ 3) is su�cient
to estimate the state xptq. The interval r0, as has been partitioned in four parts

(�p0q
3

“ 1.5,�p0q
2

“ 1,�p0q
1

“ 0.5 and �p0q
0

“ 0), corresponding to the estimates

⇠̂
p4q
t

, ⇠̂
p3q
t

, ⇠̂
p2q
t

and ⇠̂
p1q
t

. The saturation levels of the estimates are set with � “ 0.1,
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Fig. 3. State trajectory x1,t and estimate ⇠1,t (x1,´�
max

“ ´5 and x2,´�
max

“ ´4).

Fig. 4. State trajectory x2,t and estimate ⇠2,t (x1,´�
max

“ ´5 and x2,´�
max

“ ´4).

Fig. 5. State trajectory x1,t and estimate ⇠1,t (x1,´�
max

“ ´40 and x2,´�
max

“ 50).

Fig. 6. State trajectory x2,t and estimate ⇠2,t (x1,´�
max

“ ´40 and x2,´�
max

“ 50).
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the diagonal elements of � are respectively 30 and 100 (see lemma 5). Moreover, we
set Z

0

“ 50. The reference signal ẑ tends to the constant value « 8.09 and there is
no switching from depth 0 to 1 since ẑ

t

† Z
0

. The states x
1,t

, x
2,t

together with their

estimates ⇠̂p1q
1,t

, ⇠̂
p1q
2,t

, are shown versus time in Figs. 3 and 4.
Next, a state predictor has been designed according to our procedure and a first

simulation has been worked out with initial conditions xp0q “ p´5,´4q

T . The state
initial conditions are very large now and the reference signal ẑ tends to the constant
value « 80 so that we have is a switching from the depth-0 chain to the depth-1 chain
since ẑ

t

crosses Z
0

. Therefore, the 3-partition of r0, as is refined into a 6-partition.

The interval r0, as is next partitioned in 6 parts (�p1q
3

“ 1.5,�p1q
5{2 “ 1.25,�p1q

2

“

1,�p1q
3{2 “ 0.75,�p1q

1

“ 0.5,�p1q
1{2 “ 0.25 and �

0

“ 0), corresponding to the estimates

⇠̂
p4q
t

, ⇠̂
p7{2q
t

, ⇠̂
p3q
t

, ⇠̂
p5{2q
t

, ⇠̂
p2q
t

, ⇠̂
p3{2q
t

and ⇠̂
p1q
t

. The states x
1,t

, x
2,t

together with their es-

timates ⇠̂p1q
1,t

, ⇠̂
p1q
2,t

, are shown versus time in Figs. 5 and 6.

6. Conclusions. We have proposed a state predictor for stable nonlinear sys-
tems with time-varying measurement delay and weak limitations on the growth of
the nonlinearities. The measurement delay is assumed to be continuous. The state
prediction consists of chains of nonlinear dynamic observers operating at di↵erent
layers. On each layer, these observers reconstruct the unmeasurable state vector at
di↵erent delayed time-instants, which partition the maximal variation interval of the
time-varying delay. Transitions from a layer to the next one are triggered by a on-
line non-decreasing estimate of the magnitude of the state: as this on-line estimate
doubles its value the partition of the maximal variation interval of the time-varying
delay is refined by the same factor and, correspondingly, the number of observers is
doubled. Further research will be devoted to the case of discontinuous time-varying
delay.

Appendix A. Incremental homogeneity.
The notion of (incremental) homogeneity has been introduced in [1] in the context

of semi-global stabilization and observer design problems. Here we recall this notion
in a slightly more general form.

Definition 8. A parametrized function �
z

P C0

pRn,Rl

q, z P R°, is said to
be incrementally homogeneous (i.h.) with quadruple pr, d, h,�px1, x2

qq if there exist
d P Rl, h P Rn, r P Rn

° and � P C0

pRn

ˆ Rn,Rlˆn

q such that for all z ° 0 and
x1, x2

P Rn

�
z

pzr ˛ x1
q ´ �

z

pzr ˛ x2
q “ zd ˛

´
�px1, x2

q

´
zh ˛ px1

´ x2
q

¯¯
(96)

In few words, the increment of �
z

between two dilated points zr ˛ x1 and zr ˛ x2

behaves “homogeneously” in the sense that it is equal to the image of a linear operator
�px1, x2

q P Rlˆn under the increment between the two dilated points zh˛w1 and zh˛x2,
followed by a componentwise dilation by zd. The vector d P Rl describes the “vertical”
degrees and the vector h P Rn describes the “horizontal” degrees.

There are functions, like sinx, which are not i.h. but behaves in the upper bound
as an i.h. function. This motivates the following definition (xxayy denotes the column
vector of the absolute values of the elements of a P Rn).

Definition 9. A parametrized function �
z

P C0

pRn,Rl

q, z P R°, is said to be in-
crementally homogeneous in the upper bound (i.h.u.b.) with quadruple pr, d, h,�px1, x2

qq

if there exist d P Rl, h P Rn, r P Rn

°, � P C0

pRn

ˆ Rn,Rlˆn

• q such that for all z • 1
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and x1, x2
P Rn

xx�
z

pzr ˛ x1
q ´ �

z

pzr ˛ x2
qyy ® zd ˛

´
�px1, x2

q

AA
zh ˛ px1

´ x2
q

EE¯
(97)

When in (97) only the pairs px1, x2
q such that x2

“ 0 are considered and �
z

p0q “ 0 we
will simply say that �

z

is homogeneous in the upper bound (h.u.b.) with quadruple
pr, d, h,�1

pxqq, where �1
pxq “ �px, 0q.

The function �
z

pxq “ z
`
x
2

x3

2

gpx
1

q

˘
T

, g P C0

pR,Rq any bounded and globally
Lipschitz function, is i.h.u.b. with triple pr, d, h,�px1, x2

qq, where r – p1, 2q

T , d –
p3, 7q

T , h – p1, 0q

T and the matrix �px1, x2
q defined as

r�px1, x2
qs

11

– 0, r�px1, x2
qs

12

– 1,

r�px1, x2
qs

21

– px2
2

q

3

~gpx1
1

q ´ gpx2
1

q~
~x1

1

´ x2
1

~ ,

r�px1, x2
qs

22

– ~px1
2

q

2

` px2
2

q

2

` x1
2

x2
2

~~gpx1
1

q~.

Clearly, �
z

is also h.u.b. with triple pr, d, h,�1
pxqq, where �1

pxq “ �px, 0q.
Properties of incremental homogeneity can be found in [1].
The following facts can be proved by using extensively the definition and prop-

erties of incremental homogeneity and (H0). Let A and � as in (5) with G P Rnˆn a
positive definite diagonal matrix which is i.h. with quadruple pr, r ` g, g,�q, � diago-
nal positive definite (we say that a matrix D is i.h. or i.h.u.b. in the sense that the
associated linear function �pxq “ Dx is i.h. or i.h.u.b.).

Lemma 10. Assume (H0).
(i) ATAGATA is i.h.u.b. with quadruple pr, r ` g, g, ATA�ATAq,
(ii) AT� is i.h.u.b. with quadruple pr, r ´ g, g, AT�px1, x2

qq and � is is i.h.u.b. with
quadruple pr, r ` g, g,�px1, x2

qq,
(iii) A ` pI ´ GAT

qA
∞

n´1

j“1

pGAT

q

j is i.h.u.b. with quadruple pr, r ` g, g, A ` pI `

�AT

qA
∞

n´1

j“1

p�AT

q

j

q,

(iv) pI ´ GAT

q

´1 is i.h.u.b. with quadruple pr, r ´ g, g, pI ´ �AT

q

´1

q,
(v) GAT

pI ´ GAT

q

´1 is i.h.u.b. with quadruple pr, r ´ g, g,�AT

pI ´ �AT

q

´1

q,
(vi) ApI ´ GAT

q

´1 is i.h.u.b. with quadruple pr, r ` g, g, ApI ´ �AT

q

´1

q.

Appendix B. Auxiliary results.

B.1. Properties of pC,Aq. For any diagonal G P Rnˆn and C,Aq as in (5)-(6):

CAT

“ 0, CCT

“ I(98)

pGAT

q

j

“ 0, @j • n, pI ´ GAT

q

´1

“

n´1ÿ

j“0

pGAT

q

j(99)

CGAT

“ 0, CpI ´ GAT

q

´1

“ C, GATA “ ATAGATA(100)

CTC “ I ´ ATA, ATApI ´ ATAq “ 0, CTCATA “ 0(101)

B.2. Properties of dilations and ˛ operator. Dilations and operator ˛ have
the following useful properties: for all ⌘, w P Rn and a, b P Rn

diagtwa`b
u “ diagtwa

udiagtwb
u(102)

⌘ ˛ wa`b
“ p⌘ ˛ wa

q ˛ wb
“ ⌘ ˛ pwa

˛ wb
q “ p⌘ ˛ wb

q ˛ wa(103)

⌘Tdiagtwa
u “ p⌘ ˛ wa

q

T(104)

⌘Tdiagtwa`b
u “ p⌘ ˛ wa`b

q

T

“ p⌘ ˛ wa
q

Tdiagtwb
u.(105)
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B.3. Properties of monotone signals and dilations. Let ŵ
t

, t • T • 0, be
monotonically increasing and such that ŵ

t

• 1 for all t • T . We have for all t • T

1 § wa
s

§ wa
t

, , @a P Rn

•, s P rT, ts,(106)

w
´| min

i

a
i

|
t

§ wmin

i

a
i

t

§ wa
i

t

§ wmax

i

a
i

t

§ w
| max

i

a
i

|
t

, @a P Rn.(107)

References.
[1] S. Battilotti, Incremental generalized homogeneity, observer design and

semiglobal stabilization, Asian Journal of Control, 16 (2014), pp. 498–508.
[2] S. Battilotti, Nonlinear predictors for systems with bounded trajectories and

delayed measurements, Automatica, (2015), pp. 127–138.
[3] F. Cacace, A. Germani, and C. Manes, A chain observer for nonlinear

systems with multiple time varying measurement delays, SIAM Journal on Opti-
mization and Control, 52 (2014), pp. 1862–1885.

[4] S. Dashkovskiy and L. Naujok, Lyapunov-razumikhin and lyapunov-
krasovskii theorems for interconnected iss time-delay systems, in Proceedings of
the 19th International Symposium on Mathematical Theory of Networks and
Systems, 2010, pp. 1179–1184.

[5] A. Germani, C. Manes, and P. Pepe, A new approach to state observation of
nonlinear systems with delayed output, IEEE Transactions on Automatic Control,
47 (2002), pp. 96–101.

[6] M. Ghanes, J. De Leon, , and J.-P. Barbot, Observer design for nonlinear
systems under unknown time-varying delays, IEEE Transactions on Automatatic
Control, 58 (2013), pp. 1529–1534.

[7] S. Ibrir, Observer based control of a class of time delay nonlinear systems,
Automatica, 47 (2011), pp. 388–394.

[8] I. Karafyllis and M. Krstic, Nonlinear stabilization under sampled and de-
layed measurements and with inputs subject to delay and zero-order hold, IEEE
Transactions on Automatic Control, 57 (2012), pp. 1141–1154.

[9] I. Karafyllis and M. Krstic, Predictor–based output feedback for nonlinear
delay systems, Preprint, arXiv:1108.4499 (2012).

[10] I. Karafyllis, M. Krstic, T. Ahmed-Ali, and F. Lamnabhi-Lagarrigue,
Global stabilization of nonlinear delay systems with a compact absorbing set, Jour-
nal International Journal of Control, 87 (2013), pp. 1010–1027.

[11] N. Kazantzis and R. A. Wright, Nonlinear observer design in the presence of
delayed output measurements, Systems and Control Letters, 54 (2005), pp. 877–
886.

[12] M. Krstic, Delay compensation for nonlinear adaptive and PDE systems,
Birkhauser Boston, 2009.

[13] K. Subbarao and P. Muralidhar, State observer for linear systems with
piecewise constant output delays, IET Control Theory and Applications, (2009),
pp. 1017–1022.

[14] A. R. Teel, Connections between razumikhin-type theorems and the iss nonlinear
small gain theorem, IEEE Trans. Automat. Control, 43 (1998), pp. 960–964.

[15] B. Zhou, Z. Lin, and G.-R. Duan, Truncated predictor feedback for linear
systemswith long time-varying delay, Automatica, 48 (2006), pp. 2387–2399.

25


