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Abstract

The Leader-Following consensus problem is investigated for large classes of non-
linear identical agents. Su�cient conditions are provided for achieving consensus
via state and measurement feedback laws based on a local (i.e. among neighbors)
information exchange. The leader’s trajectories are assumed bounded without knowl-
edge of the containing compact set and the agents’ trajectories possibly unbounded
under the action of a bounded input. Generalizations to heterogeneous agents and
robustness are also discussed.
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1 INTRODUCTION

Multiagent systems and their collective behavior are topics of increasing interest due to the wide fields of applications,
such as robotics, telecommunications and biology. The extensive literature on these topics focuses mainly on linear models
(e.g.4, 20, 22, 23, 27 and the references therein). The range of issues considered goes from the general consensus problem, where
the agents have to reach a common objective, to the leader consensus problem, where the agents’s objective consists in tracking
a given dynamics called leader. In this sense the leader following consensus problem is a particular problem of consensus. In
general the leader’s trajectory is assumed to be generated by a suitable dynamic system and the output of each agent (the track-
ing output) must track the leader’s output (or trajectory). Several results are available in the literature: in the linear deterministic
case we recall12, 17, 24 where delays are considered,11, 16, 20, 21 where the topology of the network is switching.

Subsequently, agents described by nonlinear dynamics were considered for the first time in18 and then in15, where the non-
linearities in each agent dynamics is a convex combination of the nonlinearities of its neighbors. In10, instead, the leader has a
constant trajectory, in9 the nonlinearity in the agents dynamics is assumed to be lower triangular and globally Lipschitz.

In19 state feedback consensus laws (using the tracking outputs of each agent and its neighbors) were designed assuming each
agent identical and passive with respect to its tracking output (controllers (6), (7) in19). Subsequently, the tracking outputs are
estimated through invariant-manifold-based observers using the measured outputs to implement the state feedback consensus
laws as output feedback laws. However, globally Lipschitz conditions are required on the zero dynamics of the agents (assumption
(H2.1) of theorem 1) and global stability of suitable incremental systems associated to the agents’ dynamics (systems (19) in19)
is required having the e�ect of trivializing the design of the observers.

In29 feedback consensus laws are designed for each heterogeneous agent using its tracking output and state together with the
neighboring agents’ tracking output (controllers (7) in29). The leader’s dynamics is assumed to be linear and internally stable.
Uncertainties modeled as constant parameters in a fixed compact set are included in the agents’ dynamics. Practical design for
robust consensus laws is illustrated on a benchmark class of lower triangular heterogeneous agents.

†This work was supported by MIUR.
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In5 and, subsequently, in7 an output regulation approach is adopted for achieving consensus. Agents’ consensus is first
achieved on the leader’s dynamics through a local internal model for each agent which is then used for designing local output
regulators. Heterogeneous agents are considered while the leader’s dynamics is a linear system in prime form (A,B,C) in state
feedback interconnection with a nonlinearity (exosystem (7) in7) and it is assumed to have an attractive known compact set
under the action of external inputs. The uncertainties are modeled as constant parameters in a fixed compact set. Consensus laws
for each agent are designed using its tracking output together with the neighboring agents’ measured outputs and local internal
models’ states (controllers (4) in7) with the assumptions that the measured outputs are equal to the tracking outputs. Practical
design for robust consensus laws is illustrated on a benchmark class of heterogeneous agents in global normal form.

Finally, in13, 6 heterogeneous agents are considered while the leader’s dynamics is assumed to be linear and internally stable.
Consensus laws for each agent are designed using its tracking output and (partial) state together with the neighboring agents’
measured outputs (controllers (4) in13), again with the assumptions that the measured outputs are equal to the tracking outputs.
Uncertainties modeled as constant parameters in a fixed compact set are also included in the agents’ dynamics and practical
design for robust consensus laws is illustrated on a benchmark class of lower triangular heterogeneous agents.

In the present paper the leader-following consensus problem is investigated for nonlinear systems under general assumptions
and considering di�erent frameworks (preliminary results have been given in2):

• (leader-following consensus for identical agents) The leader’s dynamics is generically nonlinear with bounded trajectories
for all times, neither knowledge of the compact set in which the trajectories are contained nor existence of globally
attractive compact sets under the e�ect of external inputs (compare with7). Under this regard, our boundedness assumption
may follow naturally for instance from any agents’ passivity property. Relatedly, the agents’ dynamics, identical to the
leader’s, have no finite escape time under the e�ect of external inputs (29). The consensus law for each follower is designed
using only its measured output together with the neighboring agents’ measured outputs (compare with6,7, 13, 26 and29).
The consensus laws design is split up into two steps: in the first step consensus laws are designed with neighbors’ state
feedback, in the second step observers are introduced to recover the local state information and output consensus laws are
obtained using a separation principle (i.e. state feedback laws are recovered when estimation errors are zero). The dynamics
of each agent has a controllable and observable linearization and a general form with its nonlinearities assumed to be
incrementally homogeneous in the upper bound1, a su�ciently general assumption for achieving stability by feedback with
a guaranteed region of attraction for wide classes of nonlinear systems including upper/lower triangular and intertwined
structures. At this stage we do not consider the robustness issue as in13 and29, where uncertainty is modeled as a constant
unknown parameter with values in some known compact set or a bounded time-varying disturbance.

• (leader-following consensus for heterogeneous agents) In Section 8.3 it is shown how to modify the assumptions in order
to cope with heterogeneous agents. This extension brings our contribution to a closer comparison with6,7, 13, 26 and29. As
a matter of fact we give additional assumptions in terms of the existence of a globally invariant manifold on which leader-
following consensus is achieved, exactly as in the case of consensus in the aforementioned contributions. Therefore, the
problem of achieving leader-following consensus boils down to make this invariant manifold globally attractive using the
stabilization techniques in the case of identical agents.

• (leader-following consensus for identical agents with uncertainties) In Section 8.4 it is shown how to modify the initial
assumptions when identical agents and time-varying bounded uncertainties are considered. In this case a disturbance-to-
consensus IIS-type result is obtained, with a result comparable to29 (although with the restrictions on the class of systems
enlightened above) while in29 consensus is achieved despite the unknown constant parameter.

The paper is organized as follows: in Section 2 the consensus problem is stated. In Section 3 some recalls on the notations and
the properties of incrementally homogeneous systems are given. In Section 4 the error dynamics associated to the agents with
respect to the leader is characterized using the assumption of incremental homogeneity and feedback laws are designed using
local (i.e. from the neighbors) state information to make all the agents achieve consensus with the leader for a prescribed compact
set of initial leader’s state configurations. In Section 5 we assume that each agent exchanges with its neighbors the residual
between the output consensus error and its dynamical estimate (implemented by some observer) and we design observers for
reconstructing the local missing information on the consensus error. In Section 6 we put together the result of Sections 4 and 5
to design feedback laws using local output information to make all the agents achieve consensus with the leader for a prescribed
compact set of initial leader’s state configurations. These feedback laws are obtained from state feedback laws replacing the
states of neighboring agents with dynamical estimates implemented by local observers. In Section 7 simulations are given for
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identical agents given by a Van Der Pol oscillator. In Section 8.3 the case of heterogeneous agents and in Section 8.4 the case
of identical agents and time-varying uncertainties are discussed.

2 PROBLEM STATEMENT

Consider the multiagent system
Üx(0)(t) = Ax(0)(t) + f (x(0)(t)),
y(0) = Cx(0)(t),

(1)

Üx(i)(t) = Ax(i)(t) + f (x(i)(t)) + Bu(i)(t),
y(i) = Cx(i)(t), i À [1,N],

(2)

consisting of a leader (eq. (1)) with x(0) À Rn, y(0) À R and f a locally Lipschitz function, and N identical agents (eq. (2)),
where x(i) À Rn, y(i) À R and u(i) À R, i À [1,N], are the state, measured output and control input of the i-th agent. We will
assume that (2) is controllable and observable in the first approximation around the origin and, without loss of generality, the
pair (A,B) is in the form

A =

r̀rrrp
0 1 5 0

0 0 7 0

4 4 5 1

0 0 5 0

assssq
, B =

r̀rrrp
0

4
0

1

assssq
. (3)

Consequently f (x(0)) in (1) can be written as

f (x(0)) = BKx(0) + f
0

(x(0)),
)f

0

(x(0))
)x(0)

x(0)=0 = 0. (4)

Furthermore we initially restrict the study to the case in which the matrix C is in the form

C =

�
1 0 5 0

�
(5)

so that the triple (A,B,C) is in prime form. Such an assumption is taken only in order to simplify the notation. The general
case with the pair (A,C) observable but with no special assumptions on C is discussed in Section 8.1, while how to handle
nonlinearities in the output is discussed in section 8.2.

Moreover, on the leader’s and, respectively, agents’s trajectories we assume that

(A0) (Leader) The trajectories of the system (1) are bounded for all t g 0 and initial conditions x(0)(0).

(A1) (Agents) There exist non-decreasing continuous functions ↵, �, � : [0,+ÿ) ô [0,+ÿ) such that the trajectories of the
system (2) satisfy

sup

sÀ[0,t]
Òx(i)(s)Ò f ↵(t) + �(Òx(i)(0)Ò) + �( sup

sÀ[0,t]
u(i)(s)), ≈i À [1,N], (6)

for all t g 0, initial conditions x(i)(0) and continuous input function u(i)(�).

Assumption (A0) requires that the leader’s trajectories x(0)(t) are bounded for all times, without any knowledge of the containing
compact set (depending on the initial condition x(0)(0)). The boundedness of the leader’s trajectory (or the consensus trajectory)
is a common hypothesis in most papers (7, 13, 6, 26 and29), specifically the compact set is assumed to be known or the existence
of a known attracting compact set is assumed for the dynamical system which generates the leader’s trajectories (exosystem).
In this sense, our assumption is more general, since the knowledge of the compact set is not required. From a practical point of
view, it is reasonable to assume boundedness of the leader’s trajectories. Moreover, unbounded leader’s trajectories would give
place to unbounded controllers. Moreover, the dynamical system which generates the leader’s trajectories ((1) in our paper) is
assumed to be linear or globally Lipschitz in other similar contexts (7, 13, 6, 26 and29).

Assumption (A1) is a restriction on the agents’ trajectories, which may not escape to infinity in finite time as long as the
input is bounded. ISS properties of the agents’ dynamics with respect to fixed compact sets have been required in papers as7

(assumption 2),13 (assumption 5) and29 (formulas (44), (45)). In this sense and when the comparison is carried out in a leader
following framework, our assumption is more general, since we simply require that the agents’s trajectories do no not explode
in finite time under the e�ect of bounded inputs. The technical reason for this weaker assumption is that it is su�cient to give
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the agents’ controllers the time to recover the information on the (unknown) magnitude of the leader’s state while maintaining
their state bounded. It should be remarked that13 and29 are focused on the problem of achieving global agents’ consensus over a
network (i.e. no leaders) and, mainly, the ISS assumptions are motivated by the global achievement of the consensus. However,
in a semiglobal framework as in the present paper, assumption (A1) is still weaker.

Remark 1. Van Der Pol oscillators

Üx
1

= x
2

(7)
Üx
2

= (1 * x2
1

)x
2

* x
1

+ u (8)

satisfy (A0) and (A1) with x(i) = (x
1

, x
2

)

T , f (x(i)) = (0, (1 * x2
1

)x
2

* x
1

)

T , for i À [0,N]. Indeed, if V (x) = ÒxÒ2 we have
ÜV (t) f 3V (t) + Òu(t)Ò2 which implies (6) with ↵(s) = 2e6s, �(s) = 4s4 and �(s) = 4s4.

Many other benchmark examples can be given that satisfy (A0) and (A1) such as the following FitzHugh-Nagumo-type
oscillator

Üx
1

= x
2

+ a * bx3
1

(9)
Üx
2

= x
2

* x3
2

* x
1

+ cos t + u (10)

with parameters a, b > 0 (time-varying terms as cos t are not considered in (1), (2) for simplicity) or the tunnel-diode

Üx
1

= *

1

C
x
1

*

1

C
h(x

2

) (11)

Üx
2

= *

R
L
x
1

*

1

L
x
2

+ sin t + 1

L
u (12)

with nonlinearitiy h, resistance R and capacitance C .

The information exchange between the N agents and the leader will be represented by a graph G = (V , E), where V =

{1, 2… ,N} is the set of vertices representing the N agents and E œ V ù V is the set of edges of the graph. Edge (i, j),
indicates that agents i and j can exchange information. The graph is undirected if the edges (i, j) and (j, i) À E are considered
to be the same. Two nodes i and j are neighbors to each other if (i, j) À E . The set of neighbors of node i is denoted byN (i)

:= {j À V : (j, i) À E , j ë i}. A path is a sequence of connected edges in a graph. The graph is connected if there is
a path (e.g. a sequence of connected edges) between every pair of vertices. The adjacency matrix Q = [qij] of a graph G is an
N ùN matrix, whose (i, j)-th entry qij is 1 if (i, j) is an edge of G and 0 if it is not or equivalently if the agent j is a neighbor of
the agent i. The degree matrix D of G is a diagonal matrix whose i-th diagonal element is equal to the cardinality of N (i). The
Laplacian of G is aNùN matrix L = [lij] such that L = *Q+D. Moreover, L is symmetric if and only if the graph is undirected
and L has all its eigenvalues in the closed right half plane and one eigenvalue at zero if and only if the graph is connected.
The leader is represented by vertex 0 and information is exchanged between the leader and the agents which are neighbors of
the leader. Then, we have a graph õG, which consists of graph G, vertex 0 and edges between the leader 0 and its neighbors. LetL
0

= diag{l1

0

,5 ,lN
0

} where li
0

is 1 if the leader is a neighbor of agent i and 0 else. The undirected graph õG is connected if
and only if öL = L + L

0

is positive definite20.
In this network, for each agent we consider control inputs using local (i.e. from the neighbors) information to make all the N

agents achieve consensus with the leader for a prescribed compact set of initial leader’s state configurations. We first consider
the case of full state information (i.e. each agent exchanges locally the consensus error) and, then, using state reconstruction, we
consider the case of partial information (i.e. each agent exchanges locally the output and the estimate of the consensus error).

In the case of full state information, the control input u(i) for the agent i, i À [1,N], is a function v(⇣ (i)) of the consensus law

⇣ (i) :=
N…
j=1

lij(x
(0)

* x(j)) + li
0

(x(0) * x(i)) (13)

where lij are the entries of the Laplacian of G. By the consensus law (13) each agent i exchanges its consensus error x(0) * x(i)

with its neighbors: indeed,
≥N
j=1 l

i
j(x

(0)

* x(j)) =
≥
jÀN (i) ((x(j) * x(0)) * (x(i) * x(0))). Also notice that by the properties of L

⇣ (i) =
N…
j=1

lij(x
(0)

* x(j)) + li
0

(x(0) * x(i)) = *
N…
j=1

lije
(j)

+ li
0

e(i) (14)
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where e(i) = x(i) * x(0) is the consensus error for the agent i. For any given set, let ⌦ œ Rn with ⌦ùN =

N times

©≠≠≠Æ≠≠≠™
⌦ ù5 ù ⌦.

Semiglobal Leader Following with Full State Information (Problem I).
Consider the multiagent network (1), (2). Given a fixed communication topology G, described by an undirected and connected
graph õG, together with a compact set ⌦ œ Rn, containing the origin, find a state feedback u(i) = v(⇣ (i)), i À [1,N], such that
the dynamics of the consensus error e = (e(1)T ,5 , e(N)

T
)

T , e(i) = x(i) * x(0), i À [1,N], associated to (1), (2), is asymptotically
stable with basin of attraction containing ⌦ùN .

In other words, consensus with the leader must be achieved by all the agents for all the leader’s state trajectories which at
initial time may di�er from each agent’s state trajectories by a prescribed amount (quantified by the compact set ⌦). Such a
problem is addressed in Section 4.

In the case of partial information, the control input u(i) for the agent i, i À [1,N], is defined as follows:

(i) introduce for each agent i the consensus law

� (i)
=

N…
j=1

lij(y
(j)
* y(0) * C⇠(j)) + li

0

(y(i) * y(0) * C⇠(i)), i À [1,N], (15)

i.e. each agent exchanges locally its residual y(i) * y(0) *C⇠(i) where ⇠(i) is an estimate of the consensus error e(i) (indeed,≥N
j=1 l

i
j(y

(j)
* y(0) * C⇠(j)) = *

≥
jÀN (i) ((y(j) * y(0) * C⇠(j)) * (y(i) * y(0) * C⇠(j)))),

(ii) the estimate ⇠(i), i À [1,N], of the consensus error e(i), i À [1,N], is provided by an observer of the form

Ü⇠(i) = A⇠(i) + Bu(i) + �f (S(⇠(0)),S(⇠(i))) +w(� (i)
) (16)

where S is a suitable saturation of ⇠(0) and ⇠(i) and �f (x(0), x(i)) := f (x(0)) * f (x(i)) and for some function w(�) of the
consensus law (15). According if the leader’s state is measured or not, ⇠(0) is x(0) or a suitable estimate provided by an
observer of the form

Ü⇠(0) = A⇠(0) + f (S(⇠(0))) +w(y(0) * C⇠(0)), (17)

(iii) the control input u(i) for the agent i À [1,N], is defined from the function v(�) (Problem I) as follows

u(i) = v( Ç⇣ (i)) (18)

where the estimated consensus law Ç⇣ (i) is obtained from the consensus law ⇣ (i) in (14) by replacing each consensus error
e(i), i À [1,N], with its estimate ⇠(i), i À [1,N].

Semiglobal Leader Following with Partial State Information (Problem II).
Consider the multiagent network (1), (2). Given a fixed communication topology G, described by an undirected and connected
graph õG, together with a compact set ⌦ œ Rn, containing the origin, find a dynamic measurement feedback (16), (17), (18)
such that the dynamics of the consensus error e = (e(1)T ,5 , e(N)

T
)

T , e(i) = x(i) * x(0), i À [1,N], associated to (1), (2), is
asymptotically stable with basin of attraction containing ⌦ùN .

Problem II is solved in Section 6 by using the results of Section 4 and those in Section 5 where dynamical observers are
designed to to reconstruct the consensus errors among the neighboring agents. For purpose of illustration, we split the presen-
tation of the results into two parts: 1) the leader’s state trajectories are contained in some known compact set ⌦ (sections 4-6)
and 2) no containing (or attractive) set ⌦ is known.

3 RECALLS AND PRELIMINARY RESULTS

Notations and definitions recalled hereafter are issued from1. More precisely,
÷Rn is the set of n-dimensional real column vectors. Rn

> (R(N)g ) denotes the set of vectors in Rn with real positive (respectively
non-negative) entries. A similar notation is used for matrices.
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÷ For any V À Rpùn we denote by Vi,j the (i, j)-th entry of V . For any v À Rn, diag{v} is the diagonal n ù n matrix with
diagonal elements v

1

,… , vn; vki will denote the i-th component of the k-th block. We retain a similar notation for functions. 1m
will denote the vector of Rm with all the m components equal to 1.
÷ a denotes the absolute value of a À R, ÒaÒ the Euclidean norm of a À Rn, ÒAÒ the norm of A À Rnùn induced from the

Euclidean norm ÒaÒ, while ÍÍAÎÎ is the matrix obtained from A by substituting each element ai,j with its absolute value ai,j.
For any v,w À Rn, v û w means that vi f wi for all i À [1,N].
÷ We denote by Cj

(X,Y), with j g 0, X œ Rn and Y œ Rp, the set of j-times continuously di�erentiable functions
f : X ô Y. We also have the following notation: for any function f : Rn ô Rp and for each pair of points x®, x®® À Rn

�f (x®, x®®) = f (x®) * f (x®®) (19)

and when f is the identity function �(x®, x®®) = x® * x®®.
÷ Given a mù n matrix A and a pù q matrix B the Kronecker product A‰B is a (mp)ù (nq) matrix P , where the element aij

in A is replaced by the block aijB. If A and B are square and invertible then (A‰B)*1 = A*1‰B*1. Given the matrices A, B,
C and D, and assuming the products AC and BD defined, then, (A ‰ B)(C ‰ D) = (AC)‰ (BD). With such notation, for a
given f À Rn, 1m‰ f is the vector of Rmùn equal to (f T ,… , f T )T . When no confusion is possible the subindex mwill be omitted.
÷ A saturation function �h with saturation levels h À Rn

> is a function �h(x) := (�h
1

(x
1

),… , �hn(xn))
T , x À Rn, such that for

each i À [1,N] and xi À R:

�hi(xi) =
<
xi xi f hi
sign(xi)hi otherwise. (20)

÷ For any ✏ À R> and for any vector r À Rn
>, we define ✏r := (✏r1 ,5 , ✏rn)T . The dilation of a vector x À Rn with weights r is

denoted by ✏r ↵ x and is given by ✏r ↵ x := (✏r1x
1

,5 , ✏rnxn)T . Note that for any x, y À Rn, r
1

, r
2

À Rn
> and ✏ À R>,

✏r1 ↵ ✏r2 ↵ x = ✏r2 ↵ ✏r1 ↵ x = ✏r1+r2 ↵ x, (21)

and

(✏r1 ↵ x)T (✏r2 ↵ y) = (✏r2 ↵ x)T (✏r1 ↵ y) = (✏r1+r2 ↵ x)T y = xT (✏r1+r2 ↵ y). (22)

3.1 Homogeneity and Incremental Homogeneity in the generalized sense
To cope with nonlinearities, we will use the notions of generalized homogeneity and incremental homogeneity in the upper
bound introduced in1 in the context of semi-global stabilization and observer design problems. Here we recall these notions in
a slightly more general form. Let �f (x®, x®®) := f (x®) * f (x®®) and if f is the identity we simply write �(x®, x®®) := x® * x®®.

Definition 1. A function �✏ À C0

(Rn,Rl
), ✏ À R>, is said to be incrementally homogeneous (i.h.) with quadruple (r, d, h,�) if

there exist d À Rl, h À Rn, r À Rn
> and � À C0

(Rn
ùRn,Rlùn

) such that for all ✏ > 0 and x®, x®® À Rn

��✏(✏r ↵ x®, ✏r ↵ x®®) = ✏d ↵
�
�(x®, x®®)�(✏h ↵ x®, ✏h ↵ x®®)

�
The notion of incremental homogeneity incapsulates as a particular case the notion of homogeneity in the classical sense.

When the variation � of f is computed in between the dilated point x® À Rn and x®® = 0, with f (0) = 0, we say that �✏ is
homogeneous with quadruple (r, d, h,�®) with �®(x) = �(x, 0).
Example. The function �✏(x) := x

1

+ x3
2

(in this case �✏ does not depend on the dilating parameter) is i.h. with quadruple
(r, 0, h,�), where r := (1, 2)T , h := (1, 6)T and �(x®, x®®) := (1, (x®

2

)

2

+ (x®®
2

)

2

+x®®
2

x®
2

). The function �✏(x) := ✏(x
1

+x3
2

) (here
�✏ does depend on the dilating parameter) is i.h. with quadruple (r, 1, h,�) and the same � above.

There are functions, like sin x, which are not i.h. but behave in the upper bound as an i.h. function. This motivates the following
definition (ÍÍaÎÎ denotes the column vector of the absolute values of the elements of a À Rn).

Definition 2. A function �✏ À C0

(Rn,Rl
), ✏ À R>, is said to be incrementally homogeneous in the upper bound (i.h.u.b.) with

quadruple (r, d, h,�) if there exist d À Rl, h À Rn, r À Rn
>, � À C0

(Rn
ùRn,Rlùng ) such that for all ✏ g 1 and x®, x®® À Rn⇣⇣

��✏(✏r ↵ x®, ✏r ↵ x®®)
⌘⌘
û ✏d ↵

�
�(x®, x®®)

⇣⇣
�(✏h ↵ x®, ✏h ↵ x®®)

⌘⌘�
When the variation � of f is computed in between the dilated point x® À Rn and x®® = 0, with f (0) = 0, we say that �✏ is

homogeneous in the upper bound with quadruple (r, d, h,�®) with �®(x) = �(x, 0).
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Example. The function �✏(x) := ✏
�
x
2

x3
2

 (x
1

)

�T ,  À C0

(R,R) any bounded and globally Lipschitz function, is i.h.u.b. with
triple (r, d, h,�), where r := (1, 2)T , d := (3, 7)T , h := (1, 0)T and the matrix �(x®, x®®) defined as

[�(x®, x®®)] =

H
0 1

(x®®
2

)

3

g(x®
1

)*g(x®®
1

)x®
1

*x®®
1

 (x®
2

)

2

+ (x®®
2

)

2

+ x®
2

x®®
2

g(x®
1

)
I
.

Remark 2. The properties of incremental homogeneity are discussed in1. Here, we only notice that if�✏ is i.h.u.b. with quadruple
(r, d, h,�) then  ✏(x, y) = ��✏(y + x, x) is h.u.b. with quadruple (r, d, h, ) with  (x, y) = (0,�(y + x, x)).

4 CONSENSUS WITH FULL STATE INFORMATION

In this Section we see how to solve Problem I which is instrumental to solve Problem II. As a matter of fact, out design approach
is based on a kind of separation principle for output feedback design where an output feedback controller is obtained from a state
feedback controller by dynamically reconstructing the state (through observers) and replacing in the state feedback controller
the state with its dynamical estimate.

4.1 The error dynamics
Before going into the technical details, let us rewrite the given agents’ and leader’s dynamics into the coordinate framework
which describes the error dynamics e(i) = x(i) * x(0), i À [1,N], between the leader’s trajectory and each follower’s trajectory.
Setting e =

⇠
e(1)T 5 e(N)

T
⇡T

and u =
⇠
u(1)T 5 u(N)

T
⇡T

, from (1), (2)

Üx(0) = Ax(0) + f (x(0)) (23)
Üe = (IN ‰ A)e + (IN ‰ B)u + F (x(0), e) (24)

where, using the notation (19),

F (x(0), e) = r̀rp
�f (e(1) + x(0), x(0))

4
�f (e(N)

+ x(0), x(0))

assq . (25)

The idea is to change the error coordinates in such a way to decouple the linearization of the collective error dynamics (25).

4.2 The action of a class of linear change of coordinates
Now we will study the properties of a certain class of coordinates transformations, which can be used to decouple the linearization
of the collective error dynamics (25). To this aim, given an invertibleNùN matrix T , consider the class of change of coordinates0

x(0)
e

1
ô

0
x(0)
õe

1
, õe := (T ‰ In)e. (26)

Lemma 1. Let T be an invertibleN ùN matrix, and consider the transformation (26). In the new coordinates system (23), (24)
reads

Üx(0) = Ax(0) + f (x(0))
Üõe = (IN ‰ A)õe + (T ‰ B)u + õF (x(0), õe ),

(27)

where
õF (x(0), õe ) = (T ‰ In)F

�
x(0), (T *1 ‰ In)õe

�
(28)

Proof. Starting from (24) under the transformation (26), the transformed dynamics is given by
Üõe = (T ‰ In)

�
(IN ‰ A)e + (IN ‰ B)u + ÇF (x(0), e

� ÛÛÛe=(T *1‰In)õe = (IN ‰ A)õe + (T ‰ B)u + õF (x(0), õe )

where õF (x(0), õe ) is given by (28).
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The particular structure of the change of coordinates considered guarantees that any assumption of incremental homogeneity
on f in (1) reflects into an analog assumption on õF in (27). In particular, on account of Remark 2 of the previous section, if
f : Rn ô Rn in (2) is i.h.u.b. with quadruple (r, r + d, h,�), where � = ÍÍBKÎÎ+�

0

with �
0

(0, 0) = 0 and for some weights
r À Rn

> and degrees d, h À Rn, then F , defined by (25), is h.u.b. with quadruple
⇠
1N+1

‰ r, 1N ‰ (r + d), 1N+1

‰ h, ö�
⇡

and

ö
�(x(0), e) = r̀rp

0 �(e(1) + x(0), x(0)) 5 0
4 0 7 0
0 0 5 �(e(N)

+ x(0), x(0))

assq , Ç�(0, 0) =
�
0Nù1 IN

�
‰ ÍÍBKÎÎ,

where the 0’s are matrices with consistent dimensions and since �(0, 0) = ÍÍBKÎÎ. As it will be shown in the next lemma,
under the change of coordinates (26), the h.u.b. function F defined by (25) transforms into õF which retains the h.u.b. properties
and with the same weights and degrees as F . Recall that A û B, A,B À Rmùl, means Aij f Bij for all i = 1,…m, j = 1,… , l,
while max✓ÀQ�(✓), �(✓) À Rmùl for each ✓ À Rn and compact Q œ Rn, represents any matrix M such that �(✓) û M for all
✓ À Q. If Q(�) is a family of compact sets Q(�) œ Rn for each � À R> and such that Q(�) ô {0} as � ô 0 then max✓ÀQ(�)�(✓)
is taken in such a way that max✓ÀQ(�)�(✓) ô �(0) as � ô 0.

Lemma 2. Assume that f : Rn ô Rn in (2), is i.h.u.b. with quadruple (r, r + d, h,�), where � = ÍÍBKÎÎ + �
0

with
�

0

(0, 0) = 0. Then under the change of coordinates (26) the function õF : R(N+1)n ô RNn defined by (28) is h.u.b. with
quadruple

⇠
1N+1

‰ r, 1N ‰ (r + d), 1N+1

‰ h, õ�
⇡

, where õ� is given by

õ
�(x(0), õe ) =

�ÍÍT ÎÎ‰ In
�0

maxÒeÒfÒ(ÍÍT *1ÎÎ‰In)õe Òö�(x(0), e)
1
diag

�
In , ÍÍT *1ÎÎ‰ In

�
(29)

Moreover õ�(0, 0) =
�
0Nù1 ÍÍT ÎÎÍÍT *1ÎÎ�‰ ÍÍBKÎÎ.

Proof. First note that given a N ùN matrix Q, then '(⇠) := (Q‰ In)⇠, ⇠ À RNn, is h.u.b. with quadruple�
1N ‰ r, 1N ‰ (r + d),*1N ‰ d, ÍÍQÎÎ‰ In

�
, (30)

where d can be chosen in an arbitrary way. This fact follows directly from the definition of homogeneity in the upper bound, the
structure of the matrix Q‰ In and consequently of ÍÍQÎÎ‰ In, and equation (21). In fact, for q®, q®® À RNn

(Q‰ In)
�
✏1N‰r ↵ (q® * q®®)

�
= ✏1N‰r ↵

�
(Q‰ In)(q® * q®®)

�
so that ⇣⇣

'(✏1N‰r ↵ q®) * '(✏1N‰r ↵ q®®)
⌘⌘

= ✏1N‰(r+d) ↵
��ÍÍQÎÎ‰ In

� ⇣⇣
✏1N‰(*d) ↵ (q® * q®®)

⌘⌘�
Accordingly v ô '

1

(v) := (T ‰ In)v is h.u.b. with quadruple
�
1N ‰ r, 1N ‰ (r + d),*1N ‰ d, ÍÍT ÎÎ‰ In

�
, obtained

by setting Q = T and d = f in (30). Similarly one can conclude that w ô '
2

(w) := (T *1 ‰ In)w is h.u.b.
with quadruple

�
1N ‰ r, 1N ‰ (r * h), 1N ‰ h, ÍÍT *1ÎÎ‰ In

�
, obtained by setting Q = T *1 and d = *h in (30), as

well as with quadruple
�
1N ‰ r, 1N ‰ r, 1N ‰ 0, ÍÍT *1ÎÎ‰ In

�
, obtained by setting again Q = T *1 and d = 0 in

(30). By extension, (w
1

,w
2

) ô '
3

(w
1

,w
2

) := (w
1

,'
2

(w
2

)), w
1

À Rn and w
2

À RNn, is h.u.b. with quadruple�
1N+1

‰ r, 1N+1

‰ (r * h), 1N ‰ h, diag{In , ÍÍT *1ÎÎ‰ In}
�
.

We have already proved that, under the assumptions of lemma 2, F , defined by (25), is h.u.b. with quadruple⇠
1N+1

‰ r, 1N ‰ (r + d), 1N+1

‰ h, ö�
⇡

. Using the composition rule in1, we conclude that F (w
1

,'
2

(w
2

)) = (F˝'
3

)(w
1

,w
2

)

is h.u.b. with quadruple0
1N+1

‰ r, 1N ‰ (r + d), 1N+1

‰ h,
0

maxÒeÒfÒ(ÍÍT *1ÎÎ‰In)õe Ò ö�(x(0), e)
1
diag

�
In , ÍÍT *1ÎÎ‰ In

�1
.

Using once more the composition rule in1, (w
1

,w
2

) ô '
1

(F (w
1

,'
2

(w
2

))) = ('
1

˝F˝'
3

)(w
1

,w
2

) is i.h.u.b. with quadruple�
1N+1

‰ r, 1N ‰ (r + d), 1N+1

‰ h, É�
�
, where õ� is given in (29). Consequently, by (29)

õ
�(0, 0) =

�ÍÍT ÎÎ‰ In
� ö
�(0, 0)diag

�
In , ÍÍT *1ÎÎ‰ In

�
=

�ÍÍT ÎÎ‰ In
� ��

0Nù1 IN
�
‰ ÍÍBKÎÎ� diag�In , ÍÍT *1ÎÎ‰ In

�
=

�ÍÍT ÎÎ‰ In
� �

0Nnùn ÍÍT *1ÎÎ‰ ÍÍBKÎÎ� = �
0Nù1 ÍÍT ÎÎÍÍT *1ÎÎ�‰ ÍÍBKÎÎ. (31)
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4.3 The full state information feedback law
Next, we design for each agent the control input u(i) which solves Problem I. We are looking for a linear feedback law of the
form u(i) = ⇧⇣ (i), i À [1,N], where ⇧ À (Rn

)

< is a row vector and ⇣ (i) is the consensus law for the i-th agent, so that:

u(i) = ⇧⇣ (i) = ⇧
⌧ N…
j=1

lij(x
(0)

* x(j)) + li
0

(x(0) * x(i))
�
= *⇧

⌧ N…
j=1

lije
(j)

+ li
0

e(i)
�
.

Therefore, since öL = L + L
0

, with L
0

= diag(l1
0

,5 , lN
0

) and L the Laplacian, the overall control input is

u =

�
u(1) 5 u(N)

�T
= *(IN ‰ ⇧)( öL‰ In)e (32)

In the coordinates (26)

u =

�
u(1) 5 u(N)

�T
= *(IN ‰ ⇧)

⌧
(

öL‰ In)(T *1 ‰ In)õe
�
= *(

öLT *1 ‰ ⇧)õe.
Since öL is symmetric and definite positive ( õG is undirected and connected,20), it is diagonalizable by a transformation T i.e.
T öLT *1 = L = diag( Ñ�

1

,5 , Ñ�N ) and has positive eigenvalues Ñ�
1

,5 , Ñ�N . For the closed-loop system resulting from (27)

(T ‰ B)u = (T ‰ B)
⇠
(

öLT *1)‰ ⇧⇡ õe = (T öLT *1)‰ (B⇧)õe = L‰ (B⇧)õe

and with õe = (T ‰ In)e
Üx(0) = Ax(0) + f (x(0))
Üõe =

⇠
(IN ‰ A) * L‰ (B⇧)

⇡
õe + õF (x(0), õe )

(33)

In20, relying upon the fact that each agent is linear, it is shown that the change of coordinates õe = (T ‰ In)e is such that (33)
consists ofN+1 independent dynamics, including the leader dynamics. In a nonlinear context this is not true any more as shown
in the next lemma. However even if we do not have perfectly decoupled nonlinear dynamics, we still preserve the incremental
homogeneity property, which is su�cient for achieving consensus.

In order to get ready for the proof of the main result of this Section, we want to rewrite (33) in some more tractable form. To
this aim, let us permute the coordinates (x(0), õe ) ;ô (x(0), e ) = P (x(0), õe ) as follows (recall that õe = (õe (1)

T ,5 , õe (N)

T
)

T )

ej = (õe (1)

j ,5 , õe (N)

j )

T , e = (e
1

T ,5 , en
T
)

T

i.e. collect together all the j-th coordinates of each agent, j À [1,N]. Accordingly, if õF = (

õF (1)

T ,5 , õF (N)

T
)

T set

F j = (

õF (1)

j ˝P *1,5 , õF (N)

j ˝P *1)T , F = (F
1

T
,5 ,F n

T
)

T

A = A‰ IN , B = B ‰ L, ⇧ = ⇧‰ IN .
(34)

With these positions,
Üx0 = Ax(0) + f (x(0))
Üe = (A * B⇧)e + F (x(0), e).

(35)

Clearly, if f is i.h.u.b. with quadruple (r, r + d, h,�) and with the help of Lemma 2, then F is h.u.b. with quadruple⇠
r‰ 1N+1

, (r + d)‰ 1N , h‰ 1N+1

,�
⇡

, where � is defined starting from õ
� = (

õ
�

T
1

,5 , õ�TN )
T in the following way:

�j = ((

õ
�

(1)

j ˝P *1)T ,5 , (õ�(N)

j ˝P *1)T )T ˝P *1, � = (�

T
1

,5 ,�
T
n )

T (36)

with

�(0, 0) =
�
0Nnùn B ‰ ÍÍKÎÎ‰ (ÍÍT ÎÎÍÍT *1ÎÎ)� . (37)

Lemma 3. Assume that f : Rn ô Rn in (2), is i.h.u.b. with quadruple (r, r + d, h,�), where � = ÍÍBKÎÎ + �
0

with
�

0

(0, 0) = 0. Then under the permutation (34) the function F : R(N+1)n ô RNn defined by (34) is h.u.b. with quadruple⇠
r‰ 1N+1

, (r + d)‰ 1N , h‰ 1N+1

,�
⇡

, where � is given in (36) with �(0, 0) satisfying (37).
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4.4 Achieving consensus with full state information
In this Section we will show how to choose the matrix ⇧ := ⇧‰ IN in (35) (and therefore ⇧ in (32)). To this aim, we assume
that the leader’s state trajectories are contained in some known compact set ⌦ and moreover the following basic assumptions
on the nonlinearities a�ecting the dynamics of each agent in terms of incremental homogeneity:

(A0

®

) The leader’s state trajectories are contained in some known compact set ⌦.

(A2) The nonlinear function f À C0

(Rn,Rn) in (4) is incrementally homogeneous in the upper bound with quadruple⇠
r, r + f,öf,�

⇡
, with � = ÍÍBKÎÎ +�

0

, �
0

(0, 0) = 0, and for j À [1, n * 1],

öf
1

:= f
1

,
öfj+1 := rj+1 * rj * fj , j = 2,… , n,

(38)

and

fj f öfj+1 f fj+1, j = 1,… , n * 1. (39)

Remark 3. A consequence of (38) is that the sequence {fj}jÀ[1,N]

is non-decreasing. For instance, the dynamics (8) satisfy
assumption (A2) with r

1

= 1_8, r
2

= 3_8, f
1

= 1_8, f
2

= 1_8.

The key Theorem to show achievement of consensus with the leader is the following.

Theorem 1. Assume that (A0

®

) and (A2) hold true. There exist ✏< > 1 and a positive definite diagonal � such that for all ✏ g ✏<
the feedback law u = (u(1),… , u(N)

)

T , u(i) = *⇧⇣ (i), i À [1,N], with (13) and

⇧ = BTH(In * ATH)

*1, H = �diag{✏2f1 ,5 ✏2fn} (40)

solves the Semiglobal Leader Following problem with full information for (1), (2).

Proof. Consider the error system (35) with leader dynamics. Next, consider a further change of coordinates0
x(0)
e

1
ô

0
x(0)
öe

1
, öe = Z

*1

e (41)

where
Z = INn * A

T
H , H = H ‰ IN . (42)

Notice also that

INn * A
T
H = In ‰ IN * (A‰ IN )T (H ‰ IN ) = In ‰ IN * (AT ‰ IN )(H ‰ IN ) = (In * ATH)‰ IN .

Due to the particular choice of the change of coordinates it is easily verified that
Üöe = (

öA * öBö⇧) Çe +Z
*1

F (x(0),Zöe ) (43)

where
öA = Z

*1

AZ, öB = Z
*1

B = B, ö⇧ = ⇧Z = L*1BTH .

By noting that (A
T
H)A(A

T
H) = A

T
H

2

then

Z
*1

AZ = Z
*1

(A * AA
T
H) = Z

*1

[A * AA
T
H + (A

T
H)A(A

T
H) * A

T
H

2

]

= Z
*1

[*ZA(A
T
H) + A * A

T
H

2

] = *AA
T
H +Z

*1

(A * A
T
H

2

)

so that
öA * öBö⇧ = *AA

T
H +Z

*1

(A * A
T
H

2

) *

öBö⇧ = *

öH +Z
*1

(A * A
T
H

2

)

where öH := diag{IN ,… , IN ,L}H . As a consequence,
Üöe = *

öH Çe + ö⇢(x(0), öe )

where

ö⇢(x(0), öe ) = Z
*1

⌧
(A * A

T
H

2

)öe + F (x(0),Zöe )
�
.
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By using (A2) and the conclusions in Appendix 9 we show that ö⇢ is h.u.b. with quadruple⇠
r‰ 1N+1

, (r + f)‰ 1N , f‰ 1N+1

, öR
⇡

, where

öR(x(0), öe ) := (INn * A
T
�)

*1

L⇠
0Nnùn A + A

T
�

2

⇡
+ maxÒe®ÒfÒ(INn+A T

�)öe Ò�(x
(0), e®)

MH
In 0nùNn

0Nnùn INn + A
T
�

I
(44)

with � = �‰ IN and � defined in (36). Notice also that öR can be also decomposed as

öR(x(0), öe ) :=
⇠
0Nnùn öQ(x(0), öe )

⇡
,

for some öQ such that

öQ(0, 0) = (INn * A
T
�)

*1

⌧
A + A

T
�

2

+

�
B ‰K ‰ (ÍÍT ÎÎÍÍT *1ÎÎ)� (INn + A T

�)

�
= (INn * A

T
�)

*1

⌧
A + A

T
�

2

+ B ‰
⇠�
K ‰ (ÍÍT ÎÎÍÍT *1ÎÎ)� (INn + A T

�)

⇡�
.

Moreover, it is easy to see that öe ô öHöe is i.h. with quadruple
⇠
r‰ 1N , (r + f)‰ 1N , f‰ 1N , ö�

⇡
with ö

� :=

diag{IN ,… , IN ,L}� and � = �‰ IN . With V (öe ) = Ò✏*r‰1N ↵ öe Ò2 it follows by straightforward computations that

ÜV (öe ) = )V
)öe

(öe )
$
*

öH Çe + ö⇢(x(0), öe )
%

f *ÍÍ✏(f*r)‰1N ↵ ÇeÎÎT ⌧2ö� * öQ
�
✏*r‰1N+1 ↵ (x(0), öe )

�
*

öQT �✏*r‰1N+1 ↵ (x(0), öe )
�� ÍÍ✏(f*r)‰1N ↵ öe )ÎÎ.

After some lengthy manipulations, a positive definite diagonal ö� can be found such that

2

ö
� *

öQ(0, 0) * öQT
(0, 0) g *2I .

Next, by compactness of ⌦ and the set {öe À RNn
: V (öe ) f öc 2

}, it is possible to select öc > 0 and ✏
1

> 1 such that

öQ(✏*r‰1N+1 ↵ (x(0), öe )) * öQ(0, 0) +
⇠
öQ(✏*r‰1N+1 ↵ (x(0), öe )) * öQ(0, 0)

⇡T f I

for all x(0) À ⌦, öe À RNn
: V (öe ) f öc 2 and ✏ g ✏

1

. Therefore,

ÜV (öe ) f *Ò✏(f*r)‰1N ↵ ÇeÒ2 (45)

for all x(0) À ⌦, öe À RNn
: V (öe ) f öc 2 and ✏ g ✏

1

, i.e. the set {(x(0), öe ) À ⌦ ù RNn
: V (öe ) f öc 2

} is invariant for
(43) together with the leader’s dynamics (1). Since the leader has bounded trajectories in ⌦ (i.e. x(0)(t) À ⌦ for all t g 0) by
(A0

®

), this proves that öe (t) ô 0 as t ô +ÿ with initial consensus error öe (0) À {öe À RNn
: V (öe ) f öc 2

} or equivalently
that e(t) ô 0 as t ô +ÿ with initial consensus error e(0) À {e À RNn

: V (Z
*1

P (T ‰ In)e) f öc 2

}. We will select
✏ g ✏

1

in such a way that the set {e À RNn
: V (Z

*1

P (T ‰ In)e) f öc 2

} includes the prescribed compact set ⌦ùN . Notice
that öe = Z

*1

P (T ‰ In)e, where P is a permutation matrix. Therefore, e(t) ô 0 as t ô +ÿ with initial consensus error
e(0) À {e À RNn

: V (Z
*1

P (T ‰ In)e) f öc 2

}. Since f
1

f f
2

f 5 f fn (remark 3), e ;ô Z
*1

e is i.h.u.b. with quadruple⇠
r‰ 1N , r‰ 1N , 0n ‰ 1N , (INn * A

T
�)

*1

⇡
. Therefore, there exists ✏

2

g ✏
1

such that for all ✏ g ✏
2

max

eÀ⌦ùN
V (Z

*1

P (T ‰ In)e) f max

eÀ⌦ùN

ÙÙÙÙ✏*r‰1N ↵
⇠
(INn * A

T
H)

*1P (T ‰ In)e
⇡ÙÙÙÙ2

f max

eÀ⌦ùN

ÙÙÙÙ(INn * A T
�)

*1

⇣⇣
✏*r‰1N ↵ P (T ‰ In)e

⌘⌘ÙÙÙÙ2 f öc 2.

This concludes the proof with ✏ = max{✏
1

, ✏
2

}.

Remark 4. It is worth noting that the definition ofH and, therefore, of ⇧ in (40) is made according to a precise power rescaling
of the parameter ✏ which depends on the homogeneity degrees of f .
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5 CONSENSUS ERRORS AND LEADER’S STATE ESTIMATION WITH PARTIAL
INFORMATION

In the present Section we assume that for each agent the consensus error information of the neighbors are not available to the
agent itself. More precisely, we assume that each agent exchanges with its neighbors the residual between the output consensus
error and its dynamical estimate (implemented by some observer). We want to design observers for reconstructing the missing
information on the consensus error. This result is of interest itself for distributed state estimation. For purpose of illustration, first
we assume that the full leader’s state is available to each agent. At the end of the Section, we show how to remove this restriction.

5.1 Followers’ outputs and leader’s state information
Here, for each agent i we consider the consensus law � (i), defined in (15), and re-written in terms of the output consensus errors

� (i)
=

N…
j=1

lij(Ce
(j)
* C⇠(j)) + li

0

(Ce(i) * C⇠(i)), i À [1,N], (46)

where ⇠(j), j À {1,… ,N}, are suitable estimates of e(j), j À {1,… ,N}. In other words, each agent j exchanges the residual
y(j) * y(0) * C⇠(j) = Ce(j) * C⇠(j) (i.e. the di�erence between output consensus error and its estimate) with its neighbors.

Let us now consider the given system in the coordinates (x(0)T , eT )T , described by equations (23), (24) and restrict ourselves
to trajectories (x(0)(t), e(t)) such that (x(0)(t), e(t)) À ⌦ ù E for all t g 0, E œ RNn a compact set containing ⌦ùN . We want to
design an observer for all such consensus error trajectories. To this aim, we propose for each agent i the observer

Ü⇠(i) = A⇠(i) + Bu(i) + �f
�
satc✏r(⇠(i)) + satc✏r(x(0)), satc✏r(x(0))

�
+ ⇧O� (i), i À [1,N].

for some design parameters c > 0, ✏ > 0 and ⇧O À Rn (the sat function is defined in (20)). All these observers’ equations
together are recast into

Ü⇠ = (IN ‰ A)⇠ + (IN ‰ B)u + F
�
satc✏r(x(0)), sat1N‰c✏r(⇠)

�
+ (IN ‰ ⇧O)� (47)

with ⇠ = (⇠(1)T ,… , ⇠(N)

T
)

T and � = (� (1),… ,� (N)

)

T . Notice the form of the saturated estimates sat1N‰c✏r(⇠) where the
saturation levels are taken to be power rescalings of the parameter ✏ depending on the homogeneity weights r of f .

Assume that c > 0 and ✏ > 0 have been selected so that for all t g 0

sat1N‰c✏r(e(t)) = e(t),
satc✏r(x(0)(t)) = x(0)(t)

(48)

(this is possible since (x(0)(t), e(t)) À ⌦ùE for all t g 0). On account of (48) and noticing that for all v := (v(1)T ,5 , v(N)

T
)

T
À

RNn

sat1N‰c✏r(v) = (satc✏r(v(1)),… , satc✏r(v(N)

))

T ,

the system (23), (24), (47), (46), with ⌘ = e * ⇠ and X =

⇠
x(0)T eT

⇡T
, reads as

ÜX =

0
Ax(0) + f (x(0))

(IN ‰ A)e + (IN ‰ B)u + F (X)

1
(49)

Ü⌘ = (IN ‰ A)⌘ * (IN ‰ ⇧O)� * öG(X, ⌘) (50)

where

öG(X, ⌘) = r̀rp
�f

�
satc✏r(e(1) * ⌘(1)) + satc✏r(x(0)), satc✏r(e(1)) + satc✏r(x(0))

�
4

�f
�
satc✏r(e(N)

* ⌘(N)

) + satc✏r(x(0)), satc✏r(e(N)

) + satc✏r(x(0))
�assq . (51)

System (49), (50) is formally equivalent to (23), (24), under the following equivalences

X õ x(0), ⌘ õ e, *(IN ‰ ⇧O)� õ (IN ‰ B)u, * öG õ F .

With this in mind, we closely follow Sections 4.2, 4.3 and 4.4.
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5.1.1 The action of a class of linear change of coordinates
Given an invertible N ùN matrix T , consider the class of change of coordinates (XT , ⌘T )T ô (XT , õ⌘T ) with

õ⌘ = (T ‰ In)⌘. (52)

The next lemma is proved as Lemma 1.

Lemma 4. Let T be an invertibleN ùN matrix, and consider the transformation (52). In the new coordinates system (49), (50)
reads

ÜX =

0
Ax(0) + f (x(0))

(IN ‰ A)e + (IN ‰ B)u + F (X)

1
Üõ⌘ = (IN ‰ A)õ⌘ * (T ‰ ⇧O)� * õG(X, õ⌘ )

(53)

where
õG(X, õ⌘ ) = (T ‰ In) öG

�
X, (T *1 ‰ In)õ⌘

�
. (54)

The particular structure of the change of coordinates considered guarantees also in the framework that the assumption of
i.h.u.b. on f in (1) reflects into an analog assumption on õG in (54). For instance, if f : Rn ô Rn in (2) is i.h.u.b. with
quadruple (r, r + d, h,�), where � = ÍÍBKÎÎ + �

0

with �
0

(0, 0) = 0, then öG, defined by (51), is h.u.b. with quadruple⇠
1
2N+1

‰ r, 1N ‰ (r + d), 1
2N+1

‰ h, ö�
⇡

, where

ö
� =

�
0Nù(N+1)

IN
�
‰

0ÍÍBKÎÎ + max

*2c1nûp®,p®®û2c1n
�

0

(p®, p®®)
1
.

As a matter of fact, for all v,w À Rn

*2c1n û ✏*r ↵ satc✏r(v) + ✏*r ↵ satc✏r(w) û 2c1n,ÍÍ✏*r ↵ satc✏r(✏r ↵ v) * ✏*r ↵ satc✏r(✏r ↵w)ÎÎ û ÍÍv *wÎÎ.
and as c ô 0

+

ö
�ô

�
0Nù(N+1)

IN
�
‰ ÍÍBKÎÎ. (55)

As it will be shown in the next lemma (which gives the analogue of lemma 2), under the change of coordinates (52), öG defined
by (51), which is thus i.h.u.b., transforms into õG which is still i.h.u.b. and with the same weights and degrees of öG.

Lemma 5. Assume that f : Rn ô Rn in (2), is i.h.u.b. with quadruple (r, r + d, h,�), where � = ÍÍBKÎÎ + �
0

with
�

0

(0, 0) = 0. Then under the change of coordinates (52) the function õG : R(2N+1)n ô RNn defined by (54) is h.u.b. with
quadruple

�
1
2N+1

‰ r, 1N ‰ (r + d), 1
2N+1

‰ h, É�
�
, where õ� is given by

õ
� = (ÍÍT ÎÎ‰ In) ö� diag

�
In(N+1)

, ÍÍT *1ÎÎ‰ In
�
. (56)

Moreover as c ô 0

+

õ
�ô

�
0Nù(N+1)

ÍÍT ÎÎÍÍT *1ÎÎ�‰ ÍÍBKÎÎ. (57)

Proof. The proof follows Lemma 2) for (56). For what concerns (57), indeed by (55) as c ô 0

+

õ
� ô

�ÍÍT ÎÎ‰ In
� ��

0Nù(N+1)

IN
�
‰ ÍÍBKÎÎ� diag�In(N+1)

, ÍÍT *1ÎÎ‰ In
�

=

�ÍÍT ÎÎ‰ In
� �

0Nnùn(N+1)

IN ‰ ÍÍBKÎÎ� diag�In(N+1)

, ÍÍT *1ÎÎ‰ In
�

=

�ÍÍT ÎÎ‰ In
� �

0Nnùn(N+1)

ÍÍT *1ÎÎ‰ ÍÍBKÎÎ� = �
0Nnùn(N+1)

ÍÍT ÎÎÍÍT *1ÎÎ‰ ÍÍBKÎÎ�
=

�
0Nù(N+1)

ÍÍT ÎÎÍÍT *1ÎÎ�‰ ÍÍBKÎÎ.
Next, we focus on the consensus term *(T ‰ ⇧O)� in (53). In the coordinates (52)

� = (IN ‰ C)( öL‰ In)(T *1 ‰ In)õ⌘ = (

öLT *1 ‰C)õ⌘.

Since

(T ‰ ⇧O)
⇠
(

öLT *1)‰C
⇡

= (T öLT *1)‰ (⇧OC) = L‰ (⇧OC)
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the error system (53) becomes
ÜX =

0
Ax(0) + f (x(0))

(IN ‰ A)e + (IN ‰ B)u + F (X)

1
Üõ⌘ =

⇠
IN ‰ A * L‰ (⇧OC)

⇡
õ⌘ * õG(X, õ⌘ )

(58)

Let us now permute the coordinates (X, õ⌘ ) ;ô (X, ⌘) = P (X, õ⌘ ) as follows (recall that ⌘ = (õ⌘ (1)

T ,5 , õ⌘ (N)

T
)

T )

⌘j = (õ⌘ (1)

j ,5 , õ⌘ (N)

j )

T , ⌘ = (⌘
1

T ,5 , ⌘n
T
)

T . (59)

Accordingly set ⇤ = diag{

Ñ�
1

,… , Ñ�N} and

Gj = (

õG (1)

j ,5 , õG (N)

j )

T , G = (G
1

T
,5 ,Gn

T
)

T

A = A‰ IN , C = C ‰ ⇤, ⇧O = ⇧O ‰ IN .

With these positions,
ÜX =

0
Ax(0) + f (x(0))

(IN ‰ A)e + (IN ‰ B)u + F (X)

1
Ü⌘ = (A * ⇧OC)⌘ + G(X, ⌘).

(60)

Clearly, if f is i.h.u.b. with quadruple (r, r+d, h,�) thenG is h.u.b. with quadruple
⇠
r‰ 1

2N+1

, (r + d)‰ 1N , h‰ 1
2N+1

,�
⇡

,
where � is defined starting from õ

� = ((

õ
�

(1)

)

T ,5 , (õ�(N)

)

T
)

T in the following way:

�j = ((

õ
�

(1)

j )

T ,5 , (õ� (N)

j )

T
)

T ˝P *1, � = (�

T
1

,5 ,�
T
n )
T . (61)

Moreover as c ô 0

+

�ô
�
0Nnù(N+1)n B ‰ ÍÍKÎÎ‰ (ÍÍT ÎÎÍÍT *1ÎÎ)� . (62)

Lemma 6. Assume that f : Rn ô Rn in (2), is i.h.u.b. with quadruple (r, r + d, h,�), where � = ÍÍBKÎÎ + �
0

with
�

0

(0, 0) = 0. Then under the permutation (59) the function G : R(2N+1)n ô RNn defined by (61) is h.u.b. with quadruple⇠
r‰ 1

2N+1

, (r + d)‰ 1N , h‰ 1
2N+1

,�
⇡

, where � is given in (61) and satisfies (62).

5.1.2 Achieving consensus error estimation
In this Section we will show how to choose the matrix ⇧O := ⇧O‰IN in (60) (and therefore ⇧O in (47)). To this aim, we make
the following basic assumptions on the nonlinearities a�ecting the dynamics of each agent in terms of incremental homogeneity,
being a dual version of (A2).

(A3) The nonlinear function f À C0

(Rn,Rn) in (61) is incrementally homogeneous in the upper bound with quadruple�
r, r + ög, g,�

�
, with � = ÍÍBKÎÎ +�

0

, �
0

(0, 0) = 0, and for j À [1, n * 1],

ögn := gn,
ögj := rj+1 * rj * gj+1,

(63)

and

2gj+1 * gj f ögj f gj . (64)

Remark 5. A consequence of (64) is that the sequence {gj}jÀ[1,N]

is non-increasing. As an example, the dynamics (8) satisfy
assumption (A3) with r

1

= 1_8, r
2

= 3_8, g
1

= 1_2, g
2

= 1_4.

The key Theorem to show achievement of consensus error estimation is the following.

Theorem 2. Assume (A0

®

) and (A3) and that the agents connected to the leader receive the leader’s state information. LetE œ RNn be any compact set containing ⌦ùN . There exist ✏O > 1, c > 0 and a positive definite diagonal �O such that for all
✏ g ✏O (46), (47) with

⇧O = (In *HOAT )*1HOCT , HO = �Odiag{✏2g1 ,5 ✏2gn}, (65)

is an observer for all consensus error trajectories such that e(t) À E for all t g 0.
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Proof. Consider the change of coordinates 0
X
⌘

1
ô

0
X
ö⌘

1
, ö⌘ = ZO⌘ (66)

where setting HO = HO ‰ IN :

ZO = INn *HOA
T
. (67)

Also in this case notice that

INn *HOA
T
= In ‰ IN * (HO ‰ IN )(A‰ IN )T = In ‰ IN * (HO ‰ IN )(AT ‰ IN ) = (In *HOAT )‰ IN .

Due to the particular choice of the change of coordinates it is easily verified that

ÜX =

0
Ax(0) + f (x(0))

(IN ‰ A)e + (IN ‰ B)u + F (X)

1
Üö⌘ = (

öA * ö⇧O öC)ö⌘ +ZOG(X,Z
*1

O ö⌘ )

where

öA = ZOAZ
*1

O , öC = CZ
*1

O = C , ö⇧O = ZO⇧O. (68)

By noting that HOA
T
A(HOA

T
) = H

2

OA
T

then

ZOAZ
*1

O = (A *HOA
T
A)Z

*1

O = [A *HOA
T
A +HOA

T
A(HOA

T
) *H

2

OA
T
]Z

*1

O

= [*HOA
T
AZO + A * A

T
H

2

O]Z
*1

O = *HOA
T
A + (A *H

2

OA
T
)Z

*1

O

so that

öA * öBö⇧ = *HOA
T
A + (A *H

2

OA
T
)Z

*1

O *

ö
⇧O

öC = *

öHO + (A *H
2

OA
T
)Z

*1

O

where öHO := diag{L, IN ,… , IN}HO. As a consequence,
Üö⌘ = *

öHO Ç⌘ + ö⇢O(X, ö⌘)

where

ö⇢O(X, ö⌘) = (A *H
2

OA
T
)Z

*1

O ö⌘ +ZOG(X,Z
*1

O ö⌘ ).

Assumption (A3) and similar conclusions to those of Appendix 9 (with d := Çg and h := g) show that ö⇢O is h.u.b. with quadruple⇠
r‰ 1

2N+1

, (r + g)‰ 1N , g‰ 1
2N+1

, öRO
⇡

, where

öRO :=
⌧⇠

0Nnù(N+1)n A + �

2

OA
T
⇡
+ (INn + �OA

T
)�

�H I
(N+1)n 0

(N+1)nùNn

0Nnù(N+1)n (INn + �OA
T
)

*1

I
(69)

�O = �O ‰ IN and � is defined in (36). The matrix öRO can be also decomposed as

öRO =

⇠
0Nnù(N+1)n

öQO

⇡
and by (62) as c ô 0

+

öQO ô öQO(0) :=
⇠
A + �

2

A
T
+ B ‰K ‰ (ÍÍT ÎÎÍÍT *1ÎÎ)⇡ (INn *HOA

T
)

*1

= (A + �

2

A
T
)(INn *HOA

T
)

*1

+ B ‰
⇠�
K ‰ (ÍÍT ÎÎÍÍT *1ÎÎ)� (INn *HOA

T
)

*1

⇡
.

(70)

Moreover, it is easy to see that Ç⌘ ô öHOö⌘ is i.h. with quadruple
⇠
r‰ 1N , (r + g)‰ 1N , g‰ 1N , ö�O

⇡
with ö

�O :=

diag{L, IN(n*1)}�O and �O = �O ‰ IN .
With VO(ö⌘ ) = Ò✏*r‰1N ↵ ö⌘Ò2 it follows by straightforward computations that

ÜVO(ö⌘ ) =
)VO
)ö⌘

(ö⌘){* öHO Ç⌘ + ö⇢O(X, ö⌘} f *ÍÍ✏(g*r)‰1N ↵ Ç⌘ÎÎT ⇠2 Ç�O * öQO *
öQT
O

⇡ ÍÍ✏(g*r)‰1N ↵ ö⌘ )ÎÎ
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After some lengthy manipulations, it can be seen that there exists diagonal positive definite �O (recall that �O = �O ‰IN ) such
that 2ö�O * öQO(0) *

öQT
O(0) g *2I . Next, using (70) it is possible to select c > 0 such that öQO *

öQO(0) + (

öQO *
öQO(0))

T f I .
Therefore, on account of (70), with such choice of c and for all ✏ g ✏O, where ✏O g 1 is such that (48) is satisfied for all ✏ g ✏O,
we obtain ÜVO(ö⌘ ) f *Ò✏(g*r)‰1N ↵ Ç⌘Ò2 which implies that ö⌘(t) ô 0 (and therefore ⌘(t) ô 0) as t ô +ÿ as long as e(t) À E for
all t g 0. This concludes the proof.

5.2 Followers’ and leader’s outputs information
In the present Section we remove the assumption that the leader’s state is measured. Let us now consider the given system in the
coordinates (x(0)T , eT )T , described by equations (23), (24) and restrict to trajectories (x(0)(t), e(t)) such that (x(0)(t), e(t)) À ⌦ùE
for all t g 0, E œ RNn any compact set containing⌦ùN . We want to design an observer for all such consensus error trajectories.
We want to design an observer for both the leader’s state and the consensus error e. To this aim, we propose the observer for the
consensus error

Ü⇠ = (IN ‰ A)⇠ + (IN ‰ B)u + F (satc✏r(⇠(0)), sat1N‰c✏r(⇠)) + (IN ‰ ⇧O)� (71)

with c > 0, ✏ > 0, ⇧O and � as in (47), and the observer for the leader’s state

Ü⇠(0) = A⇠(0) + f
�
satc✏r(⇠(0))

�
+ ⇧O(y(0) * C⇠(0)) (72)

The observer (71) di�ers from the previous observer (47) in that the saturated estimate satc✏r(⇠(0)) replaces the leader’state x(0).
Our main Theorem is the following and follows the lines of Theorem 2.

Theorem 3. Assume (A0

®

) and (A3) and that the agents connected to the leader receive the leader’s state information. There
exist ✏O > 1, c > 0 and �O such that for all ✏ g ✏O (46), (65), (71), (72) is an observer for all consensus error trajectories such
that e(t) À E for all t g 0, E œ RNn any compact set containing ⌦ùN .

Proof. Assume that c > 0 and ✏ > 0 have been selected as in (48). The system (23), (24), (46), (71), (72), reads with ⌘ = e* ⇠,
⌘(0) = x(0) * ⇠(0), ⌘E = (⌘(0)T ⌘T )T and X =

⇠
x(0)T eT

⇡T
as

ÜX =

0
Ax(0) + f (x(0))

(IN ‰ A)e + (IN ‰ B)u + F (X)

1
(73)

Ü⌘E = (IN+1

‰A)⌘E * (IN+1

‰ ⇧O)!EO * öGE
(X, ⌘E) (74)

where !(0)

= C⌘(0), !EO =

⇠
!(0)

T !T
⇡T

and

öG
0

(X, ⌘E) = �f
�
satc✏r(x(0) * ⌘(0)), satc✏r(x(0))

�
,

öG
1

(X, ⌘E) = r̀rp
�f

�
satc✏r(e(1) * ⌘(1)) + satc✏r(x(0) * ⌘(0)), satc✏r(e(1)) + satc✏r(x(0))

�
4

�f
�
satc✏r(e(N)

* ⌘(N)

) + satc✏r(x(0)), satc✏r(e(N)

) + satc✏r(x(0))
� assq , öG2

(X, ⌘E) = 1N ‰ öG
0

(X, ⌘E),

öGE
(X, ⌘E) =

H
öG
0

(X, ⌘E)
öG
1

(X, ⌘E) * öG
2

(X, ⌘E)

I
.

System (73), (74) is formally equivalent to (23), (24), under the following equivalences

X õ x(0), ⌘E õ e, *(IN+1

‰ ⇧O)!E õ (IN ‰ B)u, * öGE õ F

and we can proceed as in Section 5.1 and give a sketch of the main steps. By assumption (A3) f : Rn ô Rn in (2)
is i.h.u.b. with quadruple

�
r, r + ög, g,�

�
, where � = ÍÍBKÎÎ + �

0

with �
0

(0, 0) = 0, then öGE is h.u.b. with quadruple
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1
2(N+1)

‰ r, 1N+1

‰ (r + ög), 1
2(N+1)

‰ g, ö�
⇡

, where

ö
� =

ö
�

1

+

ö
�

2

,

ö
�

1

=

0
0
1ù(N+1)

0 0
1ùN

0Nù(N+1)

1N IN

1
‰

0ÍÍBKÎÎ + max

*2c1nûp®,p®®û2c1n
�

0

(p®, p®®)
1
,

ö
�

2

=

0
0
1ù(N+1)

1 0
1ùN

0Nù(N+1)

1N 0NùN

1
‰

0ÍÍBKÎÎ + max

*c1nûp®,p®®ûc1n
�

0

(p®, p®®)
1
.

After the change of coordinates

õ⌘ E =

0
õ⌘ (0)

õ⌘

1
:=

�
diag{1, T }‰ In

�
⌘E (75)

we have from (74)
Üõ⌘ E = (IN+1

‰A)õ⌘ E *
�
diag{1, T }‰ ⇧O

�
!EO * õGE

(X, õ⌘ E) (76)

where
õGE

(X, õ⌘ E) =
�
diag{1, T }‰ In

� öGE �
X,

�
diag{1, T *1}‰ In

�
õ⌘
�

(77)

By assumption (A3) f : Rn ô Rn in (2), is i.h.u.b. with quadruple
�
r, r + ög, g,�

�
, where� = ÍÍBKÎÎ+�

0

with�
0

(0, 0) = 0.
Then under the change of coordinates (75) the function õGE

: R2(N+1)n ô R(N+1)n defined by (77) is h.u.b. with quadruple�
1
2(N+1)

‰ r, 1N+1

‰ (r + ög), 1
2(N+1)

‰ g, É�
�
, where õ� is given by

õ
� =

�
diag{1, ÍÍT ÎÎ}‰ In

� ö
�

�
diag{IN+2

, ÍÍT *1ÎÎ}‰ In
�
. (78)

Moreover as c ô 0

+

õ
�ô

0
0
1ù(N+1)

1 0
1ùN

0Nù(N+1)

2ÍÍT ÎÎ1N ÍÍT ÎÎÍÍT *1ÎÎ
1
‰ ÍÍBKÎÎ. (79)

Let us now permute the coordinates (X, õ⌘ E) ;ô (X, ⌘E) = P (X, õ⌘ E) as follows

⌘j = (õ⌘ (0)

j ,5 , õ⌘ (N)

j )

T , ⌘ = (⌘
1

T ,5 , ⌘n
T
)

T . (80)

Accordingly set ⇤ = diag{1, Ñ�
1

,… , Ñ�N} and

Gj = (

õG(0)

j ,5 , õG(N)

j )

T , G = (G
1

T
,5 ,Gn

T
)

T

A = A‰ IN+1

, C = C ‰ ⇤, ⇧O = ⇧O ‰ IN+1

.

With these positions,

Ü⌘
E
= (A * ⇧OC)⌘

E
+ G

E
(X, ⌘E). (81)

Since õGE
: R2(N+1)n ô R(N+1)n defined by (77) is h.u.b. with quadruple

�
1
2(N+1)

‰ r, 1N+1

‰ (r + ög), 1
2(N+1)

‰ g, É�
�
,

then G
E

is h.u.b. with quadruple
⇠
r‰ 1

2(N+1)

, (r + ög)‰ 1N+1

, g‰ 1
2(N+1)

,�
⇡

, where � is defined starting from õ
� =

((

õ
�

(1)

)

T ,5 , (õ�(N)

)

T
)

T in the following way:

�j = ((

õ
�

(1)

j )

T ,5 , (õ�(N)

j )

T
)

T ˝P *1, � = (�

T
1

,5 ,�
T
n )
T (82)

Moreover as c ô 0

+

�ô

0
0
(N+1)nù(N+1)n B ‰ ÍÍKÎÎ‰0

1 0
1ùN

2ÍÍT ÎÎ1N ÍÍT ÎÎÍÍT *1ÎÎ
11

. (83)

Finally, with the change of coordinates 0
X
⌘E

1
ô

0
X
ö⌘E

1
, ö⌘E := ZO⌘

E (84)

where setting HO = HO ‰ IN+1

:

ZO = I
(N+1)n *HOA

T
= (In *HOAT )‰ IN+1

(85)
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(see similar derivation in the previous section), we get from (81)
Üö⌘
E
= *

öHOö⌘E + ö⇢EO(X, ö⌘E)

where

ö⇢EO(X, ö⌘E) = (A *H
2

OA
T
)Z

*1

O ö⌘
E
+ZOG

E
(X,Z

*1

O ö⌘
E
).

With VO(ö⌘E) = Ò✏*r‰1N+1 ↵ ö⌘EÒ2 it follows that ÜVO(ö⌘E) f *Ò✏(g*r)‰1N+1 ↵ ö⌘EÒ2.
6 SEMIGLOBAL LEADER FOLLOWING WITH PARTIAL INFORMATION

In the present Section we address and solve the problem of achieving consensus assuming partial information (Problem II),
using the state feedback consensus law and the observers for the consensus errors designed in Sections 4 and, respectively, 5.
We assume that each agent exchanges its output with its neighbors and, in addition, measures the state of the leader (this is done
for purpose of illustration and the leader’s state availability is relaxed as in Section 5.2).

6.1 Followers’ outputs and leader’s state information
In this case for each agent we will adopt a control u(j) = *⇧ Ç⇣ (j), j À [1,N], where Ç⇣ (j) is the estimated consensus law for the
j-th agent, obtained from ⇣ (j) in (14) with the consensus error e(j) replaced by its estimate ⇠(j) :

u(j) = ⇧ Ç⇣ (j) = *⇧
⌧ N…
j=1

lijsatc✏r(⇠
(j)
) + li

0

satc✏r(⇠(i))
�
, j À [1,N]. (86)

Therefore, the control law is

u = *(IN ‰ ⇧)( öL‰ In)satc✏1N‰r(⇠), (87)

together with the observer (47) for the followers’ consensus error
Ü⇠ = (IN ‰ A)⇠ + (IN ‰ B)u + F

�
satc✏r(x(0)), sat1N‰c✏r(⇠)

�
+ (IN ‰ ⇧O)� . (88)

The key Theorem to show achievement of consensus is the following.

Theorem 4. Assume (A0

®

), (A3) with fn < gn and that the agents connected to the leader receive the leader’s state information
and, in addition, . There exist ✏< > 1, c > 0 and positive definite diagonal matrices �,�O such that for all ✏ g ✏< (40), (65),
(87), (88) solve the Semiglobal Leader Following problem with partial information for (1), (2).

Proof. Consider the system (23), (24), (87) and (88) in coordinates öe = Se and ö⌘ = SO⌘ (follow Sections 4 and 5)0
Üx(0)
Üöe

1
=

H
Ax(0) + f (x(0))

*

öH Çe + ö⇢(x(0), öe ) * BL*1BTHS �
*S*1öe + satc✏1N‰r(S*1öe * S*1O ö⌘)

�I
Üö⌘ = * öHOö⌘ + ö⇢O(x(0),S*1öe, ö⌘).

(89)

Notice that since S = Z
*1

P (T ‰ In) and öe ;ô S*1öe is h.u.b. with quadruple⇠
r‰ 1N , 1N ‰ r, 0n ‰ 1N , (ÍÍT *1ÎÎ‰ In)P *1(INn + A

T
�)

⇡
(remember that f

1

f f
2

f 5 f fn by remark 3)

Ò✏*1N‰r ↵ S*1öe Ò2 f Ò �ÍÍT *1ÎÎ‰ In
�
P *1(INn + A

T
�)(✏*r‰1N ↵ öe )Ò2 f Ò �ÍÍT *1ÎÎ‰ In

�
P *1(INn + A

T
�)Ò2V (öe )(90)

where
V (öe ) = Ò✏*r‰1N ↵ öe Ò2.

Therefore, if E := {öe À RNn
: Ò✏*r‰1N ↵ S*1öe Ò f c} and

öc := cÒ �ÍÍT *1ÎÎ‰ In
�
P *1(INn * A

T
�)

*1Ò
then

V (öe ) f öc 2 Ÿ öe À E Ÿ satc✏r‰1N (S*1öe ) = S*1öe. (91)
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We will select ✏ in such a way that the set {öe À RNn
: V (öe ) f öc 2

} is forward invariant and therefore öe (t) À E for all times
and this will guarantee öe (t) ô 0 (and therefore, e(t) ô 0) as t ô +ÿ. To this aim, since e ;ô Se is h.u.b. with quadruple⇠
1N ‰ r, r‰ 1N , 0n ‰ 1N , (INn * A

T
�)

*1P (ÍÍT ÎÎ‰ In)
⇡

2(✏*r‰1N ↵ öe )T ✏*r‰1N ↵ BL*1BTHS �
*S*1öe + satc✏1N‰r(S*1öe * S*1O ö⌘)

�
f 1

2

Ò✏(f*r)‰1N ↵ öe Ò2 + ÙÙÙÙ✏(*f*r)‰1N ↵ BL*1BTHS �
*S*1öe + satc✏1N‰r(S*1öe * S*1O ö⌘)

�ÙÙÙÙ2
f 1

2

Ò✏(f*r)‰1N ↵ öe Ò2 + 2✏2fn
ÙÙÙÙBL*1BTH✏*r‰1N ↵ S

�
*S*1öe + satc✏1N‰r(S*1öe * S*1O ö⌘)

�ÙÙÙÙ2
f 1

2

Ò✏(f*r)‰1N ↵ öe Ò2 + 2✏2fnQ ÙÙÙ✏*1N‰r ↵
�
*S*1öe + satc✏1N‰r(S*1öe * S*1O ö⌘)

�ÙÙÙ2
where Q := ÒBL*1BT�(INn * A T

�)

*1P (ÍÍT ÎÎ‰ In)Ò2.
With all this in mind and with V (öe ) = Ò✏*r‰1N ↵ öe Ò2 and VO(ö⌘ ) = Ò✏*r‰1N ↵ ö⌘Ò2, we obtain (follow the proof of Theorems

1 and 2)

ÜV (öe ) f *

1

2

Ò✏(f*r)‰1N ↵ ÇeÒ2 + 2N2✏2fnQ ÙÙÙ✏*1N‰r ↵
�
*satc✏1N‰r(S*1öe ) + satc✏1N‰r(S*1öe * S*1O ö⌘)

�ÙÙÙ2
ÜVO(ö⌘ ) f *Ò✏(g*r)‰1N ↵ Ç⌘Ò2

for all x(0) À ⌦, öe À RNn
: V (öe ) f öc 2 and ✏ g ✏

1

(here ✏
1

is the same as in the proof of Theorem 1 while c > 0 is the same
as in the proof of of Theorem 2). From the second inequality with Remark 5 we get ÜVO(ö⌘ ) f *Ò✏(g*r)‰1N ↵ Ç⌘Ò2 f *✏2gnVO(ö⌘ )
which implies that for all t g 0

VO(ö⌘(t)) f e*✏2gn tVO(ö⌘(0)) = e*✏2gn tÒ✏*r‰1N ↵ ö⌘(0)Ò2. (92)

But Òsatc✏1N‰r(v
1

) * satc✏1N‰r(v
2

)Ò f Òsatc✏1N‰r(v
1

* v
2

)Ò for all v
1

, v
2

À RnN so thatÙÙÙ✏*1N‰r ↵
�
*satc✏1N‰r(S*1öe ) + satc✏1N‰r(S*1öe * S*1O ö⌘)

�ÙÙÙ f min

�
Nnc, Ò✏*1N‰r ↵ S*1O ö⌘Ò�

and, since
SO = ZOP (T ‰ In)

and ö⌘ ;ô S*1O ö⌘ is h.u.b. with quadruple
⇠
r‰ 1N , 1N ‰ (r * g), 1N ‰ g, (ÍÍT *1ÎÎ‰ In)P *1(INn * A

T
�O)

*1

⇡
, with Remark 5

Ò✏*1N‰r ↵ S*1O ö⌘Ò2 f Ò✏*1N‰g ↵
�ÍÍT *1ÎÎ‰ In

�
P *1(INn * A

T
�O)

*1

(✏(*r+g)‰1N ↵ ö⌘ )Ò2 f ✏2(g1*gn)QOVO(ö⌘ )

for
QO := Ò �ÍÍT *1ÎÎ‰ In

�
P *1(INn * A

T
�O)

*1Ò2.
Therefore, from (92)

ÜV (öe ) f *

1

2

Ò✏(f*r)‰1N ↵ ÇeÒ2 + 2✏2fnQmin{N2n2c2, ✏2(g1*gn)QOVO(ö⌘ )} (93)

for all x(0) À ⌦, öe À RNn
: V (öe ) f öc 2 and ✏ g ✏

1

. On account of (92) and integrating (93) over [0, t]

V (öe (t)) f V (öe (0)) + 2✏2fnQN2n2c2
t

 
0

min

$
1, e*✏2gns+(✏)

%
ds f V (Se(0)) + 4QN2n2c2((✏) + 1)✏*2(gn*fn) (94)

with (✏) = 2

�
(g

1

* gn) ln ✏ + lnQO * lnNnc
�
. Next, since by assumption of our Theorem fn < gn and, then, lim✏ô+ÿ

((✏) +
1)✏*2(gn*fn) = 0 we select ✏< g ✏

1

in such a way that for all ✏ g ✏< and e(0) À ⌦ùN (see also the final Section of the proof of
Theorem 1)

V (Se(0)) + 2✏2fnQN2n2c2
t

 
0

min

$
1, e*✏2gns+(✏)

%
ds f öc 2 (95)

so that the set {öe À RNn
: V (öe ) f öc 2

} is forward invariant and by (91) öe (t) À E , ≈t g 0. Finally, as a consequence of (92),
(93), it follows that öe (t) ô 0 (and therefore, e(t) ô 0) as t ô +ÿ for all x(0)(0) À ⌦ and öe (0) À RNn

: V (öe ) f öc 2 (and
therefore, for all x(0)(0) À ⌦ and e(0) À ⌦ùN : see final part of the proof of Theorem 1). This proves our Theorem.
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6.2 Followers’ and leader’s outputs information
In view of what we have discussed in the previous Section, we can state (without proof) the following intermediate important
result of this paper. Here, remove the assumption that the leader’s state is measured and we consider the additional observer
dynamics (72) for estimating the leader’s state.

Theorem 5. Assume (A0

®

), (A2) and (A3) with fn < gn and that the agents connected to the leader receive the leader’s state
information. There exist ✏< > 1, c > 0 and positive definite diagonal matrices �,�O such that for all ✏ g ✏< (40), (65), (72),
(87), (88) solves the Semiglobal Leader Following problem with partial information for (35).

Remark 6. A consequence of (A2) and (A3) with fn < gn is that the sequence non-decreasing {fj}jÀ[1,N]

is strictly smaller than
the non-increasing {gj}jÀ[1,N]

. The dynamics (8) satisfy assumption (A2) with r
1

= 1_8, r
2

= 3_8, f
1

= 1_8, f
2

= 1_8, g
1

=

1_2, g
2

= 1_4.

In the remaining part of this Section we will give the details for relaxing (A0

®

) to (A0) together with (A1), which is the
final objective of our paper. In this case, since the compact set ⌦ is not known the observer (72) for the leader’s state cannot be
implemented. We replace (72) with a nonlinear observer, in particular we retain the same structure of (72) but the parameter ✏
is adapted on-line in such a way to estimate the magnitude of the leader’state trajectories. We propose the following observer

Ü⇠(0) = A⇠(0) + f (satc✏r(⇠(0))) + ⇧O(y(0) * C⇠(0)) (96)

which is exactly (72) with, in addition, the adapting law

Ü✏ = ✏
�✏*r1+g1 (y(0) * C⇠(0))2 + Ò✏*r+g ↵ satc✏r(⇠(0) * satc✏r(⇠(0)))Ò2� , ✏(0) = ✏<. (97)

The controller (87), (88) remains the same, with ✏ given by (97). From Theorem 4.2 of3 we can prove the following.

Proposition 1. Assume (A0) and (A3). There exist ✏< > 1, c > 0 and positive definite diagonal matrices �O such that for (1),
(40), (65), (97) we have limtô+ÿ

(x(0)(t) * ⇠(0)(t)) = 0, limtô+ÿ

✏(t) = ✏< < +ÿ and limtô+ÿ

(x(0)(t) * satc✏r(x(0)(t))) = 0 for
all initial states x(0)(0).

Using Proposition 1 we can prove our final result.

Theorem 6. Assume (A0), (A1), (A2), (A3) with fn < gn. There exist ✏< > 1, c > 0 and positive definite diagonal matrices
�,�O such that (40), (65), (87), (88), (96), (97) solve the Semiglobal Leader Following problem with partial information for (1),
(2).

The proof is based on the fact that, by (A1), the agents’ state trajectories are bounded in time while estimating a bound on
the magnitude of x(0) through (96), (97). After some time, by virtue of Proposition 1, Òx(0)(t) * satc✏r(x(0)(t))Ò is small so that
x(0)(t) is ultimately contained in some known compact set of the form [*c✏r, c✏r].

7 EXAMPLE AND SIMULATIONS

Consider, as the leader dynamics, the Van der Pol oscillator

Üx(0)
1

= x(0)
2

Üx(0)
2

= (1 * x(0)
1

2

)x(0)
2

* x(0)
1

which is in the form (1). Assume to have three agents and a leader connected as follows. Agent 2 is connected with the two
other agents and the leader, while agents 1 and 3 are connected only with agent 2. Let L and L

0

be respectively the Laplacians
associated with the agents graph and the connection of the leader with the agents. Then they are given by

L =

r̀rp
1 *1 0

*1 2 *1

0 *1 1

assq , L0

=

r̀rp
0 0 0

0 1 0

0 0 0

assq , öL = L
0

+ L =

r̀rp
1 *1 0

*1 3 *1

0 *1 1

assq .
The given system satisfies assumptions (A0), (A1), (A2), (A3), as pointed out in remarks 1, 3 and 5. We have taken ⌦ to be a
10ù10 square centered at the origin. The parameters of the controller (87), (88), (96), (97) with (40), (65) are:⇧ = (2�105, 2�103)
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and ⇧O = (10

3, 10)T and ✏(0) = 10. The errors e(i)
1

and e(i)
2

for i À [1, 3] are reported in Figure 1 assuming that the agents are
initialized as follows: Agent 1: x(1)(0) = (0, 0)T , Agent 2: x(2)(0) = (5,*5)T , Agent 3: x(3)(0) = (2,*2)T .

FIGURE 1 Consensus errors versus time

8 EXTENSIONS

All the machinery introduced in the paper can be used in more general situations once appropriate additional assumptions are
introduced in terms of incremental homogeneity.

8.1 (A,B,C) not in prime form
The assumption of the triple (A,B,C) in prime form was considered in order to simplying the notation.Assume now to deal with
the only case where the system is controllable and observable in the first approximation. Without loss of generality we can always
assume that the matricesA andB are in the form (3) with f (�) given by (4). We can then apply the procedure proposed in section
4 to compute the static state feedback law u = (u(1),… , u(N)

)

T , u(i) = *⇧⇣ (i), i À [1,N], of theorem 1, assuming the incremental
homogeneity assumption (A2) on f (�) are satisfied. Consider now the change of coordinates Éx(i) = ÉT x(i), i À [0,N], with

ÉT =

�
CT

(CA)T 5 (CAn*1)T
�T (98)

In the new coordinates ( ÉC , ÉA) are in prime form while Éf ( Éx(i)) = BK Éx(i) + Éf
0

( Éx(i)). We can then apply the procedure proposed in
section 5.1 (and section 5.2) to compute the observer which estimates the consensus errors in the new coordinates with variables
⇠ = (⇠(1),… , , ⇠(N)

)

T assuming the incremental homogeneity assumption on Éf (�) are satisfied. Then the feedback law

u = *(IN ‰ ⇧)( öL‰ In)satc✏1N‰r((IN ‰ ÉT *1)⇠), (99)

together with the observer (47) will achieve consensus.
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8.2 Output nonlinearities
In this case the leader’s and agents’s outputs are, more generally, assumed to be nonlinear:

Üx(0)(t) = Ax(0)(t) + f (x(0)(t)), (100)
y(0) = Cx(0)(t) + h(x(0)(t)), (101)

Üx(i)(t) = Ax(i)(t) + f (x(i)(t)) + Bu(i)(t), (102)
y(i) = Cx(i)(t) + h(x(i)(t)), i À [1,N], (103)

In this case, with (C ,A) in prime form, we need the following additional assumptions on h in terms of incremental homogeneity:

(A3

®

) The nonlinear function CTh À C0

(Rn,Rn) in (61) is incrementally homogeneous in the upper bound with quadruple�
r, r * g, g,CT

 

�
, with  = ↵C , ↵ À [0, 1) and g satisfying (63), (64).

This generalization is useful in many situations. For instance, saturated outputs can be written in the form (101) and (103) and
satisfying (A3

®

). The controller (87), (88) is modified by replacing � (i) in (46) with

� (i)
=

≥N
j=1 l

i
j
�
y(j) * C⇠(j) *H

�
satc✏r(x(0)), satc✏r(⇠(j))

��
+ li

0

�
y(i) * y(0) * C⇠(i) *H

�
satc✏r(x(0)), satc✏r(⇠(i))

��
(104)

where H(x(0), e(j)) = h(e(j) + x(0)) * h(x(0)).

8.3 Heterogeneous agents
In this case we assume heterogeneous agents, i.e.

Üx(0)(t) = Ax(0)(t) + f (0)

(x(0)(t)), y(0) = Cx(0)(t), (105)
Üx(i)(t) = Ax(i)(t) + f (i)

(x(i)(t)) + Bu(i)(t), y(i) = Cx(i)(t), i À [1,N], (106)

consisting of a leader (eq. (105)) with x(0) À Rn, y(0) À R and f (i) locally Lipschitz function, and N heterogeneous agents (eq.
(106)), where x(i) À Rn, y(i) À R and u(i) À R, i À [1,N], are the state, measured output and control input of the i-th agent. Our
main result remains true by the additional assumption on the agents

(A4) There exist smooth maps ⌃(i)
: Rn ô Rn and D(i)

: Rn ô R such that for all x
)⌃(i)

)x
(x)[Ax + f (0)

(x)] = A⌃(i)
(x) + f (i)

(⌃

(i)
(x)) + BD(i)

(x), i À [1,N].

Indeed, under assumption (A4) with �(i)
:= x(i) * ⌃(i)

(x(0)), ⌫(i) := u(i) * D(i)
(x(0)) and w(i)

:= y(i) * C⌃(i)
(x(0)) (105), (106)

becomes

Üx(0)(t) = Ax(0)(t) + f (0)

(x(0)(t)), y(0) = Cx(0)(t), (107)
Ü�(i)

(t) = A�(i)
(t) + �f (i)

(�(i)
(t) + ⇧(i)

(x(0)),⇧(i)
(x(0))) + B⌫(i)(t), w(i)

= C�(i)
(t), i À [1,N], (108)

which can be assimilated to the system (23), (24) under the following identifications e(i) õ �(i), u(i) õ ⌫(i) and w(i) õ y(i). The
consensus analysis follows as in Sections 4, 5 and 6.

8.4 Robustness
In this case uncertain leader’s and agents’ dynamics are considered, with uncertainties modeled as a bounded time-varying
disturbance (we consider identical agents for simplicity)

Üx(0)(t) = Ax(0)(t) + f (x(i)(t), d(t)),
y(0) = Cx(0)(t),

(109)

Üx(i)(t) = Ax(i)(t) + f (x(i)(t), d(t)) + Bu(i)(t),
y(i) = Cx(i)(t), i À [1,N],

(110)

consisting of a leader (eq. (105)) with x(0) À Rn, y(0) À R and f a locally Lipschitz function, andN identical agents (eq. (110)),
where x(i) À Rn, y(i) À R and u(i) À R, i À [1,N], are the state, measured output and control input of the i-th agent with
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continuous bounded disturbance d À R (for simplicity we consider only one disturbance). Clearly, our incremental homogeneity
assumptions must be modified to take into account the presence of disturbances d.

(A2

®

) f is incrementally homogeneous in the upper bound with quadruple
⇠
(r, s), r + f, (öf, h),

�
� �d

�⇡
, � = ÍÍBKÎÎ + �

0

with �
0

(0, 0, 0) = 0, r, f satisfying (38), (39) and f
1

> h,

(A3

®

) f is incrementally homogeneous in the upper bound with quadruple
�
(r, s), r + ög, (g, k),

�
� �d

��
, r, g satisfying (63),

(64) and gn > k.

Notice that we had introduced additional weights s and degrees h in (A2

®

) and k in (A3

®

) together with the matrix�d in order
to take into account the incremental contribution of d. Our result (the proof follows the same lines as with d í 0) establishes
an ISS property from the disturbance to the consensus error. The controller (86), (88) is modified as

u(j) = ⇧

Ç⇣ (j) = *⇧

L N…
j=1

lijsatc✏r(⇠
(j)
) + li

0

satc✏r(⇠(i))
M
, j À [1,N] (111)

Ü⇠ = (IN ‰ A)⇠ + (IN ‰ B)u + F
�
satc✏r(x(0)), sat1N‰c✏r(⇠), 0

�
+ (IN ‰ ⇧O)� . (112)

where now

F (x(0), e, d) := r̀rp
f (x(0), d) * f (e(1) + x(0), d)

4
f (x(0), d) * f (e(N)

+ x(0), d)

assq
We obtain the following result:

Theorem 7. Assume (A0

®

), (A1), (A2

®

), (A3

®

) with fn < gn. There exist ✏< > 1, c > 0 and positive definite diagonal matrices
�,�O such that (40), (65), (111), (112) solve the Semiglobal Leader Following problem with partial information for (1), (2) in the
sense that the consensus error e, associated to (1), (2) and with initial values in ⌦ùN , satisfies lim suptô+ÿ

Òe(t)Ò f ↵(ÒdÒ
ÿ

)

for some ↵ À K
ÿ

.

9 CONCLUSIONS

In the present paper su�cient conditions were given for the leader following consensus problem, assuming that the dynamics
describing the agents are nonlinear and incrementally homogeneous. The study has been performed by assuming local full
information and, secondly, local partial state information and finally recovering the leader’s state information with a observer.
The leader’s trajectories are assumed bounded with possibly unknown containing compact set. An output feedback controller
was proposed, using a state feedback controller coupled with high-gain observers which estimate the consensus errors and
the leader’s state. If the compact set in which the leader’s trajectories are contained is unknown, the observer for the leader’s
state is an high-gain observer with adapted gains. Adaptation is used to estimate the magnitude of the leader’s trajectories.
Heterogeneous agents and robustness issues were also discussed. Further study will devoted to the leader-following consensus
for a non-compact set of leader’s trajectories.

APPENDIX

Proof of the h.u.b. of ⇢.
Due to assumption (A2) and Lemma 4 with d := f and h :=

Çf, F , defined in (36), is h.u.b. with quadruple⇠
r‰ 1N+1

, r‰ 1N ,öf‰ 1N ,�
⇡

, with � is given in (36).

Using now the left inequality in (39), the composition and shifting rules in1 with Z
*1

= (INn *A
T ÑH)

*1

=

≥n*1
j=0(A

T
H)

j and
(INn * A

T
�)

*1

=

≥n*1
j=0(A

T Ñ
�)

j , we find that the following functions are h.u.b.:
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• with the assumption that dj f dj+1, j À [1, n * 1] in (39), (42): ⇠ ô '
1

(⇠) = Z
*1

⇠ with quadruple⇠
r‰ 1N , (r + f)‰ 1N ,*f‰ 1N , (INn * A

T
�)

*1

⇡
;

• with the assumption thatöf
1

= d
1

andöfj f dj föfj+1 f dj+1, j À [1, n * 1] in (39), (42),
(x(0), öe ) ô '

2

(x(0), öe ) = (x(0),Zöe ) with quadruple
⇠
r‰ 1N+1

, (r * f)‰ 1N+1

, f‰ 1N+1

, diag{In, INn + A
T
�}

⇡
;

• with the assumption that dj f dj+1, j À [1, n * 1] in (39), (42), öe ô '
3

(öe ) = (A * A
T
H

2

)öe with quadruple⇠
r‰ 1N , (r + f)‰ 1N , f‰ 1N ,A + A

T
�

2

⇡
.

Furthermore Ò✏*r‰1N ↵ (Z(✏r‰1N ↵ öe))Ò f Ò(INn +A T
�)öe Ò for all öe and ✏ > 0. By the composition rule in1, we conclude that

the following composite functions are i.h.u.b.:

• öeô ('
1

˝'
3

)(öe ) with quadruple
�
r‰ 1N , (r + f)‰ 1N , f‰ 1N ,⇥

�
, where ⇥ = (INn + A

T
�)

*1

(A + A
T
�

2

);

• (x(0), öe ) ô ('
1

˝F˝'
2

)(x(0), öe ) with quadruple
⇠
r‰ 1N+1

, (r + f)‰ 1N , f‰ 1N+1

, öR
⇡

, where öR are defined in (36).

This concludes the proof.
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