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Abstract—In this paper, an improved approach for the solution
of the regulator problem for linear discrete-time dynamical
systems with non-Gaussian disturbances and quadratic cost
functional is proposed. It is known that a sub-optimal recursive
control can be derived from the classical LQG solution by
substituting the linear filtering part with a quadratic, or in
general polynomial, filter. However, we show that when the system
is not asymptotically stable the polynomial control does not
improve over the classical LQG solution, due to the lack of the
internal stability of the polynomial filter. In order to enlarge
the class of systems that can be controlled, we propose a new
method based on a suitable rewriting of the system by means of
an output injection term. We show that this allows to overcome
the problem and to design a polynomial optimal controller also
for non asymptotically stable systems. Numerical results show
the effectiveness of the method.

Index Terms—Stochastic systems, Stochastic optimal control,
Kalman filtering, Nonlinear filters.

I. INTRODUCTION

The importance of the optimal control policy in the engi-
neering applications is well known. The problem is usually
modeled as a nonlinear programming problem that involves
finding the minimum of a function with dynamical constraints.
A typical case is that the system to be controlled is linear
and the performance criterion is a quadratic form in state and
control. The aim is to find a minimum energy feedback control
law that keeps the state of the system close to the state-space
origin. In the Linear Quadratic Gaussian (LQG) Regulator
problem the noise statistics are assumed to be Gaussian.

A well-known property of the LQG Regulator problem
with partial state information is that the optimal regulator,
synthesized by the LQ optimal technique, is generated from
the optimal linear estimate of the state [22]. For linear Gaus-
sian systems, the Kalman Filter (KF) is the optimal recursive
estimator in the minimum mean-square error sense. On the
other hand, for linear non-Gaussian systems the KF is the
best affine estimator but it is yet possible to develop estimators
that are more accurate. The same holds true for the Kalman
Predictor (KP).

In many important technical areas the widely used Gaussian
assumption cannot be accepted as a realistic statistical descrip-
tion of the random quantities involved. As a consequence,
increasing attention has been paid to non-Gaussian systems
in control engineering [2], [20], [23], [26], [29], [30]. In par-
ticular, non-Gaussian problems often arise in digital communi-

cations when the noise interference includes noise components
that are essentially non-Gaussian [25], in problems concerning
fault estimation [17], sensor or actuator faults [16], intermittent
observations [7], stochastic output matrices [8], multiplicative
noises and bilinear systems [11], [12].

In the case of non-Gaussian noises the conditional expecta-
tion, which gives the optimal minimum variance estimation, is
the solution of an infinite dimensional problem [31] that can be
solved by numerical approximate solutions, with high compu-
tational burden. Therefore, in order to design any control strat-
egy, it is important to find satisfactory sub-optimal estimates
of the state variables that are actually computable. Methods to
approximate the state conditional probability density function
include Monte Carlo methods [2], sums of Gaussian densities
[1] and weighted sigma points [21] among others. These
general solutions can cope with nonlinearities and/or with the
presence of noise outliers or unknown parameters [26], and
they generally have high computational cost.

From the point of view of the optimal control problem
the same issue arises, as it is known since the work of
[24]. The original incomplete-information stochastic optimal
control problem with nonlinearities or non Gaussian noises is
equivalent to a complete-information but infinite-dimensional
one. Although the results in [13] show that in some cases
finite-dimensional sufficient statistics are available and allow
to reduce the original incomplete information optimal control
problem to a finite-dimensional and complete-information one,
the general case remains challenging.

As a consequence, a sensible alternative is to look for
sub-optimal and more easily computable solutions. This is
done by first improving the state prediction provided by
the KP. Since this prediction is a linear function of the
measurements, a natural development in the minimum variance
framework is to design predictors that make use of quadratic or
polynomial functions of the observations in order to improve
the estimation accuracy and preserve easy computability and
recursion. This idea was first proposed in [27] and [15] where
an augmented system contains the original observations and
their squares. The suboptimal quadratic estimate (prediction)
of the state for the original system is obtained by applying the
KF (KP) to the augmented system. This approach has been
extended in [10] to polynomial estimates. The prediction pro-
vided by quadratic or polynomial predictors can be exploited
in the finite horizon control problem of non-Gaussian systems,
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as described in [9], [18], [19]. The resulting quadratic optimal
controller yields better performance in terms of the standard
quadratic cost functional with respect to the standard linear
optimal controller and it is obtained by replacing the linear
optimal prediction of the KF with the polynomial optimal one,
in virtue of the separation principle proved in [18].

These approaches have a serious drawback in the case of
non asymptotically stable systems. Indeed, the state and mea-
surement noises of the augmented polynomial system depend
on the state, and their variance becomes unbounded when the
original system is not asymptotically stable. Moreover, the
internal stability of the Polynomial Filter (PF) and Polynomial
Predictor (PP) is guaranteed only for asymptotically stable
systems. In this paper we show that when this condition is
not met the performance of the PF tends asymptotically to
the KF, and the same happens to the controller based on the
PP. A solution to this problem has been proposed in [6] that
describes a quadratic filter, named Feedback Quadratic Filter
(FQF) that improves over the KF also in the case of non-
asymptotically stable systems. The corresponding predictor
- named Feedback Quadratic Predictor (FQP) - has been
introduced in the conference paper [4]. The main contributions
of the present paper are the following.

• We solve the polynomial case, i.e. we prove a separa-
tion result for a generic order ν of the regulator and
we describe the complete algorithm for the Feedback
Polynomial Predictor (FPP) (Section III).

• We present a complete theoretical analysis in Section IV.
We prove formal properties concerning the performance
of the controllers based on the FPP and PP. In particular
we show that the output injection gain is essential to
improve over the standard LQG Regulator in the case
of unstable plants. We discuss the optimal choice of
the output injection term and we prove the non intuitive
property that the best controller does not necessarily make
use of the best filter.

• We extend the approach to the case of non-stationary
noise sequences (Section IV-E).

• We present in Section V extensive numerical simulations
for the quadratic and cubic case to illustrate the supe-
riority of the FPP Regulator and validate the theoretical
conclusions. Specifically we show that the FPP Regulator
is superior to the PP Regulator of [19] also for stable
systems and discuss the choice of the output injection
gain for FPP Regulator of different orders.

• We consider an optimal planar positioning problem (Sec-
tion V-D) to show the application and effectiveness of
the proposed method to a wider class of systems, namely
systems with nonlinear output function and gaussian
noises.

In this paper it is proven that the optimal controller based
on polynomial estimates remains linear in the state. In other
words, an optimal recursive polynomial controller is straight-
forwardly obtained by using the proposed predictor instead of
the Kalman predictor together with the same feedback control
law as in the linear optimal regulator (LQG) for the Gaussian
case.

Extensions of this approach to time-varying systems,
continuous-time systems and random system matrices (see [8])
are future possible developments.

Notation. In a probability space (Ω,F ,P) let E denotes the
expectation. If X and Y are two random variables (r.v.) with
the same distribution we write X ∼ Y . If X is a Gaussian
r.v. with mean µ and variance σ2 we write X ∼ N (µ, σ2).
We denote with L2 the Hilbert space of the n-dimensional F
measurable random variables with finite second order moment.
Let G be a sub σ-algebra of F , we denote with L2(G, n)
the Hilbert space of the n-dimensional, G measurable random
variables with finite second order moment. We write L2(X,n)
to denote L2(σ(X), n) where σ(X) is the σ-algebra generated
by X . Given a random vector X in (Ω,F ,P) X> denotes
the transpose and the norm in L2 is defined as usual, i.e.
‖X‖2L2 =

∫
Ω
X>XdP = E[X>X]. We denote with Π [·| M]

the orthogonal projection onto a given closed subspaceM of a
given Hilbert space. Let A be a matrix, then ||A|| is a norm of
A and (A)r,s denotes the element of the row r and column s. If
A > 0 the matrix A is positive definite and A > B means A−
B > 0. The Kronecker product of A and B is A⊗B. The i-th
Kronecker power of A is A[i], st{A} denote the vectorization
(or stack) function of A and st−1{·} its inverse. The trace of
a square matrix A is tr{A} and v = col(v1, . . . , vn) denotes
the column vector v = [v1, . . . , vn]>. We denote with In,i the
identity matrix in Rni×ni , In the identity matrix in Rn×n and
with I the identity matrix of appropriate dimension when it
is clear from the context. The spectrum of a square matrix A
is defined as σ(A), while σ̃(A) ⊂ σ(A) indicates the set of
the eigenvalues corresponding to the observable part of A. See
[5], chapter 12 for details on matrices and Kronecker Algebra.
The open unit ball of the complex plane is denoted with C�. If
σ(A) ⊂ C�, then A is said to be Schur stable. If X ∈ Rn then
X1:p denotes the vector in Rp of the first p components of X ,
where p < n. Throughout the paper we will use the symbol
0 to denote the zero scalar, vector or matrix of appropriate
dimension.

II. PROBLEM FORMULATION AND PRELIMINARIES

The control problem we solve concerns the class of linear,
detectable and stabilizable systems driven by non-Gaussian
additive noise described by the following equations:

x(k + 1) = Ax(k) +Bu(k) + Fω(k), (1)
y(k) = Cx(k) +Gω(k), (2)

with x(0) = x0 and the associated cost functional

J =
1

2
E
[
x>(N)Sx(N) +

N−1∑
k=0

x>(k)Qx(k)+

+ u>(k)Ru(k)
] (3)

where N ∈ N is the time-horizon. For k ≥ 0, x(k) ∈ Rn
is the state, ω(k) ∈ Rr is a non-Gaussian noise, u(k) ∈ Rp
is the control input, y(k) ∈ Rq is the measurement output
and the matrices A, B, C, F , G, S, Q, R are of appropriate
dimensions. As usual, the covariance matrix GG> is full rank
and the matrices Q, S and R are symmetric non-negative
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definite (strictly positive definite in the case of R). Moreover,
we assume the pairs (A,B), (A,F ) stabilizable and (A,C),
(A,Q) detectable.

Denoting x̄0 = E[x0], assume there exists ν ∈ N such that
the initial state x0 and the random sequence {ω(k)} satisfy
the following conditions for k ≥ 0 :

(i) {ω(k)} is a zero mean i.i.d. sequence;
(ii) {Fω(k)}, {Gω(k)} and x0 have uncorrelated moments

up to the 2ν order;
(iii) for i = 1, 2, . . . , 2ν there exist finite and known vectors

Ψω,i
.
= E[ω[i](k)], Ψx0,i

.
= E[(x0 − x̄0)[i]].

Clearly Ψx0,1 = 0 and (i) implies Ψω,1 = 0. When the
sequences {Fω(k)}, {Gω(k)} and x0 are mutually inde-
pendent then (ii) is verified. We assume without loss of
generality that st−1{Ψω,2} = E[ω(k)ω>(k)] = I and we
denote with Ψx0

= st−1{Ψx0,2} the covariance matrix of
the initial condition. In the non-Gaussian case, assuming the
knowledge of the first 2ν moments of the state and output
noise sequences is weaker than assuming the availability of
the whole distributions.

In this framework, we consider the finite-horizon sub-
optimal control problem for non-Gaussian discrete-time linear
systems with partial state information. More precisely, our
aim is to compute the control law in a class of recursively
computable polynomial feedback which minimizes (3). It is
well known (see [22]) that, for the finite-horizon regulator
problem (1)–(3) with the assumptions above, the output feed-
back optimal control ǔ(k) among the affine transformations
of y(0), y(1), . . . , y(k − 1) is given by

ǔ(k) = −M(k)x̌(k|k − 1), (4)

where

M(k) = R−1B>Pc(k + 1)·
·
(
I +BR−1B>Pc(k + 1)

)−1
A, (5)

Pc(k) is the solution of the backward Riccati equation

Pc(k) = A>Pc(k + 1)
(
I +BR−1B>Pc(k + 1)

)−1
A+Q

(6)
Pc(N) = S (7)

and x̌(k|k − 1) is the prediction of x(k) provided by the
Kalman predictor (see [3]), namely

x̌(k|k − 1) = Ax̌(k − 1|k − 2) +AK(k − 1)

·
(
y(k − 1)− Cx̌(k − 1|k − 2)

)
+Bǔ(k − 1),

(8)

K(k) = P (k)C>
(
GG>

)−1
, (9)

P (k) =
(
I +H(k − 1)C>

(
GG>

)−1
C
)−1

H(k − 1),

(10)

H(k − 1) = AP (k − 1)A> + FF>. (11)

A. The Geometric Approach to Filtering and Prediction
We recall the basic notions on polynomial filtering and

recursive polynomial estimates through a geometric approach.
Consider the system (1)–(2) and let

Yk
.
= col(y(0), · · · , y(k)) (12)

be the output sequence. The minimum variance estimate of the
state x(k) of system (1)–(2) can be defined as the orthogonal
projection of x(k) onto the Hilbert space L2(Yk, n):

x̃(k) = E [x(k)|σ(Yk)] = Π
[
x(k)|L2(Yk, n)

]
. (13)

Defining the auxiliary vector Y ′k = col(1, Yk) ∈ R1+l, with
l = (k + 1)q, if the sequences {x(k)} and {y(k)} are jointly
Gaussian, the projection above is equivalent to the projection
onto the subspace Lky ⊂ L2(Yk, n) of the affine functions of
Yk, i.e.

Lky = {z : Ω→ Rn : ∃T ∈ Rn×1+l : z = TY ′k}.

The KF recursively computes the projection Π[x(k)|Lky ]
which is the best affine estimate of x(k) in the mini-
mum variance sense. In the Gaussian case, this coincides
with E [x(k)|σ(Yk)]. When {x(k)} and/or {y(k)} are non-
Gaussian, the computation of (13) is highly difficult.

Since the best affine estimate is obtained by projecting onto
Lky , better suboptimal estimates can be obtained by projecting
the state x(k) onto larger subspaces. We will consider the
space of ν-order polynomial transformations of Yk. Let us
define the aggregate vector

Y
(ν)
k = col(Y ′k, Y

[2]
k , Y

[3]
k , . . . , Y

[ν]
k ) ∈ Rlν (14)

where lν =
∑ν
i=0 l

i, then

Pky (ν)
.
= {z : Ω→ Rn : ∃T ∈ Rn×lν : z = TY

(ν)
k }. (15)

The computation of the optimal polynomial estimate
Π[x(k)|Pky (ν)] requires a growing filter size because Y

(ν)
k

contains powers of the output at different time instants. For
example Y [2]

k contains terms of the form y(k1) ⊗ y(k2) with
k1, k2 ≤ k. In general, for i ∈ {2, . . . , ν}, the vector Y [i]

k con-
tains terms of the form y[p1](k1)⊗y[p2](k2)⊗· · ·⊗y[pi](ki) for
any p1, . . . , pi such that

∑i
j=1 pj = i and k1, k2, . . . , ki ≤ k.

In order to obtain a filter which can be written recursively,
we replace Y (ν)

k of (14) with

Y
(ν)

k
.
= col(Y ′k, Ỹ

(2)
k , Ỹ

(3)
k , . . . , Ỹ

(ν)
k ) ∈ Rl̄ν (16)

where Ỹ (i)
k

.
= col(y[i](0), . . . , y[i](k)) with i ∈ {2, . . . , ν} and

l̄ν = 1 + l
∑ν−1
i=0 q

i. The difference is that Ỹ (i)
k contains only

the i-th power of each output y(j), j ≤ k, but not the cross
products of the output at different time instants. Consequently,
Ỹ

(i)
k grows linearly in time, rather than polynomially. The

associated subspace is

Pky(ν)
.
= {z : Ω→ Rn : ∃T ∈ Rn×l̄ν : z = TY

(ν)

k }. (17)

Thus, we shall refer to Π[x(k)|Pky(ν)] as the optimal recur-
sive polynomial estimate. Analogous definitions can be given
for the optimal polynomial prediction, i.e. Π

[
x(k)|Pk−1

y (ν)
]

and for the optimal recursive polynomial prediction, i.e.
Π[x(k)|Pk−1

y (ν)].
It is well known that conditional expectation minimizes the

covariance matrix of the estimation error. This is true even for
projections as it is clarified by the following known lemmas
for which the proofs are provided in the Appendix A.
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Lemma 1: Let K and M be two closed subspaces of L2

such that K ⊆ M. Let v ∈ L2, we set vK = Π[v|K] and
vM = Π[v|M]. If ΨK and ΨM are the covariance matrices
associated to the errors eK = v − vK and eM = v − vM
respectively, then

ΨK ≥ ΨM, (18)
tr{ΨK} ≥ tr{ΨM}, (19)

tr{ΨKΛ} ≥ tr{ΨMΛ} (20)

with Λ any positive semidefinite matrix.
Lemma 2: Let Pν(k) and Hν(k) be the covariance matrices

of the estimation and prediction errors x(k)−Π[x(k)|Piy(ν)]
for i = k and i = k − 1 respectively. Let P (k) and H(k) be
the covariance matrices of the estimation and prediction errors
x(k)−Π[x(k)|Liy] for i = k and i = k− 1 respectively, then∥∥∥x(k)−Π[x(k)|Piy(ν)]

∥∥∥2

L2
≤
∥∥∥x(k)−Π

[
x(k)|Liy

] ∥∥∥2

L2
.

B. Output Injection

The state equation (1) is transformed using the output
equation (2):

x(k + 1) = Ax(k) +Bu(k) + Fω(k)

= Ãx(k) +Bu(k) + Fω(k) + Ly(k)− LGω(k)

= Ãx(k) +Bu(k) + Ly(k) +Wω(k), (21)

where Ã = A−LC, the output injection gain matrix L ∈ Rn×q
is arbitrarily chosen and W = F − LG. As the second step,
taking advantage of linearity, the state sequence is split into
two sequences, {xp(k)} and {xs(k)}. The control-dependent
predictable component xp(k) is the solution of

xp(k + 1) = Ãxp(k) +Bu(k) + Ly(k), (22)
xp(0) = x̄0

.
= xp0, (23)

namely

xp(k) = Ãkxp0 +

k−1∑
τ=0

Ãk−τ−1 (Bu(τ) + Ly(τ)) , (24)

which can be computed at time k, since the deterministic initial
value xp0 and the output sequence Yk−1 are available.

The stochastic component xs(k) is the solution of

xs(k + 1) = Ãxs(k) +Wω(k), xs(0) = xs0, (25)

with xs0 ∼ x0 − x̄0 where Ψxs0,i
.
= E

[
xs0

[i]
]

= Ψx0,i. From
(22) and (25) trivially follows that

x(k) = xp(k) + xs(k) ∀k ≥ 0. (26)

The output map (2) is arranged as

ys(k) = y(k)− Cxp(k) = Cxs(k) +Gω(k), (27)

where ys(k) is an available information at time k. Denoting
the corresponding sequence vector as

Ys,k
.
= col(ys(0), ys(1), . . . , ys(k)) (28)

we can define Y (ν)
s,k , Pkys(ν), Y

(ν)

s,k and Pkys(ν, L) as in (14),
(15), (16) and (17) respectively, using ys(k) instead of y(k).
Note that, in particular, the set Pkys(ν, L) depends explicitly
on the output injection gain L. We use the notation Pkys(ν)
when it is not necessary to specify L.

Remark 1: It has been shown (see [6], Theorem 4) that
for any value of the output injection gain matrix L, we
have Pky (ν) ≡ Pkys(ν). However, this is not true for the
recursive quadratic transformations, i.e. for L 6= 0, we
have Pky(2) 6≡ Pkys(2) (see [6], Theorem 5). This extends
to recursive polynomial transformations ν ≥ 2, for which
Pky(ν) 6≡ Pkys(ν). Roughly speaking, this is due to the fact
that recursive polynomial estimates neglect the powers of
the output at different time instants, and the correlation of
these terms depend on the dynamic matrix of the stochastic
component, and therefore on the gain L.

Since (24) is an affine transformation of Yk, the projection
of xp(k) onto Pkys(ν) trivially corresponds to itself while
Π[xs(k)|Pkys(ν)] can be obtained by processing the system
(25)-(27). Thus, we can obtain x̂(k) as the sum of the two
terms

x̂(k)
.
= Π[x(k)|Pkys(ν)] = xp(k) + Π[xs(k)|Pkys(ν)] (29)

Analogously, we can obtain x̂(k|k − 1) as the sum of xp(k)

and Π[xs(k)|Pk−1

ys (ν)]. Since the projection subspace Pkys(ν)
depends on L the estimate x̂(k) and the prediction x̂(k|k−1)
will depend on L.

Figure 1 gives a representation of the sets of polynomial
transformations of the output. The outer solid line circle
represents the set of polynomial transformations Pky (ν) which
is independent of the output injection gain L, the inner dashed
line circle represents the set of recursive polynomial transfor-
mations for all the values of L. The two inner solid line circles
represent the sets of recursive polynomial transformations
for two specific values L1 and L2, namely Pkys(ν, L1) and
Pkys(ν, L2). The intersection of these two sets is non-empty
and contains the linear transformations Lky ≡ Lkys , that are
independent of L. Note that if L = 0 then Pkys(ν, 0) ≡ Pky(ν).
We prove in Section IV that we can improve the perfor-
mance by projecting the state onto the L-parametrized space
Pkys(ν, L). This argument can be extended to predictions, since
the recursive polynomial estimate and the recursive polynomial
prediction belong to the set Pkys(ν, L) and Pk−1

ys (ν, L), respec-
tively. Section IV-B discusses the choice of the parameter L.

III. SEPARATION PRINCIPLE AND RECURSIVE
POLYNOMIAL CONTROL

Let us rewrite the difference equation (22) of the predictable
component xp(k) and consider the system

xp(k + 1) = Axp(k) +Bu(k)+

+ LCxs(k) + LGω(k), (30)

xs(k + 1) = Ãxs(k) +Wω(k), (31)
ys(k) = Cxs(k) +Gω(k) (32)
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Pk
y (⌫)

Pk

ys
(⌫, L1) Pk

ys
(⌫, L2)

Fig. 1. Sketch of the sets of different types of polynomial transformations of
the output.

with the initial conditions xp(0) = x̄0 and xs(0) ∼ x0 − x̄0.
With the notation introduced in the previous section, the output
feedback optimal control among the affine transformations
of output sequence {y(k)} is in the set Lk−1

ys while, for a
given output injection gain matrix L, the recursive polynomial
control of (1)–(3), belongs to the set Pk−1

ys (ν) and can be
expressed as an affine transformation of the zero-mean vector
col(Ye(0), Ye(1), . . . , Ye(k − 1)) where

Ye(k)
.
=


ys(k)

y
[2]
s (k)−G[2]Ψω,2

y
[3]
s (k)−G[3]Ψω,3

...
y

[ν]
s (k)−G[ν]Ψω,ν

 .

Definition 1: A discrete-time stochastic process ξ taking
values in Rn is said to be a second-order convergent process if
there exist two constant vectors m1 ∈ Rn and m2 ∈ Rn2

such
that limk→∞ E[ξ(k)] = m1 and limk→∞ E[ξ[2](k)] = m2.

Notice that since E[ξ[2](k)] = st{E[ξ(k)ξ>(k)]}, the co-
variance matrix of a second-order convergent process tends
asymptotically to st−1{m2}. Moreover, condition (iii) in Sec-
tion II implies that for i = 1, . . . , ν the process ω[i](k) is
second-order convergent.

Lemma 3: If the output injection gain matrix L is such that
σ(Ã) = σ(A− LC) ⊂ C� and conditions (i)–(iii) in Section
II hold true then the process x[i]

s , i = 1, . . . , ν, where xs is
defined in (31), is second-order convergent.

Proof: The hypothesis σ(Ã) ⊂ C� implies σ(Ã[i]) ⊂
C�, i.e. Ã[i] is Schur stable, for all i ≥ 1. The statements is
easily proved by induction. Since E[xs(k + 1)] = ÃE[xs(k)]
with a null initial condition, E[xs(k)] is identically null. For
i = 2 the statement holds true since

E[x[2]
s (k + 1)] = Ã[2]E[x[2]

s (k)] +W [2]Ψω,2, (33)

Ã[2] is Schur stable and consequently under assumption (iii)
E[x

[2]
s (k)] tends to a finite limit. For i = 3, . . . , 2ν we use the

following representation of the i-th Kronecker power of the

binomial (see Appendix B, Proposition 5) to write

x[i]
s (k + 1) =

(
Ãxs(k) +Wω(k)

)[i]

=

i∑
j=0

Θi
j(n)

(
Ã[j]x[j]

s (k)⊗W [i−j]ω[i−j](k)
)

=Ã[i]x[i]
s (k) +

i−1∑
j=0

Θi
j(n)

(
Ã[j]x[j]

s (k)⊗W [i−j]ω[i−j](k)
)
,

(34)

where Θi
j(n) are suitably defined coefficient matrices of

dimension n× n. Taking expectations yields

E
[
x[i]
s (k + 1)

]
= Ã[i]E

[
x[i]
s (k)

]
+

+

i−1∑
j=0

Θi
j(n)

(
Ã[j]E

[
x[j]
s (k)

]
⊗W [i−j]E

[
ω[i−j](k)

])
.

(35)

Since Ã[i] is Schur stable, E
[
ω[i−j](k)

]
is constant and

E
[
x

[j]
s (k)

]
, j < i tends to a limit because of the inductive hy-

pothesis, E
[
x

[i]
s (k)

]
, i = 1, . . . , 2ν tends to a finite limit and

consequently x[i]
s is second-order convergent for i = 1, . . . , ν.

Lemma 4: The sequence {Ye(k)} is generated by the
following stochastic system

Xe(k + 1) =AXe(k) + Bu(k) + de + he(k) (36)
Ye(k) =CXe(k) + ge(k) (37)

where

Xe(k) =


xp(k)
xs(k)

x
[2]
s (k)

...
x

[ν]
s (k)

 =

[
xp(k)
Xs(k)

]
, he =

[
LGω(k)
we(k)

]
(38)

de =


0

WΨω,1

W [2]Ψω,2

...
W [ν]Ψω,ν

 =

[
0
ds

]
ds =


0

W [2]Ψω,2

...
W [ν]Ψω,ν

 (39)

where we = col(w1, . . . , wν) and ge = col(g1, . . . , gν) with
wi(k), gi(k) for i ∈ {1, . . . , ν} defined in (43)-(44) and
the matrices A, B, C defined in (45)–(47). The sequences
{we(k)} and {ge(k)} are zero-mean, white and such that
E[we(k)g>e (j)] = 0 for any k 6= j. Moreover the expression
of the auto-covariance and cross-covariance matrices of the
noise sequences

Ψw(k)
.
= E

[
we(k)w>e (k)

]
, (40)

Ψg(k)
.
= E

[
ge(k)g>e (k)

]
, (41)

Υ(k)
.
= E

[
we(k)g>e (k)

]
(42)

are given in (49)–(51), where the Ξj,i terms are suitably
defined commutation matrices (see Appendix B, Proposition
3).
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Proof: By considering Lemma 3.3.1 of [10] the proof is
obtained. By applying twice this Lemma with reference to (31)
and (32) and taking into account the predictable component
of the state given by (30) the proposition is proved.

Lemma 5: If L is such that σ(A−LC) ⊂ C� and conditions
(i)–(iii) in Section II hold true then the noise processes
{we(k)} and {ge(k)} are second-order convergent.

Proof: From (52) it is evident that the time varying part
of Ψw(k) and Ψg(k) is E[x

[i]
s (k)], with i ≤ 2ν. Since Lemma

3 guarantees that E[x
[i]
s (k)] tends to a finite limit, the same

holds for Ψw(k) and Ψg(k).
It is now possible to provide the solution to the polynomial

optimal regulator problem of (1)–(3).
Theorem 1: Let L be an output injection gain matrix such

that σ(A − LC) ⊂ C� and conditions (i)–(iii) in Section II
hold true. The recursive optimal polynomial regulator for the
system (1)–(3) is given by the linear controller

û(k) = −M(k)x̂(k|k − 1) (53)

where M(k) is the gain of the LGQ Regulator defined in (5)
with the associated solution to the backward Riccati equation
(6)–(7) and the prediction x̂(k|k − 1) is computed with the
expressions of the Recursive Polynomial Filter and Predictor
(54)–(65).

Proof: The optimal linear control of the extended system
(36)–(37), endowed with the same cost functional written in
the new extended state

J =
1

2
E
[
X>e (N)SXe(N) +

N−1∑
k=0

X>e (k)Q(k)Xe(k)

+ u>(k)R(k)u(k)
]

(66)

with

S =


S S 0 · · · 0
S S 0 · · · 0
0 0 0 · · · 0
...

...
. . . . . .

...
0 0 · · · · · · 0

 ,Q =


Q Q 0 · · · 0
Q Q 0 · · · 0
0 0 0 · · · 0
...

...
. . . . . .

...
0 0 · · · · · · 0

 ,
(67)

corresponds to the optimal polynomial control of the original
problem (1)–(3), since it is obtained by applying the LQG
solution (4)–(11) to the extended system (36)-(37) with the
cost functional (66). Note that, due to the presence of the
forcing term de, the optimal linear control of the extended
system (36)-(37) is given by

û(k) = −(Π(k)de +M(k)Xe(k|k − 1)) (68)

with

Π(k) = R−1B>Pc(k + 1)(I + BR−1B>Pc(k + 1))−1,

M(k) = Π(k)A,
where Pc(k + 1) is the solution of the backward Riccati
equation associated to the extended system (36)-(37) and the
cost (66). Note that, at each k, the matrix Pc(k) has the same
structure of S and Q of (67). Now, by noticing from (39) that
the first two blocks of de are equal to zero, i.e. de1:2n = 0, it is

easy to see that the control law in (68) simplifies in (53) and
the algorithm (54)–(65) provides the polynomial prediction
x̂(k|k − 1).

We name the predictor (57) Feedback Polynomial Predictor
(FPP).

Remark 2: Theorem 1 shows the validity of the separation
principle for the polynomial case. Hence, the same control
system design tools can be used as in the LQG case.

IV. PROPERTIES OF THE RECURSIVE POLYNOMIAL
CONTROL

In this section we provide additional properties and perfor-
mance results of the recursive polynomial control with the FPP
(FPP Regulator for short) described in Section III. In particular
we discuss the case of unstable system, the choice of the output
injection gain matrix L, we compare the proposed algorithm
with the standard LQG Regulator, and with the recursive
polynomial predictor of [19] (PP Regulator for short), we
extend the method to non-stationary noise sequences and we
discuss some observability and implementation issues.

For comparison purpose, we consider the stationary problem
(infinite-horizon). Let us denote HLQG

∞ , HPP
∞ and HFPP

∞ (L) the
steady-state covariance matrices of the prediction errors of the
KP, PP and FPP respectively. Note that HFPP

∞ (L) depends on
L and corresponds to the limit of the first n × n block of
Hr(k) in (65), whereas the HPP

∞ does not depend on L and in
particular we have HPP

∞ = HFPP
∞ (0).

Our conclusions, motivated in the following, can be sum-
marized as follows. Consider the system (1)-(2) with the cost
functional (3) and (A, C) a detectable pair.
• When A is not Schur stable and for any L such that
σ(Ã) ⊂ C�. HLQG

∞ ≡ HPP
∞ ≥ HFPP

∞ , and the same
relationship holds for the related cost functionals J .

• When A is Schur stable it is possible to find L such
that HLQG

∞ ≥ HPP
∞ ≥ HFPP

∞ and it is possible to find
L such that the same relationship holds for the related
cost functionals J . The two gains L may in general be
different.

A. Unstable systems

The main point motivating the introduction of the output
injection term is the following. The PP Regulator is obtained
by setting L = 0 for which Ã[i] = A[i] for any i = 1, . . . , ν.
Consider the case of an unstable system, i.e. A is not Schur
stable. Note that even A[i] for i = 2, . . . , ν is not Schur stable.
By the (45)–(47) it is immediate to see that xs(k) is in the
observable but not controllable part of the extended system
(36)-(37). Reasoning as in Lemma 3 and Lemma 5 we can
conclude that E[x

[i]
s (k)] and the extended noise sequences are

not stable for i 6= 1. The blocks of the state and measurement
noise covariance matrices (Ψw(k))r,s, (Ψg(k))r,s experience
unbounded grow except for r = 1 or s = 1. As a consequence,
Pr(k) and Hr(k) of (59)–(65) do not admit a steady-state
value except for the first n × n block, the one relative to
xs(k), for which the noise covariance matrices FF> and
GG> do not depend on the state. Since the blocks of the
polynomial part of the covariance matrix in (65) go to infinity,
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The extended system

wi(k) =

i−1∑
j=0

Θi
i−j(n)

(
W [i−j] ⊗ Ã[j]

)((
ω[i−j](k)−Ψω,i−j

)
⊗ In,j

)
x[j]
s (k) (43)

gi(k) =

i−1∑
j=0

Θi
i−j(q)

(
G[i−j] ⊗ C [j]

)((
ω[i−j](k)−Ψω,i−j

)
⊗ In,j

)
x[j]
s (k) (44)

A =



A LC · · · · · · · · · 0

0 Ã 0 · · · · · · 0

0 Q2,1 Ã[2] 0 · · · 0
...

...
. . . . . . . . .

...
...

...
. . . . . . . . . 0

0 Qν,1 Qν,2 · · · Qν,ν−1 Ã[ν]


As =



Ã 0 · · · · · · 0

Q2,1 Ã[2] 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . . . . 0

Qν,1 Qν,2 · · · Qν,ν−1 Ã[ν]

 (45)

B =
[
B> 0 · · · 0

]>
(46)

C =



0 C 0 · · · · · · 0
0 O2,1 C [2] 0 · · · 0
...

...
. . . . . . . . .

...
...

...
. . . . . . . . . 0

0 Oν,1 Oν,2 · · · Oν,ν−1 C [ν]

 Cs =



C 0 · · · · · · 0
O2,1 C [2] 0 · · · 0

...
. . . . . . . . .

...
...

. . . . . . . . . 0
Oν,1 Oν,2 · · · Oν,ν−1 C [ν]

 (47)

Qi,j = Θi
i−j(n)

(
W [i−j] ⊗ Ã[j]

)
(Ψω,i−j ⊗ In,j) Oi,j = Θi

i−j(q)
(
G[i−j] ⊗ C [j]

)
(Ψω,i−j ⊗ In,j) . (48)

Covariance matrices of the extended system

(
Ψw(k)

)
r,s

=

r−1∑
i=0

s−1∑
j=0

Θr
r−i(n)

(
W [r−i] ⊗ Ã[i]

)
P r,si,j (k)

(
W [s−j] ⊗ Ã[j]

)> (
Θs
s−j(n)

)>
(49)

(
Ψg(k)

)
r,s

=

r−1∑
i=0

s−1∑
j=0

Θr
r−i(q)

(
G[r−i] ⊗ C [i]

)
P r,si,j (k)

(
G[s−j] ⊗ C [j]

)> (
Θs
s−j(q)

)>
(50)

(
Υ(k)

)
r,s

=

r−1∑
i=0

s−1∑
j=0

Θr
r−i(n)

(
W [r−i] ⊗ Ã[i]

)
P r,si,j (k)

(
G[s−j] ⊗ C [j]

)> (
Θs
s−j(q)

)>
(51)

P r,si,j (k) = st−1
{

(In,s−j ⊗ Ξ>nr−l,nj ⊗ In,i)
(
(Ψω,s+r−i−j −Ψω,s−j ⊗Ψω,r−i)⊗ Ξ1,qj ⊗ Iq,i

)
E[x[i+j]

s (k)]
}

(52)

HPP(k) → HPP
∞ ≡ HLQG

∞ . Figure 4 of Section V-B shows
an experimental validation of this fact. It is worth noticing
that the overall prediction error is still bounded and has a
limit. In other words, the performance of the PP Regulator
tends to the standard LQG Regulator although the covariance
matrices (59)–(65) are not stable and cannot be implemented.
Conversely, in the case of the FPP Regulator if σ(Ã) ⊂ C� the
sequences {we(k)}, {ge(k)}, {xs(k)} become second-order
convergent and thus the covariance matrices (59)–(65) remain
bounded with a consequent improvement of the performance.
As before, for a choice of L such that σ(Ã) is not in C�
HFPP
L (k)→ HFPP

∞ (L) ≡ HLQG
∞ .

B. Optimal choice of the output injection gain L

As we have shown in Section II-B the projection subspace
Pk−1

ys (ν, L) depends on the output injection gain matrix L,

and the control û(k) defined in (53) depends on L through
x̂(k|k − 1) of the FPP. The control solution (53) is the same
as it would be obtained in the absence of the additive noise
sequences, i.e. the certainty equivalence principle. However,
this time the resulting cost functional depends on the design
parameter L.

Hence, in this sub-optimal setting, it is no longer true the
property that the optimal L with respect to the prediction error
is also optimal with respect to the cost functional. In fact, it is
well known (see [22]) that, if the control law (4) is used then
the steady state cost JLQG = limN→∞ J/N of (3) for system
(1)–(2) is

JLQG = tr{FPc,∞F>}+ tr{HLQG
∞ M>∞B

>Pc,∞A} (69)

where Pc,∞ is the solution of the discrete time algebraic
Riccati equation and M∞ is the corresponding gain. The cost
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Recursive Polynomial Filter and Predictor

xp(0) = x̄0, X̂s(0| − 1) = col(Ψx0,1,Ψx0,2, . . . ,Ψx0,ν) (54)

Hr(0) =


st−1{Ψx0,2} st−1{Ψx0,3} · · · st−1{Ψx0,ν+1}

st−1{Ψx0,3}> (Pr(0))2,2 · · · (Pr(0))2,ν
...

...
. . .

...
st−1{Ψx0,ν+1}> (Pr(0))ν,2 · · · (Pr(0))ν,ν

 (55)

(Hr(0))i,j = (Pr(0))j,i = st−1{Ψx0,i+j} −Ψx0,iΨ
>
x0,j i, j = 2, . . . , ν (56)

x̂(k|k − 1) = xp(k) + x̂s(k|k − 1), x̂s(k|k − 1) = X̂s(k|k − 1)1:n (57)

Kr(k) = Hr(k)C>s
(
CsHr(k)C>s + Ψg(k)

)−1
(58)

Pr(k) = Hr(k)−Kr(k)CsHr(k) (59)

X̂s(k) = X̂s(k|k − 1) +Kr(k)
(
Ye(k)− CsX̂s(k|k − 1)

)
(60)

x̂(k) = xp(k) + x̂s(k), x̂s(k) = X̂s(k)1:n (61)
xp(k + 1) = Axp(k) +Bû(k) + Lys(k) (62)

Γ(k) = Υ(k)
(
CsHr(k)C>s + Ψg(k)

)−1
(63)

X̂s(k + 1|k) = (As − (AsKr(k) + Γ(k)) Cs) X̂s(k|k − 1) + (AsKr(k) + Γ(k))Ye(k) + ds (64)

Hr(k + 1) = AsPr(k)A>s + Ψw(k)− Γ(k)Υ>(k)−AsKr(k)Υ>(k)−Υ(k)K>r (k)A>s (65)

(69) is the optimal one when the noise sequences are Gaussian.
In the non-Gaussian case and for a given output injection gain
L, we have for the FPP regulator

JFPP(L) = tr{FPc,∞F>}+ tr{HFPP
∞ (L)M>∞B

>Pc,∞A}.
(70)

Thus, it is reasonable to find the optimal gain L∗c as

L∗c = arg min
λ∈σ̃(Ã)
|λ|≤1

tr
{
HFPP
∞ (L)M>∞B

>Pc,∞A
}
. (71)

On the other hand, the optimal gain L∗p from the point of view
of the variance of the prediction error is

L∗p = arg min
λ∈σ̃(Ã)
|λ|≤1

tr
{
HFPP
∞ (L)

}
. (72)

We see that in general L∗c 6= L∗p, since tr{HFPP
∞ (L1)} <

tr{HFPP
∞ (L2)} does not imply that HFPP

∞ (L1) − HFPP
∞ (L2) is

positive definite. Note that L∗p minimizes also tr{P FPP
∞ (L)},

i.e. the limit for k →∞ of the trace of the first n× n block
of Pr(k) of (59).

The computation of (71) and (72) is a constrained poly-
nomial optimization problem that in general may be hard
to solve. However, the computation needs to be done just
once and off-line. In the numerical examples of Section V we
use standard tools of Matlabr to solve that problem without
difficulty. We remark that when the optimization problems (71)
and (72) are really intractable due to the high dimension of
the system and of the output, one can resort to a suboptimal
choice or even choose any L that makes A−LC Schur stable.
This implies giving up optimality in Pkys(ν), but in any case it
yields better performance than existing methods (see Section
V).

C. FPP Regulator vs LQG Regulator

Theorem 1 shows that the structure of the gain of the
control law (53) is the same as the standard LQG Regulator.
In essence, the difference stems uniquely in the computation
of the prediction. We remind that when the noise sequences
are non-Gaussian, the cost (69) is not optimal.

Proposition 1: Consider the system (1)-(2) with the cost
functional (3). For any L consider the cost JFPP(L) in (70)
obtained by using the FPP Regulator, i.e. the control law (53),
and let JLQG be the cost in (69) obtained by using the standard
LQG Regulator, i.e. the control law (4). Then

JFPP(L) ≤ JLQG (73)

Proof: From equations (69), (70) we can write the differ-
ence ∆J = JLQG − JFPP(L) as

∆J = tr
{(
HLQG
∞ −HFPP

∞ (L)
)
M>∞B

>Pc,∞A
}
.

Noting that the control gain (5) can be written as

M∞ =
(
B>Pc,∞B +R

)−1
B>Pc,∞A

it is clear that the matrix M>∞B
>Pc,∞A is positive semidef-

inite. By Lemma 1 the matrix HLQG
∞ − HFPP

∞ (L) is positive
semidefinite too. Hence by inequality (20) it follows that
∆J ≥ 0 and the proof is complete.
Note that if L is such that Ã = A− LC is not Schur stable,
then JFPP(L) = JLQG and the predictor (54)–(65) is not
implementable in the long run. Thus, it is enough to set L
such that σ(Ã) ⊂ C� to obtain, in general, the inequality
(73).
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D. FPP Regulator vs PP Regulator

We recall that, for any k ≥ 0, we have HPP
∞ = HFPP

∞ (0).
Defining JPP as in (70), we can state the following

Proposition 2: Consider the system (1)-(2) with the cost
functional (3). The cost JFPP(L∗c) obtained by using the control
law (53) with the output injection gain L∗c defined in (71) is
smaller or equal than the cost JPP obtained by using the control
law (53) with L = 0, namely

JFPP(L∗c) ≤ JPP. (74)

Moreover, if the matrix A is not Schur stable, then for any
value of L such that σ(A− LC) ⊂ C�, we have

JFPP(L) ≤ JPP = JLQG. (75)

The proof descends immediately from the definition of L∗c in
(71) and from Proposition 1.

E. Extension to non-stationary noise sequences

A straightforward extension of this method is the case of
non-stationary noise sequences. Let us consider the system

x(k + 1) = Ax(k) +Bu(k) + Fkω(k), (76)
y(k) = Cx(k) +Gkω(k), (77)

with x(0) = x0 and the same cost functional (3). In (76)-
(77) the matrices Fk and Gk are time-varying and uniformly
bounded, i.e. supk||Fk||+||Gk||<∞. Following the same line
of Section III, we can split the state into two parts, namely

xp(k + 1) = Axp(k) +Bu(k)+

+ LCxs(k) + LGkω(k), (78)

xs(k + 1) = Ãxs(k) +Wkω(k), (79)
ys(k) = Cxs(k) +Gkω(k) (80)

where Wk
.
= Fk − LGk. Consequently, we can state the

following Definition and Lemmas.
Definition 2: A discrete-time stochastic process ξ taking

values in Rn is said to be a second-order asymptotically
bounded process if there exist two constant vectors m1 ∈ Rn
and m2 ∈ Rn2

such that lim supk→∞ E[ξ(k)] = m1 and
lim supk→∞ E[ξ[2](k)] = m2.

Lemma 6: If the output injection gain matrix L is such that
σ(Ã) = σ(A− LC) ⊂ C� and conditions (i)–(iii) in Section
II hold true then for 1 ≤ i ≤ ν the processes x[i]

s , where xs
is defined in (31), are second-order asymptotically bounded.

Lemma 7: If the output injection gain matrix L is such that
σ(Ã) = σ(A− LC) ⊂ C� and conditions (i)–(iii) in Section
II hold true, then the noise sequences {we(k)} and {ge(k)}
are second-order asymptotically bounded.
The proofs of Lemma 6 and 7 follow the same lines of
Lemma 3 and Lemma 5. As a consequence, Theorem 1
continue to hold with the only exception of considering at
each step k the time-varying matrices Fk and Gk instead of
F and G in the extend system expressions (43)–(48), in the
covariance matrices of the extended system (49)–(52) and in
the recursive polynomial filter and predictor (54)–(65). For, all
the considerations of Section IV-A, IV-B, IV-C, IV-D continue

to hold in the case of uniformly bounded non-stationary noise
sequences. We shall take advantage of this extension in the
Example V-D.

From the results of this section it descends that in the case
of non-stationary and non-Gaussian noise sequences the FPP
Regulator yields better performance than the LQG regulator.

Finally, in the case of time-varying system, i.e. when also
the matrices A, B and C depend on time, the main difference
is that L(k) needs to uniformly stabilize A(k) − L(k)C(k).
Note that the time dependence of the matrix B does not add
any difficulties to the control problem.

F. Observability and implementation issues

So far we have not explicitly mentioned the observabil-
ity properties of the extended system (36)–(37). Theorem
1 requires (A, C) to be detectable. However, detectability
of (A, C) is needed in order for the FPF and FPP to be
internally stable. To this aim, in the first place we recall
that detectability of (A, C) is equivalent to detectability of
(Ã, C) = (A − LC, C), see [28] (pag. 79, Section 3.10
as a dual result of Lemma 2.1). In the second place, since
xp(k) is known we can restrict the detectability analysis to the
pair (As, Cs) of the stochastic part (see (45)–(47)). Since the
eigenvalues of Kronecker powers of a matrix are the product
of eigenvalues of the base matrix, if the output injection gain
L is such that σ(Ã) ⊂ C� all the Ã[i] are Schur stable, hence
(As, Cs) is detectable because As is Schur stable.

Notice that, due to the redundancies of Kronecker powers,
(As, Cs) is never observable. The noise covariance matrices
Ψw(k), Ψg(k) and Υ(k) of the extended system as well as
Pr(k), Hr(k) are singular, and the computation of (54)–(65)
requires the use of the pseudo-inverse. The computation of
redundant terms can be avoided by using tools such as reduced
Kronecker algebra ( [5] ch 12, [10]). In this case an advantage
is that the resulting FPP has smaller size. However, such
a reduction is not necessary in principle since the extended
system is inherently stable when L is designed to make
Ã Schur stable. On the contrary, the PP of [19] can be
implemented in the long run only when σ(A) ⊂ C�, since
the extended system is not observable and the unobservable
part is not stable when A is not Schur stable.

V. NUMERICAL EXAMPLES

We test in this section the effectiveness of the proposed
approach with four numerical examples. In the examples of
Section V-A, V-B, V-C the time-horizon is N = 104 and we
compute Nr = 50 realizations, while in the example of Section
V-D the time-horizon is N = 103 and Nr = 100. The cost
functionals are characterized by S = Q = In, and R = Ip.
We consider polynomial filters and polynomial regulators of
order ν = 2, 3, i.e. the Feedback Quadratic Filter (FQF),
Feedback Quadratic Predictor (FQP) Regulator, the Feedback
Cubic Filter (FCF) and the Feedback Cubic Predictor (FCP)
Regulator. When possible we compare them with the Quadratic
and Cubic Filters (QF, CF) and Predictor Regulators (QP and
CP) of [19].
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state noise output noise
f1(k) 1/25 -4/25 g(k) 1 -5/20
P[f1(k)] 0.8 0.2 P[g(k)] 0.2 0.8
f2(k) -1/100 9/100
P[f2(k)] 0.9 0.1

TABLE I
EXAMPLE 1. PROBABILITY MASS FUNCTIONS OF THE NOISE SEQUENCES.

The performance of the algorithms is reported in terms
of the a priori and actual state filtering errors and in terms
of the a priori and actual cost functional, which is related
to the state prediction error. The steady-state covariance of
the estimation error is denoted with P∞ and, for polynomial
filters, it corresponds to the limit as k →∞ of the first block
of the matrix Pr(k) of (59). We denote JP and JP

emp, where
P is one of LQG, QP, FQP, CP, FCP, the a priori and actual
cost functional calculated as in (69) and (3), respectively. In
particular, the actual cost JP

emp is obtained by replacing in (3)
the expected valued with the average across realizations when
the P Regulator is used to control the system. If the variables
xi(j) and x̂i(j) are the state and the estimated state of the i-th
realization at time j. MSEF, where F is one of KF, QF, FQF,
CF, FCF, is the MSE when the filter F is used to compute
x̂i(j), defined as usual as

MSE =
1

Nr

1

N

Nr∑
i=0

N∑
j=0

‖xi(j)− x̂i(j)‖2. (81)

The performance index is defined as the percentage improve-
ment with respect to the Kalman Filter for the filtering analysis
and with respect to the LQG Regulator for the control analysis,

αMSE =102 · (MSEKF −MSEF)/MSEKF (82)

αJ =102 · (JLQG
emp − JP

emp)/JLQG
emp . (83)

A. Example 1: Stable Dynamics

In order to compare the different regulators, we consider in
this first example a stable system n = 2 characterized by

A =

[
0.85 0.25
0.2 0.5

]
, B =

[
0
1

]
, C =

[
1 0

]
and the state and output noise sequences

Fω(k) = col
(
f1(k), f2(k)

)
∈ R2,

Gω(k) = g(k) ∈ R.
(84)

The components of Fω(k) and Gω(k) are i.i.d. sequences with
probability mass functions shown in Table I and the initial
condition is x0 = N (0, 0.6I).

Since the spectrum of the dynamic matrix A is σ(A) =
{0.9589, 0.3911} it is possible to implement the QF and the
CF of [19], which correspond to the FQF and FCF when the
output injection is set to L = 0, and control the system by
using the corresponding QP and CP Regulators. We compare
the QF and CF with FQF and FCF where the optimal output
injection gain L is chosen by finding the numerical solution of
(72). This value of L∗p is such that σ(Ã) = {0.3526, 0.8519}
for the FQF and σ(Ã) = {0.3470, 0.8584} for the FCF.

Filter/ Regulator tr{P∞} MSE αMSE J Jemp αJ
KF/ LGQ R. 0.0296 0.0300 - 0.0432 0.0436 -
QF/ QP R. 0.0190 0.0195 35.8% 0.0365 0.0370 15.4%
CF/ CP R. 0.0152 0.0156 48.7% 0.0343 0.0348 20.5%
FQF/ FQP R. 0.0120 0.0123 59.5% 0.0321 0.0326 25.6%
FCF/ FCP R. 0.0057 0.0061 80.7% 0.0285 0.0291 34.0%

TABLE II
EXAMPLE 1. A PRIORI AND ACTUAL MSE, PERCENTAGE REDUCTION OF

THE ACTUAL MSE, A PRIORI AND ACTUAL VALUE OF THE COST
FUNCTIONAL AND PERCENTAGE REDUCTION OF THE ACTUAL COST.

state noise output noise
f1(k) 1/25 -4/25 g(k) 1 -5/20
P[f1(k)] 0.8 0.2 P[g(k)] 0.2 0.8
f2(k) -1/100 9/100
P[f2(k)] 0.9 0.1

TABLE III
EXAMPLE 2. PROBABILITY MASS FUNCTIONS OF THE NOISE SEQUENCES.

Moreover, to compare the control performance we compute
the optimal output injection gain L∗c for the FQP Regulator
according to (71) and we find that σ(Ã) = {0.3524, 0.8500}
whereas for the FCP Regulator the optimal L∗c is such that
σ(Ã) = {0.3429, 0.8555}. In this example the pair (A,C) is
observable, thus the minimization over the whole spectrum of
Ã makes sense.

Figure 2 (left) plots the a priori MSE, i.e. tr{P∞}, of the
KF, QF, FQF. The marked lines refer to the related actual
MSE. Figure 2 (right) plots the a priori and actual MSE of
the KF, CF, FCF. Figure 3 shows the corresponding a priori
and actual cost functionals JP and JP

emp (marked lines) for the
quadratic and cubic filters.

We summarize the results in Table II. These results show a
good agreement between a priori and actual values as well
as a staggering 80.7% reduction of the MSE with respect
to the KF for the FCF and a 34% percentage reduction of
the cost functional of the FCP Regulator with respect to the
LQG Regulator. This example shows that, even in the case
of a stable system, the choice of the output injection gain L
dramatically improves the performance.

B. Example 2: Unstable Dynamics

In this example we consider an unstable system character-
ized by

A =

[
0.9 0.25
0.2 1

]
, B =

[
0
1

]
, C =

[
1 0

]
(85)

and the state and output noise sequences as in (84) with
probability mass functions shown in Table III.

Since the spectrum of the dynamic matrix A is σ(A) =
{1.1791, 0.7209} we cannot implement the QF and the CF or
the corresponding QP and the CP regulators of [19] in the long
run, since the covariance of the estimation and prediction error
tends to the one of the Kalman Filter while the polynomial part
of the covariance of the estimation and prediction error tends
to infinity. Hence, we control the system with the proposed
regulators of order ν = 2, i.e. the FQP Regulator, and ν = 3,
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Fig. 2. Example 1. Trace of the steady-state covariance matrix of the estimation error tr{P∞} and the corresponding MSE across realizations for the quadratic
case(left) and cubic case (right).
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Fig. 3. Example 1. A priori and actual cost functionals of the controlled dynamics across realizations for the quadratic case(left) and cubic case (right).

i.e. the FCP Regulator. The optimal output injection gain L∗c
sets the eigenvalues σ(Ã) = {0.6371, 0.8079}.

Figure 4 shows the expected behavior of the trace of the
estimation error covariance matrix, with and without output
injection. In particular, as time goes by, the trace of the
covariance matrices of the estimation error tr{P∞} of the QF
and CF tends to the steady-state trace of the estimation error
covariance matrix of the KF. The same holds for the covariance
of the prediction error tr{H∞} (not shown). This causes
a performance degradation of the QP and CP Regulators.
Conversely, by using the output injection, the performance
are definitively improved as highlighted by the percentage
reductions in Table IV. We have a percentage reduction of
the MSE of 81% with respect to the KF for the FCF and a
percetage reduction of the cost functional of 80% with respect
to the LQG Regulator for the FCP Regulator.

C. Example 3: Dependence on L

For a scalar system with A = B = 1, C = 5 · 10−3

and x0 ∼ N (0, 0.5) and non-Gaussian noise sequences with
probability mass functions shown in Table V we highlight the

Filter/ Regulator tr{P∞} MSE αMSE J Jemp αJ
KF/ LGQ R. 0.1741 0.1737 - 0.6446 0.6429 -
FQF/ FQP R. 0.0445 0.0449 74% 0.1712 0.1726 73%
FCF/ FCP R. 0.0325 0.0328 81% 0.1287 0.1300 80%

TABLE IV
EXAMPLE 2. A PRIORI AND ACTUAL MSE, PERCENTAGE REDUCTION OF

THE ACTUAL MSE, A PRIORI AND ACTUAL VALUE OF THE COST
FUNCTIONAL AND PERCENTAGE REDUCTION OF THE ACTUAL COST.

dependence L 7→ J(L) of the cost functional for the filter
and regulator of order ν = 2, 3. Note that in the scalar case
both tr{P∞(L)} and J(L) attain the minimum for the same
L since the minimizations (71) and (72) are equivalent. In that
case the optimum output injection is L∗c = L∗p

.
= L∗ = 0.9082

for the FQF and FQP Regulator and we have L∗c = L∗p
.
= L∗ =

0.9067 for the FCF and FCP Regulator.
In Figure 5 we compare the value JLQG of the LQG

Regulator (which is insensitive to the output injection) with
the values of JFQP and JFCP of the FQP and FCP Regulator.
Table VI summarizes the results. For L = L∗, we note in
particular the remarkable 93% percentage reduction of the a
priori tr{P∞(L)} of FCF with respect to the KF, and the
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Fig. 5. Example 3. Dependence on the output injection gain L of the cost
functional J for the LQG, FQP and FCP Regulators.

77.9% percentage reduction of the a priori cost functional J
of the FCP Regulator with respect to the LQG Regulator.

D. Example 4: Planar positioning

In this section we consider an application of the FPP Regu-
lator beyond the class of linear systems. A planar positioning
is the control of an actuated object that must be moved at some
point in the plane. The system is described by a continuous-
time state equation and discrete-time measurement equations
of distance and angular position. After the discretization step
of the state equation and assuming that the input is a feedback
from the output, constant in the discretization interval τ ,

x(k + 1) =Ax(k) +Bu(k) + fk, (86)

z(k) =

[
z1(k)
z2(k)

]
=

[
ρ(k)
θ(k)

]
+

[
ερ(k)
εθ(k)

]
(87)

state noise output noise
Fω(k) 2/50 -18/50 Gω(k) 4 -60/85
P[Fω(k)] 0.9 0.1 P[Gω(k)] 0.15 0.85

TABLE V
EXAMPLE 3. PROBABILITY MASS FUNCTIONS OF THE NOISE SEQUENCES.

Predictor tr{P∞} %tr{P∞} J %J
KF 19.46 - 23.22 -
FQF 4.00 79.5% 7.77 66.5%
FCF 1.37 93.0% 5.14 77.9%

TABLE VI
EXAMPLE 3. A PRIORI ESTIMATION ERRORS, A PRIORI PERCENTAGE

REDUCTION OF THE ESTIMATION ERRORS, A PRIORI VALUES OF THE COST
FUNCTIONALS AND A PRIORI PERCENTAGE REDUCTIONS OF THE COST

FUNCTIONALS.

where ρ(k) and θ(k) are the distance and angular position at
time k, namely

ρ(k) =
√
x2

1(kτ) + x2
3(kτ), (88)

θ(k) = arctan 2

(
x3(kτ))

x1(kτ)

)
(89)

with x(k) = col (x1(k), x3(k)), x3(k)), x4(k)). Since
(x1(k), x3(k)) is the position in the plane and (x2(k), x4(k))
represents the velocity vector, the system dynamics is charac-
terized by

A =


1 τ 0 0
0 1 0 0
0 0 1 τ
0 0 0 1

 , B =


τ2/2 0
τ 0
0 τ2/2
0 τ

 . (90)

We assume x(0) = col(10, 1, 10, 1). The system and the
sensors are affected by Gaussian i.i.d. sequences, i.e. fk ∼
N (0, σ2

fI4), ερ(k) ∼ N (0, σ2
ρ) and ερ(k) ∼ N (0, σ2

θ) for
each k, where σ2

f = 5 · 10−2, σ2
ρ = 4 (error amplitude of

2 units on the distance) and three values for σ2
θ , namely 10−2,

2 · 10−2 and 4 · 10−2. As usual, the sequences {fk}, {ερ(k)}
and {εθ(k)} are assumed mutually independent.

Omitting the time dependence for brevity, we exploit the
relations x1 = ρ cos(θ) and x3 = ρ sin(θ) obtaining

x1 = (z1 − ερ) cos(z2 − εθ), (91)
x3 = (z1 − ερ) sin(z2 − εθ). (92)

We define

y1 = z1E[cos(z2 − εθ)], (93)
y2 = z1E[sin(z2 − εθ)]. (94)

Since the vector z = col(z1, z2) is measured at each k, we
can compute y1 and y2 at each time by using the moments of
εθ and the actual measurements z. Equations (91)–(94) imply

y1 = x1 + z1

(
E[cos(z2 − εθ)]− cos(z2 − εθ)

)
+

+ ερ cos(z2 − εθ) = x1 + g1, (95)

y2 = x3 + z1

(
E[sin(z2 − εθ)]− sin(z2 − εθ)

)
+

+ ερ sin(z2 − εθ) = x3 + g2, (96)
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where

g1 = z1 (E[cos(z2 − εθ)]− cos(z2 − εθ)) +

+ ερ cos(z2 − εθ), (97)
g2 = z1 (E[sin(z2 − εθ)]− sin(z2 − εθ)) +

+ ερ sin(z2 − εθ). (98)

Summarizing, system (86)-(87) can be rewritten with the new
measurements y1 and y2 as

x(k + 1) = Ax(k) +Bu(k) + fk, (99)
y(k) = Cx(k) + gk (100)

where
C =

[
1 0 0 0
0 0 1 0

]
.

Note that the system is marginally stable and it is in the form
(1)-(2) with {gk} a zero-mean non-Gaussian non-stationary
noise sequence and {fk} a Gaussian noise sequence, and
hypotheses (i)-(ii)-(iii) of Section II are satisfied. We call upon
Section IV-E for details to the case of non-stationary noise
sequences.

We apply the proposed FQP Regulator to this problem and
we compare it with the QP Regulator and the standard LGQ
Regulator. For, at each k, we need the moments of gk up to
the fourth order that can be obtained with tedious but simple
computations as in [14], where a planar tracking problem has
been discussed. We require the moving object to reach the
target final point on the plane (−100, 100) with null final
velocity. Thus, the target state is x◦ = col(−100, 0, 100, 0).
Consequently, we need to slightly modify the cost index J as

J =
1

2
E
[
(x(N)− x◦)>S(x(N)− x◦)+

+

N−1∑
k=0

(x(k)− x◦)>Q(x(k)− x◦) + u>(k)Ru(k)
] (101)

which yields with easy passages to the control law

û(k) = −M(k)x̂(k|k − 1) + π(k)x◦ (102)

where M(k) is the usual gain of (5), π(k) = R−1B>Pc(k +
1)(I+BR−1B>Pc(k+1))−1 and x̂(k|k−1) is the prediction
given by the FQP of the algorithm (54)–(65).

Since the covariance of the transformed output noises is
time-varying and it depends on the realization, the system does
not have a steady state and it is not possible to find the output
injection gain L by solving (71). Instead, a suboptimal L is
chosen such that σ(Ã) = {0.880, 0.902, 0.924, 0.946}.

Table VII summarizes the results for τ = 1 and three values
of the variance σ2

εθ
. In particular, in the case of σ2

εθ
= 4 ·10−2

we have a reduction of 13.18% of the MSE with respect to
the KF for the FQF and a 11.35% percentage reduction of the
cost functional of the FQP Regulator with respect to the LQG
Regulator. Since the system is mariginally stable, in this case
the QF/QP algorithms of [19] show no improvement.

We can draw two conclusions from this example. The use
of the output injection gain L is essential to improve the
performance of the control even for marginally stable systems.
Moreover, the FPP-based regulator can be successfully applied

σ2
εθ

= 10−2 MSE αMSE Jemp αJ

KF/ LGQ R. 39.95 - 1.22 · 105 -
QF/ QP R. 39.96 −0.02% 1.22 · 105 0.00%
FQF/ FQP R. 39.67 0.7% 1.22 · 105 1.03%

σ2
εθ

= 2 · 10−2 MSE αMSE Jemp αJ

KF/ LGQ R. 72.95 - 1.70 · 105 -
QF/ QP R. 73.07 −0.17% 1.70 · 105 0.00%
FQF/ FQP R. 69.55 4.65% 1.62 · 105 4.55%

σ2
εθ

= 4 · 10−2 MSE αMSE Jemp αJ

KF/ LGQ R. 130.42 - 2.49 · 105 -
QF/ QP R. 130.83 −0.32% 2.49 · 105 0.00%
FQF/ FQP R. 113.23 13.18% 2.21 · 105 11.35%

TABLE VII
EXAMPLE 4. ACTUAL MSE AND PERCENTAGE REDUCTION WITH RESPECT
TO THE KF, MEAN VALUE OF THE COST FUNCTIONAL J AND PERCENTAGE

REDUCTION WITH RESPECT TO THE LQG REGULATOR FOR QF/QP AND
FQF/FQP.

to a nonlinear system with Gaussian noises that can be trans-
formed into a linear one with non-Gaussian noises. Finally, we
remark that for any choice of τ ≥ 0.2 a standard Extended
Kalman Filter for the original system (86)-(87) exhibits a large
frequency of diverging estimates and thus, it is not suitable for
control purposes.

VI. CONCLUSIONS

This paper describes the recursive optimal polynomial reg-
ulator for discrete-time linear systems with additive non-
Gaussian noises. The existing polynomial regulator has been
extended to non asymptotically stable systems by introducing
an output injection term. It has been proven that the optimal
polynomial regulator can still be obtained by replacing the
Kalman Predictor with the Feedback Polynomial Predictor and
by using the same feedback control law as in the linear optimal
regulator.

An important property of recursive polynomial filters is that
the projection space depends on the output gain parameter
L. A somewhat surprising conceptual consequence is that the
optimal LQ regulator is not designed from the optimal filter
(in the minimum variance sense), in contrast with the intuition
and the usual design choice. Even if in most practical cases
this difference is very small, the notion of “optimality” for
recursive polynomial filters turns out to be more complex than
initially thought.

Numerical simulations show that when noise moments are
known, the use of polynomial filters on the system, rewritten
by means of an output injection term, may deliver a very
meaningful improvement of the performance for both the
estimation and optimal control problems also in the case of
systems that are not asymptotically stable.

The approach based on polynomial filtering and output
injection can be extended to systems for which a polynomial
filter can be designed, such as discrete and continuous-time
systems with multiplicative state noise [11], [12], systems
with intermittent observations [7] and systems with random
matrices [8].

Further points deserve to be investigated, for example the
extension of the output injection approach to time-varying
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systems and the analytical expression of the optimal value for
the output injection gain L.

APPENDIX A

Proof of Lemma 1: Let us denote with ẽ = vM − vK
and write the covariance matrix of eK as

ΨK = E
[
eKe
>
K
]

= E
[
(v − vM + vM − vK)(v − vM + vM − vK)>

]
= ΨM + Ψ′ + E

[
eM ẽ>

]
+ E

[
ẽ e>M

]
(103)

where Ψ′ = E[ẽ ẽ>] is a positive semidefinite matrix. Since
K ⊆M, it is evident from elementary geometry that the terms
eM and ẽ are orthogonal, i.e. v − vM ⊥ vM − vK, thus the
term E

[
eM ẽ>

]
vanishes. Hence, by (103) we conclude ΨK ≥

ΨM.
Proof of Lemma 2: By noticing that for i = k, k − 1

Liy ≡ P
i

y(1) ⊂ Piy(2) ⊂ · · · ⊂ Piy(ν) ⊂ L2(Yi, n),

from Lemma 1 and inequality (19) we have

tr{Pν(k)} ≤ tr{P (k)},
tr{Hν(k)} ≤ tr{H(k)}.

APPENDIX B
KRONEKER ALGEBRA

For sake of completeness we expose here some useful facts
on Kroneker Algebra proved in [5] and [10].

Proposition 3: For any given pair of matrices A ∈
Rr×s, B ∈ Rn×m, we have

B ⊗A = Ξ>r,n(A⊗B)Ξs,m, (104)

where Ξr,n and Ξs,m are suitable 0− 1 matrices.
In the vector case the commutation matrices satisfy the fol-
lowing recursive formula.

Proposition 4: For any a, b ∈ Rn and for natural l let Gl =
Ξ>n,nl be such that b[l] ⊗ a = Gl(a⊗ b[l]). Then the sequence
{Gl} satisfies the following equations.

G1 = Ξ>n,n,

Gl = (In ⊗Gl−1) · (G1 ⊗ In,l−1), l > 1.

Proposition 5: For a, b ∈ Rn and any integer h ≥ 0 the
matrix coefficients of the binomial power formula

(a+ b)[h] =

h∑
k=0

Θh
k(n)(a[k] ⊗ b[h−k])

are such that

Θh
h(n) =Θh

0 = In,h,

Θh
j (n) =(Θh−1

j (n)⊗ In)

+ (Θh−1
j−1 (n)⊗ In) · (In,j−1 ⊗Gh−j),

where Gl is defined in Proposition 4 and 0 < j < h.
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