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Abstract

Novel nonlinear predictors are studied for nonlinear systems with delayed measurements without assuming globally Lipschitz
conditions or a known predictor map but requiring instead bounded state trajectories. The delay is constant and known.
These nonlinear predictors consists of a series of dynamic filters that generate estimates of the state vector (and its maximum
magnitude) at different delayed time instants which differ from one another by a small fraction of the overall delay.

1 Introduction

The problem of reconstructing the unmeasurable state
variables by using the system model and the available on-
line output measurements has been addressed by many
authors. Particularly challenging remains the nonlinear
observer design problem in the presence of delayed out-
put measurements. In this case it is important to im-
plement some kind of prediction based on the delayed
measurements. A nonlinear observer has been proposed
in Marquez et al. (2000) for linearizable by additive out-
put injection systems. A predictor based on a cascade of
observers has been introduced with LMI techniques in
Besancon et al. (2007). For globally Lipschitz continuous
invertible observability maps (Germani et al. (2011)) the
proposed observer consists of a chain of dynamic pre-
dictors that reconstruct the unmeasurable state vector
at different delayed time-instants within the time-delay
window introduced by the output measurements. Hence,
the proposed nonlinear observer exhibits a chained struc-
ture that explicitly takes into account the magnitude
of the output delay. The paper Kazantzis et al. (2013),
while adopting a conceptually similar design methodol-
ogy, aims at overcoming some of the restrictions associ-
ated with the above approaches by following a techni-
cally different path. Also globally Lipschitz conditions
on the system are required in Ibrir (2011). In all these
papers linear predictors are used. A survey on observers
with measurement delay is found in Richard (2003) while
a predictor—based approach is extensively surveyed in
Krstic (2009).

Predictor—based results have been recently obtained in
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Karafyllis et al. (2013) where a known compact absorb-
ing set (plus some technical facts) is assumed for all the
system trajectories. This assumption is much stronger
than boundedness of the state trajectories, where the ab-
sorbing compact set depends on the initial condition of
each state trajectory. On the other hand, these dynamic
predictors follow the structure of the ones introduced in
Germani et al. (2011) and Kazantzis et al. (2013).

Predictors, which are not implemented as dynamical fil-
ters, are designed in Karafyllis et al. (2012b) under the
assumption that either a) the expression of the state tra-
jectories is explicitly known or b) the system is globally
Lipschitz. In Karafyllis et al. (2012a) the existence of
predictor—based observers is shown under the hypoth-
esis that the so-called predictor map is known exactly.
Actually, all the above cited results can be implemented
only if the predictor map is available (this happens for
linear systems, bilinear systems, chains of linear systems
with input nonlinearities), except for Karafyllis et al.
(2013) where a modified version of the chained predic-
tors, introduced in Germani et al. (2011) and Kazantzis
et al. (2013), are used. Further results have been ob-
tained for delays that depend on the delayed states in
Bekiaris-Liberis et al. (2013). Numerical and approxi-
mate predictors have been proposed in Karafyllis et al.
(2013). Design of predictors for specific implementation
has been proposed in Mazenc et al. (2011).

In this paper we consider the problem of state observa-
tion for a class of systems which satisfy an incremental
homogeneity (in the generalized sense) condition with
bounded state trajectories. This class of systems includes
lower triangular and upper triangular systems and many
non-triangular systems. The measurement delay is con-
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stant and known. It is not required any globally Lipschitz
condition on the system or availability of the predictor
map. An estimation of the maximum delayed state and
its maximum magnitude is dynamically implemented
and, using these estimates, a prediction is generated by
a chain of nonlinear dynamic predictors that reconstruct
the unmeasurable state vector at different delayed time-
instants. The novelty of our observers, on account of the
strong nonlinearities of the system, is the use for the first
time of nonlinear predictors with saturated estimates
where the saturation level is tuned on-line according to
the delayed measurements. This tuning is needed to es-
timate the width of the compact absorbing set of each
state trajectory (depending on its initial condition). Our
result is based on the observer design with undelayed
measurements proposed in Battilotti (2011). A construc-
tive design is illustrated by a step-by-step procedure.

2 Notation

(N1) R™ (resp. R™*") is the set of n-dimensional real
column vectors (resp. n x n matrices). R (resp. RZ,
RZ*™) denotes the set of real non-negative numbers
(resp. vectors in R™, matrices in R™*™ with real non-
negative entries). R. (resp. RZ) denotes the set of
real positive numbers (resp. vectors in R™ with real
positive entries).

(N3) For any matrix V € RP*™ we denote by V;; the
(i, 7)—th entry of V and for any vector v € R"™ we de-
note by v; the i—th element of v. We retain a similar
notation for functions. For any v € R™ we denote by
diag{v} the diagonal n x n matrix with diagonal ele-
ments vy, ..., U,. Also, |a|] denotes the absolute value
of a € R, |al denotes the euclidean norm of a € R™,
|A| denotes the norm of A € R™*"™ induced from
the euclidean norm |a| and {a) the column vector
of the absolute values of the elements of a € R", i.e.
(loal-lan)T.

(N3) We denote by C7 (2", %), with j > 0, £ < R"
and % < RP, the set of j-times continuously differen-
tiable functions f : 2" — %, by L (R, %) the set
of functions f € C°(Rx, %) such that supg=ol f(0)] <
+00 and by L/(Rs, %), with j > 0, the set of f €
CO(Rs,%) such that § | f(0)]/df < +o0.

(N4) DI(Z,2), ,2 < R", is the set of func-
tions f € CJ(2, %) with decoupled components,
viz. f(x) = (fi(x1), -, fu(zn))T. A saturation
function o(h,-) with levels h € RZ is a function
o(h,-) € D°(R",R") such that for each i = 1,...,n
and z € R™ o;(h,z;) = x; if |x;] < h; and
o;(h,z;) = h; otherwise. In other words, o;(h,z;)
saturates z; if it exceeds the range [—h;, h;].

(N5) For any vectors z € R”,t € RZ and € € R., we
define

: 7€t,L)T, gt ST = (Stlxlv e 7€t”xn)T (1)

viz. €' o x is the dilation of a vector z with weights .

Note that for any z,y € R, t;,t3 € RZ and e € R

el o oxr =0 ox =" 0x, (2)
(o) (e oy) = (2 oa) (™ oy) 3)
= ("* 2 oa)Ty =aT (T oy)

(N6) for any vectors z,y € R™ we write z < y if and
only if x; < y; forall: =1,...,n. We retain the same
notation for matrices A, B € R"*™: A < B if and only
if Ajj < B;jforalli,j =1,...,n. On the other hand
A = B (resp. A > B) for matrices A, B € R™*™ if and
only if A — B is positive semidefinite (resp. positive
definite).

3 Main assumptions

Consider the system

@(t) = f(x(t)) = Az(t) + ¢(2(t), z(=A) = w0, (4)
y(t) = h(z(t — A)) = Cz(t —A) + P(z(t — A)),t =0

for t = 0, where A > 0 is the constant (known) mea-
surement delay, z € R", y € R, the measurement y is
a function of the state at time ¢ — A. The matrix A is
in Brunowski canonical form and C = (1 0 --- 0).
Moreover, ¢ and 1 are locally Lipschitz continuous with
$(0) = 0 and P(0) = 0. The vector of initial conditions
xz(—=A) is xg. We will denote by x(t,x0) (resp. y(t,zo))
the state (resp. output) trajectory of (4) ensuing from
xo at t = —A (resp. at ¢t = 0) and z(t, ) is unique
and defined over its maximum right extension interval
(theorem 3.7 and proposition 3.10 of Smith (2011)). The
problem is to give a prediction of the state at time ¢ us-
ing the delayed measurement. Our assumptions are the
following ones (see the appendix for a short review of
incremental homogeneity in the upper bound):

(HO) (incremental homogeneity) CT and AT¢ are
incrementally homogeneous in the upper bound
(i.h.ub.) with quadruple (v,v — g,g,CTV¥) and, re-
spectively, (t,t—g,g, AT®) and (I — AAT) is incre-
mentally homogeneous in the upper bound (i.h.u.b.)
with quadruple (v, (I — AAT)(x +g), 9, — AAT)D),
where ®(0,0) = 0, ¥(0,0) = 0 and

2(g; —9j-1) T g1+ 1 <t — g < gjo1 o1,
j:27"'7n? (5)

(H1) (boundedness) for each xzy € R™ there exist a
compact set €y, < R" such that x(t,z¢) € €y, Vt =
—A,

(H2) (/increment%l observability) for any x, xgn e R":

y(tvfo) = y<ta ‘TO) Vi=0= l‘(t, 16) = x(taxo) vt >
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Remark 1 Assumptions HO states that CT\, AT ¢ and
(I — AAT)d are incrementally homogeneous with a cer-
tain relation between degrees and weights specified by (5).
HO is a condition for the existence of a semi-global linear
observer for the undelayed state x(t — A) (see Battilotti
(2013)). It can be seen that assumption HO is satisfied
for large classes of nonlinear systems:

(i) with locally Lipschitz lower triangular (or norm-
bounded by lower triangular maps) & :

d(z) = (d1(x1), - )"

and P(z) == 0, where each ¢, j=1,...,

7d)n(zlaz2a s

n, is (norm-

bounded by) a sum of terms with the form xjj o :v;;’
for some reals t;; = 1. For example in the case of
o(z) = (ml,x%xg)T we choose v = (3,1)7, g =
(6,2)T.

(ii) with locally Lipschitz strict upper triangular (or
norm-bounded by strict upper triangular maps) ¢:

d)(l')::(d)l(x?,, s 7x'ﬂ)7 ) d)n—Q(xn)v 0, O)T

and P(x) = Wi(xg,...,z,), where each ¢j, j =

1,...,n =2, and V is (norm-bounded by) a sum of

terms with the form :czjl * szl for some realst;, > 1.
For example in the case of ¢(x) = (x3w4,23,0,0)T
and P(z) = x9z4 we choose v = (8,6,4,1)T,
g=(-1,-1,-1,-2)T.

(i) for locally Lipschitz homogeneous (in the classical
sense) & and \p with weights such that vj11 —t; = 2go
forallj =1,...,n—1 and homogeneity degree 2gq and,
resp., 0. For example ¢(x) = (0,25)T for1 <p < 2,
where we chooset = (2(2—p),2)T, g = (p—1,p—1)T .0

Remark 2 HI and H2 (Battilotti (2011)) are extra con-
ditions to render global the semi-global observer of Bat-
tilotti (2013) by using saturated estimates with dynam-
ically tuned saturation levels. Assumption H1 is some-
what restrictive. However, many physical systems have
this property (Van Der Pol and F'itzhugh-Nagumo oscil-
lators, Lorentz-like systems: see section 6 for examples).
Note that we do not require the knowledge of a Lyapunov
function for the system. o

4 The structure of the predictor

Wherever possible we will omit the dependence of the
state trajectories from the initial conditions. The follow-
ing notation is adopted for the delayed state vectors and
measurements:

: A
e () = a(t — A+ jE),

. AL
y (1) = y@ﬂa), j=0,...,m. (6)

The predictor we propose has the following structure.

A first block is devoted, on one hand, to the estimation
EO)(t) of 2O (t), t >0,

é“”(t) M (u©)t), £©)t))
o)

+L(p ) [y (£)-Y (uOt), £°t))], (7)
where
M(u, &) == AL + p(o(cp’, &))

L(w) = (I - AT&(w) 1 CT KW,
B(n) = diag{Tu>4%}, Y (i, &) = C& + h(o(cn, £)),(8)

for some saturation function o with levels cp® (see (N4)
in the notation section), ¢, K > 0 and diagonal posi-
tive definite I' € R™*™, and, on the other, to the estima-
tion u(®(#) of the maximum magnitude of (%) (t) over
[0, +20)

19 )=G(u®(t), £ (£))+Q(u® (t), £ (t), y (t)) (9)

where

172|minigi|

G &) =p S foo(ent, & — o(cnt, €))7 (10)
Qu, &, y) = p!—2iminieil |~ <>G(cu,CT( —Y( &)

(see (1) for definitions).

The estimator (7) is a copy of the system equations (4)
plus a innovation term L(u(9)[y—Y (1, ()] in which
the gain matrix L(u(o)) depends adaptively on u(® and
the estimate &(©) is saturated with levels ¢(u(9)t. The
estimate p(9) (t) is positive and increasing in time and
approaches a constant value which depends on (the un-
known value of) 2(°)(0) and gives an estimate of the
maximum magnitude of z(?)(¢) over [0, +-00), which by
assumption HI is bounded (but unknown depending
on the initial condition 2(°)(0)). While u(% (¢) tends to
this constant value, the estimate &(©(¢) tends to de-
saturate and the terms Q(t) and G(t) in (9) tend to
zero. The saturation of the estimates allows to cope with
large initial state estimation errors and drive these er-
rors to a sufficiently small value for which the estimate
£O)(t) is no longer saturated. When the saturations are
not active any more in (4)-(7)-(9), the estimation error
2O (t) — £O)(t) tends to zero (by assumption H2).

The estimates &9 and n(©) are used in the block devoted,
on one hand, to the estimation &M (t) of z(M(t), t = 0
(one-step prediction),

V), £V () - M(pM(t -
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and, on the other, to the estimation u((¢) of v(¥(¢) =
wO@+2), =0,

aM) = 1) (12)

FGUD(6), V() - GO - ), EV (6~ 2)),

m m

where m > 1 is a sufficiently large integer. The delay is
divided up into small fractions with duration % in such
a way that asymptotic convergence to zero of the pre-
diction error is guaranteed. Noticing that, by integrat-
ing over [t — %, t] the system equations (4) retarded by
A — 2 and since (M (¢t — 4y = (O (t) by definition,

m

t

() = 2O) + J [AzMV(s) + p(zM (s))]ds, (13)

t— A
the predictor (11) is obtained by time-differentiating
¢

MW (s), eM(s)ds  (14)

A
-

() = £00) +

which is a copy of (13) with Az + ¢(z™M)) substi-
tuted for its saturated version M (u(M, 2(1). On the
other hand, noticing that, by integrating over [t — %, t]
the equations (9) retarded by A — £ and since vV (¢t —
4) = v((t) by definition,

YO0 =¥+ [ 16600, 800 + L))
HQUO(5), £0 (s + ),y (s)]ds (15)

(here, y™)(-) means y(- + 2)), the predictor (12) is ob-
tained by time-differentiating a copy of (15) after ignor-
ing the innovation term (. The saturation of the esti-
mates &1 and the one-step prediction p(*) of the satu-
ration level is a crucial issue in our design (see section 6).

In general, for each j = 2,...,m the estimates £ (¢) and
u@(t),i=0,...,5 — 1, are used in the blocks devoted,
on one hand, to the estimation &) (t) of 2U)(¢), t > 0,
(j-steps prediction)

£V = 97 ) + MO (1), 29 (6)) (16)
A A

and, on the other, to the estimation u@)(¢) of v\9)(¢) =
wO @t +55)

(L(j)(t) _ P.1(3—1)(,5) + G(ud (1), E(j)(t)) (17)
A

. A .
_ @D 2y #@g - 2V 5
G(uV(t ), & (¢ ), i=2,....m

The saturation of the estimates &) and the j-steps pre-
diction u) of the saturation level is a crucial issue in
our design (see section 6). Overall, the predictor (7)-(9)-
(11)-(12)-(16)-(17) consists of 2(m + 1) filters, each pair
chained to the other, and it is initialized as follows: for
allj=1,...,mand s € [f%,()]

£ (5) = £ (s) = E(s — A+ 22, (18)

with bounded & € C°([—A,0],R") and i € C°([—A, 0],
[1,+400)). For simplicity, we can assume & = 0 and {1 =

1.The vector of the initial conditions (xq, [, &) will be
denoted in what follows by .

We want to prove that the estimates &) (t) converge to
the actual delayed states zU)(t) for j = 0,...,m, and
most importantly, convergence of £("™)(t) to the unde-
layed state x(t). The main result of this paper is the
following.

Theorem 3 Assume HO, H1 and H2. There exist ¢, K >
0, integer m > 1 and diagonal positive definite I € R™*"
such that the solution (-, o), £9) (-, o), 1) (-, ¢0), j =
0,...,m, of (4) with (7)-(9)-(11)-(12)-(16)-(17) is de-
fined and bounded for all times and initial conditions
©o. Moreover, lim;_,o ||z(t, 20) — ™) (¢, ¢0)|| = 0.

Remark 4 Theorem 3 can be directly extended to sys-
tems (4) with m inputs and p measurements and ¢ sub-
stituted for o + BF + D, where (A, B) are block diagonal
with p diagonal blocks in Brunowski form, C with p di-
agonal blocks C; = (1,0,...,0), F € RP*™ and diagonal
D e R™*™,

Remark 5 The predictor (7)-(9)-(11)-(12)-(16)-(17) is
robust with respect to square integrable output distur-
bances. Also robustness with respect to mon-vanishing
output disturbances can be achieved by suitably modifying
the predictor (this will be the object of future work). o

Before proving our main result (theorem 3) we outline
the constructive steps for the predictor (7)-(9)-(11)-(12)-
(16)-(17).

5 Constructive design of the predictor

The predictor (7)-(9)-(11)-(12)-(16)-(17) is character-
ized, besides its initial conditions which have been spec-
ified in (18), by ¢, K, m and T'. These quantities are cho-
sen as follows. Let @, ¥ and g be as in assumption HO.
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(a) K > 0 and the diagonal positive definite I' € R"*"
are such that !

0<6:=2(KCTC + ATTA) (19)
T
- (A + ATF2> (I—ATP)"' — ([ — AT~ T (A + ATF2>
(b) ¢, o« > 0 are such that if @M WM e R"*" are ma-

trices for which

O(w',2) < M V', 2 e R" : || < ne, |w ne (20)

< " <
Y(w', 2') <YM v/ 2 e R™ : ||| < ne, |w'| < ne (21)

(we recall that < for matrices means < for each entry)
then 2
al <& — (2(1 + ATOM 4 QKCT\PM)(I _ AT
T
(I — ATT)"T (2(1 + AT oM 4 2KCT‘PM) (22)

—4n2c? max |g; |[[ATT(I — ATt + (I — ATT)"TT 4]

(c) m is an integer such that

Al A] + n*c®] < m. (23)
6 Examples and simulations

The system

{tl = T2

:,.UQ = d)g(ivl,LCQ) = —T1 + (]. — .’E%IE%).’EQ (24)

with delayed measurement y = x1(t — A), satisfies as-
sumptions HO, HI1, H2 of theorem 6. A predictor has
been designed according to our procedure and a simu-
lation has been worked out with delay A = 1 and ini-

tial conditions z(—A) = (10,5)7, &(s) = (0,0)” and

! Tnequality (19) is solved on account of the fact that & can
be defined recursively as & = &™) where (recall that T;;

denotes the (i, 7) entry of ')

M jmy +NUD ‘ (MU—D)T
oG- ‘ )

i=2,...,n, 6W =20, 4, 4, Ty =K,

&\ —

)

and NVUY e CORLR) and MUY ¢
CORI“L,RI™Y), 5 = 2,...,n, are suitable functions of
ln—j+1,n—j+1,---, n—1,n—1. Therefore, it is sufficient to pick
any Ih—1,n—1 > 0 and for each increasing j = 2,...,n select
In—jn—j > 0 such that &9 > 0.

2 The numbers ¢, « always exist on account of (19) and since
® and ¥ are continuous and ®(0,0) = 0 and ¥(0,0) = 0
(assumption HO).

(i(s) = 1 for all s € [—A,0]. The prediction of z(t) is
worked out through the intermediate predictions of the
delayed states z(t —.66) and z(t —.33) (we chose m = 3,
i.e. the delay period is divided into three subintervals).
In particular, z(¢ — 1) is estimated through the observer
(7)-(9) while z(t —.66), z(t —.33) and x(t) are estimated
through the chained predictors (16)-(17). The satura-
tion levels of the estimates are set to cu® with ¢ = .5
and vy = 1 and vy = 3. The prediction errors for x(t) are
shown in Fig. 1.

prediction error

__prediction error for x 1©

__prediction error for x L

Fig. 1. Prediction errors for z(t) with saturated estimates
and saturation level prediction (z(—A) = (10,5)7).

40

for x(t)

prediction error

__.prediction error for x 2(t)

i
i

i
-g __prediction error for x 1(t)
!

|

|

i

|

|

|

60 i i i i i
-10 5 10 15 20 25 30 35 40

time t

Fig. 2. Prediction errors for z(t) using predictors with-
out saturated estimates and saturation level prediction
(x(=4) = (10,5)").

The saturations of the predictions and the predictions
of the saturation levels at time ¢t — .66, t — .33 and ¢ in
the chained predictors (16)-(17) are a crucial issue in the
predictor design. Also, the numbers t; and vg according
to which the saturation levels are differently weighted
(1 and, resp., u*2) and which represent the weights as-
sociated with the incremental homogeneity degrees g,
and go of the nonlinearity of (24) are crucial for a cor-
rect prediction of z(t). Indeed, a simulation has been
worked out by implementing the prediction of x (¢ —.66),
x(t — .33) and =z(t) without saturations and saturation
levels prediction, i.e. simple prediction steps. Due to the
large initial state values z(—A) and the strong nonlin-
earity 223 in (24), the prediction error dynamics has a
non-zero attractor (Fig. 2). Notice that there is a non-
zero steady-state prediction error despite the fact that
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the steady-state estimation error for the undelayed state
x(t — 1) is zero (Fig.3). This shows that a nonlinear ob-
server for the undelayed state (¢t — 1) (such as (7)-(9))
cascaded with simple prediction steps (i.e. without sat-
urations and saturation levels prediction) is not suffi-
cient for correctly predicting the state at delayed time
instants. A theoretical explanation for this fact is that
using simple prediction steps, i.e. without saturations
and level saturation prediction, such as

V1) = €97 (1) + AL (1) + (£ (1)) (25)
—[AE,(J)(t - %) + d)(f.(])(t - %))]’ .7 = 23 ceey M,

the j-steps prediction error e(?) (t) satisfies an integral in-
equality e ()] < B (t) + W) §;_ 5 49 (D (6)])do
where 7(/)(-) is an increasing locally Lipschitz func-
tion such that ~U)(0) = 0, and a¥) > 0 and
BU)(.) depend on the initial conditions x(—A) with
lim; ., BY(t) = 0. In the case of our example,
7 (s) = s(1 + s*). The prediction error e)(t) is not
guaranteed to tend to zero as t — 400 unless m is
such that %’y(j)(supee[t_éﬂ leD(@)]) < |leD(t)] for
all t = 0. This requires mto be large when the predic-
tion error is large, which is not feasible with an integer
m since the prediction error depends on the unknown
x(—A) and, moreover, for large values of the prediction
error the number of the chained predictors (16)-(17)
would be very high. By introducing saturations and
level saturation prediction as pointed out in (16)-(17)
(and using the incremental homogeneity properties of
the nonlinearities) the function v(/) is linear and e (t)
tends to zero as t — +00.

50

I
<

__estimation error for x l(t—l)

__.estimation error for x 2(t—l)

[
<

—_
<
T
I

estimation error
for x(t-1)
o
S
i

[=]
1
i

-10 !
-1 0 5 10 15 20

time t

Fig. 3. Estimation errors for the undelayed state xz(t — 1)
with unsaturated predictions (z(—A) = (10,5)T).

7 Proof of the main result

In order to prove theorem 3 we first prove that &(©)(t)
converges to the delayed state (9 (t) = 2(t — A) and,
secondly, that £)(t) converges to the delayed state
zD(t) =2t —A+j2)forj=1,...,m.

m

7.1 The observer for ()
The state 2(°)(-) == x(- — A) satisfies the equations
#0 = A2 + o), y = C2@ + @), (26)

which we consider together with the first block equations
(7)-(9) of the predictor. The vector of the initial condi-

tions x(()o), u(()o) and E,((]O) will be denoted in what follows

by cpéo). Wherever necessary we will maintain the ex-
plicit dependence of the state trajectories from the ini-
tial conditions.

Proposition 6 Assume HO, H1 and H2. Let ¢, x, K > 0
and T, @M WM ¢ R"*" be as in section 5. The solution
2O, 20), £, 0”) and w0 (-, o) of (26)-(7)-(9) is
defined and bounded for all times and initial conditions
<p(()0). Moreover, lim;_,o, |z (t, ) — £ (¢, <p(()0))H = 0.

PROOF. Throughout the proof, we will omit the su-
perscript (0). Let e == z — & be the estimation error.
Therefore, the state equations (26)-(7)-(9) read out as

& =Ax + ¢(x), (27)
é=[A—-L(wCe+v(wz) —v(u, olen’, —e + z)),
=G —e+z)+Qu,—e+z,y),

where y(u,z) = ¢(z) — L(p)P(z). First of all, notice
that for how we set the initial condition for pu(¢) in (18)
(i.e. n(0) = @(—A) with (1 € C°([-A,0], [1,+0))) and
since G and @ are non-negative functions of their ar-
guments, p(t) = 1 for all ¢ > 0. Perform the following
coordinate transformation

(z,e,1) = (z,m,1) :
n=X"t(we, X(w) = (I - ATS(w) " (28)

Recalling that
B(w) = diag{Tu*'%}, L(w) := X(W)CT K (29)
and using the identities

CCT =1, AT&(W)ACT =0, CX(1) = C
ATS(WAAT = AT6(w), X(w) — 1 = ATS()X (1)

and L (AT&(n) = 2diag{AT Ag}ATS (), (27) reads

out in the new coordinates

&= Ax + ¢(x),

) o

= —H(wn — 2;dlag{ATAg}AT®(u)3€(u)n7

+ 3w X7 (W) — 3(w, —n + XN (W) + p(k, z),
=G, —X(pm + ) + Q(r, —X()n + z,9), (30)
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with

H(p) = CTKu*9C + ATS () A (31)

3w 2) = (I = H(WAT)p(o(ent, X(u)2)) (32)
—H(WCTP(o(en’, X(w)2)) + [A — AT ()] x(w)2

p(p,z) = (I — H(W)AT)[P(x) — d(o(cn’, z))]
(W) CT [(x ) P(o(en', z))]

By (i) and (ii) of lemma 11 and the definition of incre-
mental homogeneity in the upper bound, for all © > 1
and w, z € R

H(W(uoz) =u"0o (H(p 02)) (33)
@, 1 ow) =31, 1k o 2)p<pu o (Qlus o (w—Z()>>;
34

(recall that < means < componentwise and (-} means
| - | component wise: see notation section) where

H:=CTKC + ATTA (35)
Q= [2(I + HAT)OM + 2HCTYM + A + ATT?]X (36)
X = (I-A"TN"1, (37)

and @M WM e R"*" are the matrices selected in (20)-
(21).

Let V(u,7n) = |u~* on|?. We evaluate the derivative of
V' along the trajectories of (30). To this aim, notice on
account of (33) (with z :== p~* on) and, resp., of (34)
(withw = p~ X~ (nw)z and 2z = p~Fo(-m+X "1 (n)z))
and using the properties (2)-(3)

O (R D038 X 00)0) = 3142 H)2))
= 2(uFopfom) A (K op  om)

+2(u‘t o Tom) {31, n o n T o X (W)

=3, o o (- + XN (W)}

(T <>n)T(u“ o N (uop™" on))

F2u" om)T (W o (B, 1o w0 X7 (w)a)
“3( o o (<1 + X7 (W)

< —(u T omyT[2H - Q - QT om)  (38)
Moreover, since |[u~ " ¢ o(cp®, w)|| < nefor all p = 1 and

w € R™, recalling the deﬁnltlon of @ and G in (10) and
that p(t) > 1 for all t > 0,

v 2.2
‘H‘ 2” c < 2’[1 62u2m1n1gL (39)

= HZ\mlnlgl\

Since (™t %omn) < pTAminiGiy— Foon N forall p > 1
and n € R" and (p,m) — ATS ()X (1) is i.h.ub. with

quadruple (r,t — g,9, ATTX) ((v) of lemma 11), using
the properties (2)-(3)

1 (o m)ding{AT AghAT B (0 X (1] = (40)
[2(n "o on) diag{A” Ag} AT (1) X (1) (W o on)
< 2max [g;|(u T on)TATTX U T o)

S WW”%WMTFX + XTP AN on)

Moreover, by Young(/Peter-Paul)’s inequality and using
the properties (2)-(3), for all &« > 0

I

oV o 2
< = —t+g 2 “ —t—g
a (m)e(w )| < S ln 2l +a|\u o p(K, )

Collecting this with inequalities (38) and (40) and
using (22) (upon noting that the left-hand part of
the inequality (22) is equal to 2H — Q — QT —
4n?c? max; |g;|[ATTX + XTTA])

o, 2.
<-—5lw ‘+9<>n|\2+&|\u 9o p(,)|? (41)

Vl(30)

To conclude the proof, we prove that u(t) is bounded
(Claim #1 below) and y(t) — Y(u(t),&(t)) and
o(ept(¢), &(t)) — &(¢) tend asymptotically to zero (Claim
#2 below), which, as we will see, by assumption H2 im-
plies that also e(t) tend asymptotically to zero. In other
words, the estimates & tend to de-saturate and the in-
novation L(p)(y — Y (u, &)) in the observer (7) tend to
zero.

Claim #1. 1 < u(¢t) < +oo for all t > 0.

We already established that 1 < u(t) for all ¢ > 0.
Since [1(t) = 0 for all ¢ > 0, there clearly exists T,,, >
0 (depending on the initial conditions ¢g) such that
lirnt_)TS;0 1(t) = Hoo < +00 with [0, T, ) being the right
maximum extension interval of p(t). Assume by absurd
that po, = +oo. By HI there exists T, € [0,T,,) such
that (z(t)) < eu®(t) for all t € [T, ,T,,) and, there-

fore, on the same time interval

o(en'(t), 2(t)) = x(t) (42)

for which it follows that p(u(¢),z(¢)) = 0 for ¢t €
[T,,Ts,)- Since p(t) and p(t) are non-negative for
all t € [T’ Ty, ), by integrating (41) over the interval
[T, ]foreachte[T Tyo)

®o?
®o’

f/ [W="8(0) om(0)*d6 < Hu‘t(T;O)On(T;O)HQ(AlS)

Y0
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By (ii) of lemma 9 and since p=/™nigil =t < ~v+9 for
all 1 > 1, using (42) and recalling the definition of @
and G in (10) and that p(¢) > 1 for all ¢ > 0,

*2|minigi\[

E =p lu "o o(en’, —X(wm +

—0o(en’, =X(wn + 2))[* + " o o(ent, CT(CX(wn
+P(x) —P(o(ep’, =X (w)n + 2))) ]

= p 2l [yt o o(ep, —X(p)m + o(ent, z)

—0o(en’, =X(wn + 2))[* + " o o(ent, CT(CX(wn
Fb(o(en, 7)) — (olens, —X(un + )))]?]

<o (X ()x) = My + X (W) )
T o Qo (i, X (W) — Aa(p, — + X (wa))?

where

AM(p, z) = =X(1)z + ofep’, X(p)2),
Ao(i, 2) = CT(CX ()2 + W(o(cnt, X(1)2))) (44)

But on account of (iii) of lemma 11 and the definition of
incremental homogeneity in the upper bound, using the
properties (2)-(3)

(X H(wz) = M, + X1
<u TP BX (W om))

Qo X (Wz) — Ao, — + X (w)z))

< W9 (CT(C + W)X (W o)) (45)

(W)

By integration of % over [T7, ,t] and collecting the above

inequalities from (43) to (45), for all t € [T, , T,,,)

¢
Inp(t) < (T, + | (13X on(o) P
T
H|CT(C + 2¢™) X (w49 (s) om(s))|*]ds
2, _

<Inp(Tg,) + w5 (75, ) on(Ty, ) [P[13X |

+CT(C + 2™ X |?] < 4o
which gives a contradiction since lim, ,— u(t) = +o0.

¥0

This proves our claim.

Claim #2. lim_, ;o [y(t) — Y(p
limg, oo [o (e (1), £(2) — E(8)] =

(t),&(t))] = 0 and
0.

By integrating m over [0, +o0] and using claim

#1, we conclude that

0(Cut7 CT[y - Y(ua E»)])a
o(en, & — o(en, £)) € L*(R=,R")  (46)

Kp=pn ‘o
Ko =U o

On the other hand, from (41) and boundedness of w(t)
(claim #1) and z(t) (assumption HI), since ||[u~ "9 o

n|? = V(p,m)u?™% for allm and p > 1

. o i
V < _Vf min 2min; g; 47
‘(30) 2 1< HU<supgom(6) : ( )

2
+=  max [uT 0o p(k,2)|? = —a)V + ag

X llzl<supg=qglz(0)|
1<u<supgsqn(6)

for ay, as > 0, which implies that V' (u,n) € L*(Rx,Rs).
Since |n[?pn=2maxiti < V(w,m) for allm and p > 1 and
by claim #1, we get n € L*(R,R"™) and, therefore,
since e == x — & = X(W)n, by claim #1 and boundedness
of z(t) (assumption H1), also e, & € L*(Rs,R™) and

K1, Ko € Lw(Rg, Rn) (48)

Moreover, since x, £ € L (Rx,R™) and by claim #1, also
z,& e LP(Rs,R"), pe LR, Rs) and z, & and p are
uniformly continuous over R . If we prove that k1, ko are
uniformly continuous over R, as a consequence of (46)
and (48) we get limy_, 4 oo k1 (¢) = 0 and limg_, 4 o K2 (t) =
0 by virtue of Barbalat’s lemma. Since p~* ¢ o(cu’, z) =
0 for each u > 1 if and only if z = 0 and by virtue
of claim #1, we obtain claim #2. Let’s see that ko is
uniformly continuous over R (for k; similar arguments
are used). Clearly u~* and u* are uniformly continuous
over R, being continuous with bounded derivative over
R, and o(cp", 2) is uniformly continuous over R for
any uniformly continuous z over Rs: indeed, using (i)
of lemma 9, lemma 10 and the triangle inequality, for
each k > 0 we always find 8, hy, ho > 0 such that for all
t2,t1 >0: |t2 7t1| < )

[o(ent(ta), 2(t2)) — o(en®(t1), 2(81))]

< [o(ent(t2), 2(t2)) — olen'(t2), 2(1))]

+o(en®(t2), 2(t1)) — oen(t), 2(t1))|

< 2||Z(t2) — Z(tl)” + C”Hr(tg) — },Lt(tl)H < 2h1 + Chg <k

It follows that kg is uniformly continuous over R, being
the product of uniformly continuous functions over R.

Since z, & € L*(Rs,R™) and by claim #1, the Q-limit
set Q, of the trajectory (z(t), £(t), u(t)) of (26)-(7)-(9) is
nonempty, compact and invariant and by virtue of claim
#2 it is contained in the set R = {(z, &, 1) : Cz+P(z) =
CE + P(o(ept, &), o(cu’, &) = &}. But any trajectory
(24 (1), Ex(t), ny(t)) of (26)-(7)-(9) contained in R must
satisfy the equations 4 (t) = Az (£)+d(a4 (1)), Ex(t) =
A& (t) + d(Ex(t)) and Czy(t) + P (4(t)) = CEL(L) +
P (&4(t)), which by assumption H2 implies that =, (t) =
&+« (t). Therefore, by attractiveness and invariance of Q.
lim;_, o [|z(¢) — &€(¢)| = 0 which proves the proposition.

7.2 The predictor for z(t)

The vector of the initial conditions xg, ﬁt,i will be de-
noted in what follows by ¢y and recall that v(9)(t) =
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O+ j2) and yW(t) = y(t + j2) for j = 0,...,m
We will prove that £9)(¢) and ul)(t), j = 1,...,m, are
asymptotic estimates of V) (t) and, resp., vU)(t) and,
therefore, £(™)(t) is an asymptotic estimate of (™) (t) =
x(t), which proves our main theorem 3.

Proposition 7 Assume HO, H1 and H2 and let
c,o, K > 0, T,0M WM ¢ R" " and the integer
m be as in section 5. Then the trajectory x(-,xo),
E'(J)('a §00)7 u(j)(v 900): j = 17 sy MMy, of (7)_(9)_(11)_(12)_
(16)-(17) is defined and bounded for all times and initial
conditions g and

lim (29 (t,zq) —

t—+00

lim (v (t, o) —

t——+00

ED(t,00)) = 0
u9 (tp0)) =0, 5=1,...,m. (49)

PROOF. Throughout the proof we will omit the de-
pendence of the trajectories from the initial conditions.
First of all, ul9)(¢), j = 1,...,m, satisfies for all times ¢
in its maximum right extension domain

w () = b= (1) + Jt G (s),eD(s)ds  (50)

Indeed, by time-differentiating (50) we obtain (17) and
the result follows from uniqueness of trajectories.

In a similar way we show that £9)(t), j = 1,...,m,
satisfies for all times ¢ in its maximum right extension
domain

D) =eU1() + f N M(u9) (), £9)(s))ds  (51)

On the other hand, by definition v(9) (¢) and 2)(t), j =
1,...,m, (defined and bounded for all times by HI and
claim #1 of proposition 6) satisfy for all ¢t = 0

YO v + [ 660,800 +5))

FQWO(s), 60 (s +72) D ()]s, (52)

2D () = 20D ) + fA [Az9) (s) + (27 (s))]ds (53)

Set

e =20 — g0 ) =y — @) =1 .. m.
The proof of the proposition proceeds by induction.
First, we prove the boundedness of e/)(t) and w®)(t)
for all j = 1,...,m and, finally, using invariance theo-
rems we prove their convergence to zero.

Boundedness of ¢\ (t) and wU)(t), j = 1,...,m. In
view of the boundedness of v()(t) (proposition 6) it is
sufficient to prove the boundedness of e)(t) and u9) (),

j=1,....,m. Fix je {1,. — 1} and assume that

1<ubl=@) <30-Y (54)
leV=D(@®)] < 397V (55)

for all t > 0 and for some 3U~1 > 0 (depending on

the initial condition ¢g). First of all, notice that, by
(50) and the induction hypothesis (54) and since G is
non-negative, u)(t) > 1 for all ¢t > 0. From (50) and
the induction hypothesis (54), since p!=2Imini gil|[=v o
o(ep’, w)|? < un2c? for all u > 1 and w € R™,

DO =10 + [ G0, 805

m

t
<3071 4 p2e? J u@ (s)ds (56)

t—4A
It follows, on account of the choice of m in (23) and by

(ii) of lemma 8 with s = 1w ko = n2c2, ky = 301
and 0 = %, that

n@ () < 30 (57)
for all t > 0 and for 3¢) > 0 (depending on ).
Also, let 3 > 0 be (depending on ¢p) such that

lP (@) < B (58)

for all ¢ > 0 (assumption HI). Moreover, on account
of part (iv) of lemma 11 ¢ is i.h.u.b. with quadruple
(v,g+ 1,98, ®0),ie forallp>1and w,z

Ld(u ow) — d(u o2))
< 1o (D, 2) 0 o (w - 2))) (59)
From this with w = 1 and w = 2 and z =

o) (2)) using (58) and (ii) of lemma 9, we obtain
forallt >0

||¢<x<f>< 1) — (o D (20) (1))
|®(w, 2)¢w — )| =« (60)

H H I= H<B
for « > 0 (depending on ¢yg).
On the other hand, from (59) with p := @), w =

(L)~ o5eM)" (20)) and 2 = (u@)) o) (£(1)),
using (i) of lemma 9 and since |u™* ¢ o(cu®, w)| < ne
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and p® < p&D for all p >
obtain for all ¢ > 0

1,0 e R” and w € R", we

u(?) I»l(7)

® (2D (1)) — p(o°C WED @) <2-
KD (1) o (B, )@ (1) 0 (w = 2)))|

lb(o*

max

lwllzl<en
1<u<u() (1)

= k(1)

(61)
with increasing continuous non-negative function k.

Subtracting (51) from (53) and taking into account the
monotonicity of k with (57) and the induction hypothesis
(55) together with (60) and (61), we have for all ¢ > 0

, A < t ,
(0] <3904 Slat (3O + 141 e (s)lds
t— A

On account of (23), (57) and applying (i) of lemma 8
with s i= e, ky = | ], by = 3070 + & [a+k(30))]
and 0 = %, it follows that

leD (1) <39, 1< u@(t) <39 (62)
for all £ > 0 and for some 3() > 30'). This proves (by

induction) the boundedness of et (t) and u)(t) (and
therefore w9 (t)), 5 =1,...,m

Convergence of e\9) (t) and w9 (t), j = 1,...,m, to zero.
We proceed again by induction. Assume that for some

jell,...om—1}
i @ (¢) = @ (¢ i P
tl}rllooe (t)=0, EI_POOw (t)=0,i=0,...,5 —1.(63)

We have established above that (e(®(t),w(®(t)) are
bounded for all ¢ = 1,...,j. It follows that the Q-limit
set Q, of each trajectory () (t), £ (¢), vU)(t), ul) (¢))
is non-empty, compact and invariant (corollary 5.6 of

Smith (2011)). But lim; ..o [2OF) — EO@#)] = 0
(proposition 6) and since by definition zU)(t) =
2Ot +52)

lim [z (t) — £t + jé)] =0 (64)
t—+00 m

Moreover, recalling claim #2 (proof of proposition 6)
with ¢ + j2 replacing ¢

A
li _(0) =
im [—§ (t+]m)+

t—+o0

-0

T ;- A
R CRIC ))

10

Therefore, by (i) of lemma 9 and since by definition

V(1) = uO(t + 55,
' (VO () (,.(5) ()
Jim o (zY(1))) — 2 ()] (65)
Y (VD) (1) () (4 (V) (#) (£(0) A
Jim [o (29 (1)) — &t +7=)))]
+ lim [—2zW)(¢) +£(0)(t+jé)] + lim [—6(0)(t+jé)
t—+400 m t—+400 m
O (45 8) (10 1+ B =
EV (7)) =0

and

lim Qv (1), €Ot + 72,y (1)) = 0

t—+00 m

lim G(v9 (1), Ot + j

t—+00

(66)

It follows from (64), (65), (66), invariance of Q, and the
induction hypothesis (63) that each trajectory (z (J)( t),
55:5)( t),v Sf)( t), Ek])( t)) (with initial condition ¢y) con-
tained in Q, satisfies (50)-(51)-(52) and (53) forallt > 0
with

20 = €700, VTV = w0

I OEP0) =2 (1), o (1) = £+ 55,
QY (t), el (ﬁ-l—]%) v (1)) =0
GO 0,600+ 55 =0 ©7)

U) is the output trajectory y(J) Wthh corre—

sponds to xgk ) If we show that em( t) = ( ) — E,* (t)
and w(”( t) \/Ekj)(t) - ug,f)(t) are zero for all
t > ﬁ then, by attractiveness and invariance of Q.
limy oo €9 () = 0 and limy_, ;oo wU)(t) = 0 and this
concludes the proof of (49) by induction.

where

Let us prove that wfk )( t) and e* (t) are zero for all ¢ >

A Using (50)-(51)-(52) and (53) with the additional
constraints (67), we have for all ¢t > 0

(J)

D)= A6 + @O ()

m

(oD (e (5)))]ds, (68)
W)=~ [ 6w .60 )is (69)

By (i) of lemma 9 and lemma 10 and using the triangle
inequality, |0 (w) — o*(2)|| < |h — k|| + 2||w — 2| for
all w,z € R™ and h,k € RZ. Using this with (iii) of
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(V(]>)

(27)) and
(E,( )) together with the boundedness of v{/’

lemma 9 and (59) with p == 1, w == 0°
o 0_ c(n (J))

and H(])

(J)

MO (1) = bo Ol W))) - (70)
[ (w, 2)1) [l (V¥ (&) = (&) ()]

(0

< ( max
Cwp=e(vE o)

«ey=em)E (@)

+2e O] < o1l (1) = WO + e 1]

for all ¢ = 0 and for some p; > 0 (depending on the
initial condition ¢, ). But the function p — p4, ¢ > 0,
is continuous over any closed interval [1, iy | and with
bounded derivative over (1, {1y ). By the mean value the-
orem |9 —vI| < q(supe(y .,y 19— V| forall u,v e

1, uoo] Therefore, by boundedness of p.g‘ )( t) and V(J ) (1),

V)5(0) = (W0 < palaw?(0)] for all £ > 0 and
for some py > 0 (depending on ¢ ). From (68) with (70)
we get for all t > 0

i ]l < [Alrer (1+0)] f [l (0] + e’ (1) 1ds (71)

On the other hand, on account of <& )*® @9 @) =
2 (t) in (67
the triangle inequality with H(vgf ))“(t) —

palw ()] for all t >

), by (i) of lemma 9, lemma 10 and using

()@ <
0, we get for all ¢t > 0

D)

W), e90(t) — o(e < “>>t<> SHON]
<>||+||o<< D)), 2 (1))

)e(t), &9 (1)) < [3ne<”<t>u+p|w“’<>|]

for some p3 > 0 (depending on the initial condition )
and therefore from (69)

(1),
<93\G((
< paey

*C\ *A

t

Wi ()] < p3(3 + p2>f 0O+ e (1)1ds (72)

t—2
m

Summing (71) and (72), applying part (ii) of lemma 8
with s = ||+ e, ko = | A] + p1(1+p2) + ps(3+
p2), k1 =0 and § = £ we conclude that wgf)(t) =0

and e(])( t) =0 for all t > 2. This concludes the proof.

8 Conclusions

We have presented a class of nonlinear predictors for
stable systems with delayed measurements and constant
and known delay. These nonlinear predictors consist of

11

m + 1 couple of filters, each couple generates an esti-
mate of the state vector (and its maximum magnitude)
at some delayed time instant which differ from the pre-
vious by a small fraction of the overall delay. This frac-
tion is sufficiently small to guarantee convergence of the
estimate to the real value. These estimates are used by
consecutive couples of filters to generate the estimates
at the next delayed time instant, with the last couple
generating the desired prediction of the state. Further
research will be devoted to the case of unknown delay
and unstable systems.
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A Incremental homogeneity in the generalized
sense: a review

The notion of (incremental) homogeneity in the general-
ized sense has been introduced in Battilotti (2011) (see
also Battilotti (2013)) in the context of semi-global sta-
bilization and observer design problems. Here we recall
this notion in a slightly more general form.

A.1 Definitions

A function ¢ € CO(R=> x R"RY), (1, 2) — ¢(u,x), is
said to be incrementally homogeneous in the generalized
sense (i.h.) with quadruple (t,0,h, @) if there exist 0 €
Rl heR”, veR2 and ® e CO(R?™, R*"™) such that for
alle > 0 and w, z € R”

(e, efow)—d(g,e%02) =s°<>(CD(w, 2)(e" o (w—z)))

Note that the function ¢ may depend on the dilating

parameter itself. The function x — ¢(x) = 21 + 23 (¢
does not depend on the dilating parameter) is i.h. with
quadruple (t, 0, h, @), wheret == (1,2)7, b == (1,6)T and
®(w, z) = (1,w? + 25 + zows). The function (u,z) —
o, ) = w(zy + 23) (¢ does depend on the dilating
parameter) is i.h. with quadruple (x, 1, b, @).

When restricting to z = 0 in the above definition, we
obtain the definition of homogeneity in the generalized
sense. For functions  — ¢(z) this definition general-
izes the classical notion of homogeneity (Rosier (1992)).
Note that homogeneity in the generalized sense is char-
acterized by two vector degrees (0,b) instead of being
characterized by only one degree 0 as in the case of ho-
mogeneity in the classical sense and the function may
depend on the dilating parameter itself.

There are functions, like sinz, which are not i.h. but
their absolute value is bounded by the absolute value of
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a function which is i.h. This motivates the following def-
inition ({a) denotes the column vector of the absolute
values of the elements of a € R™).

A function ¢ € C°(R. x R™ RY), (n,z) — ob(u, ),
is said to be incrementally homogeneous in the upper
bound in the generalized sense (i.h.u.b.) with quadru-
ple (t,0,b, @) if there exist 0 € R\ h € R™, v € RZ,
® e CO(R?",RL™) such that for alle > 1 and w, z € R®

dPp(e, e ow)—d(e,et02)p<e’o <(D(w, 2){ev o (w—z)>>)

The function (1,2) — b(1,2) = (s 239(21))", g
any bounded and globally Lipschitz continuous function,
is i.h.u.b. with triple (t,, b, @), where v == (1,2)7, 0 ==
(3’ 7)T7 b= (170)T and

.. O 1
O(w,z) = ZSM |w? + 22 + woza||g(wr)|

[w1—21]
(here we used wig(wy) — 25g(z1) = (w3 — 23)g(w1) +
23 (g(w1) — g(21)))-

A.2  Properties of incrementally homogeneous func-
tions

PO (addition) For any ih.u.b. (resp. ih.) func-
tions ¢ € CYR~ x R* RY), (n,y) — o(u,y), with
quadruple (t,9,h,®) and p € CO°(R. x R" R,
(1,y) — (i, y), with quadruple (x,0,h, ), the func-

tion (w,y) — &(n,y) + (W, y) is i.h.u.b. (resp. i.h.)
with quadruple (v,0,h,® + V) .

P1 Anyih.u.b. (resp. i.h.) function ¢ € C°(Rs x R™ R!)
with quadruple (¢,0,h, @) and diagonal @ is also i.h.u.b.
(resp. i.h.) with quadruple (¢v,0',h’,®) for all pairs
(0',0') such thatd +h <0 + b’ (resp. 0+ h =0 +1').

In particular, we can replace the degrees (9, h) with some
upper bounds (?', ') or swap :(?',h') = (h,2).

P2 (composition) For any i.h.u.b. functions ¢ € C°(Rx x
R*,RY), (1, ) — &(u,y), with quadruple (¢,0,h, @) and
P e CO(R= x R, R®), (1, z) — W(w, ), with quadruple

(t,—h +t,p, V) if there exists @M e CY(R2*, RI;S) such
that for alle > 1 and w, z € R”

D FoP(ctow), e Fop(et02)) < dM(w,2) (A1)

then (u,x) — &(w,b(w,x)) is i.h.u.b. with quadruple
(t,0,p, OMy).3

3 Using properties (2), for all e > 1 and w, z € R™

b(e, (e, e" ow)) — dle, (e, 0 2)) =

In particular, for ¢ with constant @ (A.1) is trivially
satisfied with @M = ®@.

Let (A, B) be in Brunowski canonical form. Note that AT
is the Moore-Penrose pseudoinverse of A, viz. AT AAT =
AT AATA = A, (ATA)T = AT A and (AAT)T = AAT.
Therefore I — AAT is the orthogonal projection onto
(Im{A})* = Im{I — AAT} while I — AT A is the orthogo-
nal projection onto (Im{AT})* = Im{7 — AT A} (Im{W}
denotes the vector space generated by the columns of
the matrix W). It is easy to see that

P3.1 (shifting I) for any 3 € Im{I — AAT} (resp.
3 € Im{I — ATA}) and ihu.b. (resp.ih.) ¢ €
CO(R> X anRl)a (H7I) - ¢(u7z)7 with qU&dI‘U—
ple (v,0,h, @), the function (w,z) — Ad(u,x) (resp.
(w,z) — ATd(u,x)) is i.h.u.b. (resp.i.h.) with quadru-
ple (v, A0 + 3,b, AD) (resp. (v, ATo +3,h, ATD)).*

P3.2 (shifting II) for any 3 € Im{I — AT A} (resp. ; €
Im{I — AAT}) and i.h.u.b. (resp.i.h.) & € CO(R~ x
R™,RY), (w,2) — &(u,x), with quadruple (t,0,h, @)
and constant @, the function (u,z) — ¢(p, Azx) (resp.
(u,z) — d(u, AT2)) is i.h.u.b. (resp.i.h.) with quadru-
ple (v,0, AT(h —t) + v+ 3 ®A) (resp. (r,0, A(h — ) +
t+30AT)).0

P(e,e"0e " oh(e, e ow)) — (e, e 0 T od(e," 0 2)))
<eo ((D(w', 2" <‘1’(w, 2)Ke? o (w — z)>>>)

w!/=e~Top (e,e¥ow)
z/=e7To(e,e¥0z2)

<o ((@M(w, 2)¥(w, 2)) (" o (w - Z)>>))

4 Using Ae® = AAT Ae® = AATeM %3 withj e Im{I—AA”T},
foralle > 1 and w,z € R"

<<A¢(87 g o U)) - Ad)(gv et o Z)>>

< (A% o (A (d)(w, 2)e” o (w — z)>>>)

=M, <A(D(w, 2)e" o (w — z)>>>
5 Using AATe"* = AcA" (=995 with 3 € Im{I — AA"} and
properties (2) and (3), for all € > 1 and w, z € R

db(e, A(e" o w)) — db(e, A(e" 0 2)) )
=dd(g,e" 0 o (A" ow))) — d(g,e 0 "o (A(e" 0 2)))»

<&’ (d)<<5"7“ o (14(6t o lw — Z>>)))
<o (oqaT o (a6 o cw-2) )

—_—

=% <(<1>,4)<<5AT<*H>+“ﬂ o (w— z)>>) (A.2)
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B Auxiliary results

Lemma 8 Assume that s € C°([—8, +0), [0, +00)), for
some d > 0, is such that s(t) is bounded for allt € [—8§, 0]
and

s(t) < ko Jt s(T)dt + ky

t—5

(B.1)

for allt = 0 and kg, ky = 0.
(i) If 8ko < 1 then for allt = 0

k1 + kod maxge—s,01 5(0)

<
s(t) 1— kobd

(ii) If k1 = 0 then s(t) = 0 for all t = 5.

PROOF. Part (i). We can rewrite (B.1) as

t

s(t) < k:of s(t)dt + k) (B.3)

max{0,t—5}

with k] = k1 + kod maxge[_s 0] $(#). Substituting s(-) in
the argument of the integral with its bound in (B.3) and
repeating this substitution r-times we obtain

T t

s(t) < k) Z(koé)i + kg“f

=0 max{0,t—5}

¢,
. f s(tpypr)dty - -dtyiy
ax{0,t,—8}

m.

(B.4)

By virtue of Gronwall-Bellman inequality from (B.3) it
follows that s(t) < kje*ot. Using this inequality in (B.4)
we obtain

s(t) < K i(koé)i + ko)™

1

! _kot
' kie
=0 ’

G0

t

i,kos
max{0,t—5} s'e™’ds <

(we used the majorization §
it . o .
ekot §+1 ). Passing to the limit for r — oo and since
k1
T—kod

kod < 1, we get s(t) < for all £ > 0, which proves

(1)-

Part (ii). For t > & we can rewrite (B.1) as s(t) <
ko anax{o t—5) s(t)dt. Proceeding as in part (i) with k] =
0, we obtain s(t) = 0 for all ¢ > 6.

Lemma 9 If o(h, ) € DO(R",R") is a saturation func-
tion with levels h € RZ, for all w,z € R™

(i) Lo(h,w) = a(h, 2))) < 2w — z))

13

(i) Lo(h, w)) < Lw), (i) Lo(h, w)) < Lh).

PROOF. We prove only (i), while (ii) and (iii) follow
easily from the definition of saturation function. No-
tice that o(h,w) = (o1(h,w1),..., o,(h,w,))T since
o(h,-) e D°(R",R"). Fixi =1,...,n.

Case A). For all w;, z; € R such that |w;| > h; and |z;| >
hi we have |O'Z'(h7wi)—0'i(h, Zz)l =0< QGi(h, |w1—zl|) <
2|wi — Zl| if w;z; > 0 and |0'1(h,w1) — O'i(h,Zi)| =2h; <
20‘@(h, |wz — Zz|) < 2|’UJ1 — ZZl if w;z; < 0

Case B). For all w;,2; € R such that |w;| > h; and

|z:] < h; we have |(o;(h,w;) — 0;(h,2;)| = |hi — 2i] =
|wi — le < h; and |O'i(h7’wi) — O'i(h,zi)l = |hZ — Zzl <

2h; = 20‘i(h, \wi — Zl‘) if |w1 — le > h;.
Case C). For all w;,z; € R such that |w;| < h; and
|z;| = h; follow the steps of case B).

In a similar way we can prove the following related result.

Lemma 10 If o(h,-),o(k,-) € D°(R™",R") are satura-
tion functions with levels h € RZ and, respectively,
keRZ, Lo(h,z) — o(k,x)) < Lk — h)) for all x € R™.

PROOF. Fix i = 1,...,n and assume that h; < k;
(the case k; < h; is treated in the same way). For all
xT; € R such that |l‘7| < k’l we have |G7(h7l’7)70}(k},$l)| =
0 < |k; — hy|. For all other cases, we have |o;(h,z;) —
O‘i(k‘,l‘i” = |JJ1‘ - k‘l| < |k‘Z - hl|

Lemma 11 With assumption HO and for each ¢, K > 0
and diagonal positive definite T,

(i) the function (W, z) — H(W)z, defined in (31)-(29), is
i.h. with quadruple (v,t + g,9, H), where H is defined
in (35)-(37),

(i) the function (u, z) — 3(W, 2), defined in (32)-(28)-
(29), is i.h.u.b. with quadruple (t,v + g,9,Q), where
Q is defined in (36)-(37) and ©M WM e R"™*" qre
matrices satisfying (20)-(21),

(iii) the functions (w,z) — Ai(w,z) and (u,z) —
A2(w, 2), defined in (44), are i.h.u.b. with quadruples
(t,t—g,9,3X) and, resp., (t,t—g, 9, CT (C+2¥M)X),

(i) the function z — &(2) is i.h.u.b. with quadruple
(v, +g9,9,®),

(v) the function (w, z) — AT (W)X (W)z is i.h.u.b. with
quadruple (v,v — g, 9, ATTX).

PROOF. Proof of part (iv). Notice that ¢ = AAT b +
(I — AAT)¢p and that A(r — g) < AAT (v + g) (by (B.7)
since AATA = A) and AAT (v +g)+ (I — AAT) (v +g) =
t + g. From HO and PO, P1 and P3.1 we get the desired
result.

Preprint submitted to Automatica
Received May 29, 2015 07:45:25 PST



CONFIDENTIAL. Limited circulation. For review only
Automatica submission 13-0695.3

Proof of parts (i), (ii) and (v). We break up the proof
in several claims. Condition (5) in assumption HO reads
out in compact form as

24g + AAT(x —g) < A(t—g) < AAT(x +g)  (B.5)
and notice the following ensuing inequalities

AT (v +2A4g —g) < ATA(x — g) (B.6)
AAT (Av —v) < AAT (Ag + g) (B.7)

(the first by multiplying the first inequality of (B.5) by
AT and using ATAAT = AT, the second by multiply-
ing the second inequality of (B.5) by AAT and using
AAT AAT = AAT).
Claim L. (p,z) — AT&(w)z (resp. (1,2) — ATS?(un)z)
is i.h.u.b. with quadruple (v,t — g,g, ATT) (resp. (v,v +
9,0, ATT?)). Since by its definition (u,z) — &(u)z is
i.h.u.b. with quadruple (v,t,2A4g,T") and I' is diagonal, by
property P1 with?’ :=t+2Ag—gand b’ =g, (1, 2) —
&(u) is i.h.u.b. with quadruple (v,v +2Ag —g,9,T"). By
P3.1 with 3 == (I — ATA)(x — g), (k,2) — ATS(p)
is i.h.uw.b. with quadruple (v, AT(v + 24g — g) + (I —
AT A)(x — g),9,ATT). On account of (B.6) and PI we
get that (u,2) — AT®(w)z is i.h.ub. with quadruple
(t,t —g,9, ATT), i.e. the first part of the claim. On the
other hand, since by its definition (u,z) — &2(u)z is
i.h.u.b. with quadruple (t,t,4Ag,T?) and T is diagonal,
by P1 with ' == vt +4Ag —g and b/ = g, (K,2) —
&(w) is i.h.u.b. with quadruple (v,t+ 44g —g,9,T). By
P3.1 with 3 == (I — ATA)(x + g), (k,2) — ATS(p)
is i.h.uw.b. with quadruple (v, AT(v + 4Ag — g) + (I —
AT A)(x + g),9, ATT?). On account of (B.6) and P1 we
get that (u,z) — AT®2(n)z is i.h.u.b. with quadruple
(t,t + g,0, ATT?), i.e. the second part of the claim.
Claim II. (y, 2) — X(u)z, with X(p) = (I - AT&(n))~*
is ih.u.b. with quadruple (v,v — g,9,X), X =
(I — ATT)~L. Notice that (,z) ~ z is i.h.ub. with
quadruple (t,t,0,I). Therefore, since I is diagonal and
invoking PI1 with o' ==t + gand by == —g, (4,2) — 2z is
i.h.u.b. with quadruple (v,t—g, g, I). On the other hand,
notice that X(p) == (I-AT&(n))~! = Z;:(}(ATQi(u))j.
As already established, (i,2) — (A7)’ = 2 is
ih.ub. with quadruple (v,v — g,g,1). We proceed by
mductlon Assume that (u,z) — (AT&(n))’z for some
= 1,...,n — 1, is 1hub with quadruple S“t t—
(ATF) ) Since (AT® )i+ = (ATe(u
and both (u,z) ~— (ATQS(u))Jz (mductlon step)
and (p,z) — AT&(u)z (claim I) are i.h.ub. with
quadruple (v,v — g¢,9,(ATT)?) and, respectively,
(t,v — g,9,ATT), by property P2 it follows that
(m, 2) (AT®(n))i*z is ih.aub. with quadruple
(t,t — g,9, (ATT)’*1). By induction and property PO,
since X = (I — ATT)~! = Z;:& (ATT)I it follows that
(1, 2) = X(w)z is i.h.u.b. with quadruple (v,t—g, g, X).
Claim III. (p,z) — $(Wwz is i.h. with quadruple
(v,v +g,9, H). Since by its definition (u, z) — &(u)z is

14

i.h. with quadruple (¢, t,2Ag,T), by using property P3.1
with 3 == 0 and P3.2 with 3 == (I — AT A)2g, ATGoA
is i.h. with quadruple (v, ATv,2g — ATt + v, ATTA).
Since ATGyA is diagonal, by PI1 with ?' = t + g and
b =g, (W, 2) — ATGy(n)Az is i.h. with quadruple
(t,v + 9,9, ATTA). Similarly, (u,2) — CTKu?“sCz is
i.h. with quadruple (r,t+g,g, CT KC). By P0 the claim
follows.

Claim IV. (u,2) — o(cp', z) (resp. (1, z) — o(eut,
X(u)z)) are i.h.u.b. with quadruple (v,t—g,g,2I) (resp.
(t,t — 9,9,2X)). On account of (i) of lemma 9 with
h = cu’, (1, 2) — o(eu’, 2) is i.h.u.b. with quadruple
(v,t,0,21). By P1 with?' ==t —gand b’ :== g, (u,2) —
o(cpt, z) is also i.h.u.b. with quadruple (z,v — g, g, 21),
i.e. the first part of the claim. Finally, by virtue of P2
and claim IT we obtain the second part of the claim.

Claim V. (u,2) — AX(n)z (resp. (p,z) — ATS(w)
X(w)z)) is i.h.u.b. with quadruple (v,t + g,g9, A) (resp.
(t,t—g,9, ATTX)). Note that (p, z) — z is i.h.u.b. with
quadruple (t,t,0,7), therefore by P1 with o' == v — g
and b’ = g, (K, 2) — z is also i.h.u.b. with quadruple
(t,t — g,9,1). Using P3.1 with 3 == (I — AAT)(g + v),
(w, 2) — Az isih.u.b. with quadruple (v, A(t—g) + (I —
AAT)(g + t),9,A). Upon noticing that Av — AATr <
Ag + AATg (from (B.7) since AATA = A) and on ac-
count of (B.7), we get by P1 that (K, z) — Az is i.h.u.b.
with quadruple (t,t + g,g, A). From claim IT and P2 it
follows that (i, z) — AX(n)z is i.h.u.b. with quadruple
(v,t+ g,9, A). The second part of the claim follows di-
rectly from claims I and II and P2.

Claims IIT and V prove (i) and (v) of the lemma.
Let us prove part (ii). Since |u™* ¢ o(ep®,w)| <
cn for all w € R”, we find out that any matrix
OM e R"™" for which (20) holds true is such that
ATO(U™" o ofen’, X(Ww), u™" o olen’, X(p)z)) <
ATOM for all w,z € R™ and p > 1. By virtue
of HO, claim IV and property P2, it follows that
(W, 2) = ATd(o(cp®, X(1)2) is i.h.ub. with quadruple
(t,t — g,9,2AT®M X). Finally, from claim III, P2 and
PO and on account of part (iv) of the lemma it follows
that (W,2) — (I — H(WAT)d(o(ept, X(1)z) is i.h.ub.
with quadruple (v,v + g,9,2(1 + HAT)OMX).

In a similar way, using HO, claims III, TV and P2, we
see that (i, z) — —H(W)CTP(o(cn®, X(1)z)) is i.h.ub.
with quadruple (t,t + g, g, 2HCTYM X) for any matrix
YM e R"*" for which (21) holds true.

On the other hand, by claims I, V and P2 and PO,
(W, 2) = [A—ATS%(n)]X(1)z is i.hauwb. with quadruple
(t,t+g,9,[A+ ATT?]X). Using PO we obtain part (ii)
of our lemma.

Proof of part (iii). As part (ii) using HO, claims II and
IV and PO, P2.
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