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Abstract

Novel nonlinear predictors are studied for nonlinear systems with delayed measurements without assuming globally Lipschitz
conditions or a known predictor map but requiring instead bounded state trajectories. The delay is constant and known.
These nonlinear predictors consists of a series of dynamic filters that generate estimates of the state vector (and its maximum
magnitude) at different delayed time instants which differ from one another by a small fraction of the overall delay.

1 Introduction

The problem of reconstructing the unmeasurable state
variables by using the system model and the available on-
line output measurements has been addressed by many
authors. Particularly challenging remains the nonlinear
observer design problem in the presence of delayed out-
put measurements. In this case it is important to im-
plement some kind of prediction based on the delayed
measurements. A nonlinear observer has been proposed
in Marquez et al. (2000) for linearizable by additive out-
put injection systems. A predictor based on a cascade of
observers has been introduced with LMI techniques in
Besancon et al. (2007). For globally Lipschitz continuous
invertible observability maps (Germani et al. (2011)) the
proposed observer consists of a chain of dynamic pre-
dictors that reconstruct the unmeasurable state vector
at different delayed time-instants within the time-delay
window introduced by the output measurements. Hence,
the proposed nonlinear observer exhibits a chained struc-
ture that explicitly takes into account the magnitude
of the output delay. The paper Kazantzis et al. (2013),
while adopting a conceptually similar design methodol-
ogy, aims at overcoming some of the restrictions associ-
ated with the above approaches by following a techni-
cally different path. Also globally Lipschitz conditions
on the system are required in Ibrir (2011). In all these
papers linear predictors are used. A survey on observers
with measurement delay is found in Richard (2003) while
a predictor–based approach is extensively surveyed in
Krstic (2009).

Predictor–based results have been recently obtained in

‹ This work was supported by MIUR.

Karafyllis et al. (2013) where a known compact absorb-
ing set (plus some technical facts) is assumed for all the
system trajectories. This assumption is much stronger
than boundedness of the state trajectories, where the ab-
sorbing compact set depends on the initial condition of
each state trajectory. On the other hand, these dynamic
predictors follow the structure of the ones introduced in
Germani et al. (2011) and Kazantzis et al. (2013).

Predictors, which are not implemented as dynamical fil-
ters, are designed in Karafyllis et al. (2012b) under the
assumption that either a) the expression of the state tra-
jectories is explicitly known or b) the system is globally
Lipschitz. In Karafyllis et al. (2012a) the existence of
predictor–based observers is shown under the hypoth-
esis that the so-called predictor map is known exactly.
Actually, all the above cited results can be implemented
only if the predictor map is available (this happens for
linear systems, bilinear systems, chains of linear systems
with input nonlinearities), except for Karafyllis et al.
(2013) where a modified version of the chained predic-
tors, introduced in Germani et al. (2011) and Kazantzis
et al. (2013), are used. Further results have been ob-
tained for delays that depend on the delayed states in
Bekiaris-Liberis et al. (2013). Numerical and approxi-
mate predictors have been proposed in Karafyllis et al.
(2013). Design of predictors for specific implementation
has been proposed in Mazenc et al. (2011).

In this paper we consider the problem of state observa-
tion for a class of systems which satisfy an incremental
homogeneity (in the generalized sense) condition with
bounded state trajectories. This class of systems includes
lower triangular and upper triangular systems and many
non-triangular systems. The measurement delay is con-
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stant and known. It is not required any globally Lipschitz
condition on the system or availability of the predictor
map. An estimation of the maximum delayed state and
its maximum magnitude is dynamically implemented
and, using these estimates, a prediction is generated by
a chain of nonlinear dynamic predictors that reconstruct
the unmeasurable state vector at different delayed time-
instants. The novelty of our observers, on account of the
strong nonlinearities of the system, is the use for the first
time of nonlinear predictors with saturated estimates
where the saturation level is tuned on-line according to
the delayed measurements. This tuning is needed to es-
timate the width of the compact absorbing set of each
state trajectory (depending on its initial condition). Our
result is based on the observer design with undelayed
measurements proposed in Battilotti (2011). A construc-
tive design is illustrated by a step-by-step procedure.

2 Notation

(N1) Rn (resp. Rnˆn) is the set of n-dimensional real
column vectors (resp. nˆ n matrices). Rě (resp. Rně,

Rnˆně ) denotes the set of real non-negative numbers
(resp. vectors in Rn, matrices in Rnˆn, with real non-
negative entries). Rą (resp. Rną) denotes the set of
real positive numbers (resp. vectors in Rn with real
positive entries).

(N3) For any matrix V P Rpˆn we denote by Vij the
pi, jq–th entry of V and for any vector v P Rn we de-
note by vi the i–th element of v. We retain a similar
notation for functions. For any v P Rn we denote by
diagtvu the diagonal n ˆ n matrix with diagonal ele-
ments v1, . . . , vn. Also, |a| denotes the absolute value
of a P R, }a} denotes the euclidean norm of a P Rn,
}A} denotes the norm of A P Rnˆn induced from
the euclidean norm }a} and xxayy the column vector
of the absolute values of the elements of a P Rn, i.e.
p|a1| ¨ ¨ ¨ |an|q

T .
(N3) We denote by CjpX ,Y q, with j ě 0, X Ă Rn
and Y Ă Rp, the set of j-times continuously differen-
tiable functions f : X Ñ Y , by L8pRě,Y q the set
of functions f P C0pRě,Y q such that supθě0}fpθq} ă
`8 and by LjpRě,Y q, with j ą 0, the set of f P

C0pRě,Y q such that
ş8

0
}fpθq}jdθ ă `8.

(N4) DjpX ,Z q, X ,Z Ă Rn, is the set of func-
tions f P CjpX ,Z q with decoupled components,
viz. fpxq “ pf1px1q, ¨ ¨ ¨ , fnpxnqq

T . A saturation
function σph, ¨q with levels h P Rną is a function
σph, ¨q P D0pRn,Rnq such that for each i “ 1, . . . , n
and x P Rn: σiph, xiq “ xi if |xi| ď hi and
σiph, xiq “ hi otherwise. In other words, σiph, xiq
saturates xi if it exceeds the range r´hi, his.

(N5) For any vectors x P Rn, r P Rną and ε P Rą, we
define

εr – pεr1 , ¨ ¨ ¨ , εrnqT , εr ˛ x– pεr1x1, ¨ ¨ ¨ , ε
rnxnq

T (1)

viz. εr ˛ x is the dilation of a vector x with weights r.

Note that for any x, y P Rn, r1, r2 P Rną and ε P Rą

εr1 ˛ εr2 ˛ x “ εr2 ˛ εr1 ˛ x “ εr1`r2 ˛ x, (2)

pεr1 ˛ xqT pεr2 ˛ yq “ pεr2 ˛ xqT pεr1 ˛ yq (3)

“ pεr1`r2 ˛ xqT y “ xT pεr1`r2 ˛ yq

(N6) for any vectors x, y P Rn we write x ĺ y if and
only if xi ď yi for all i “ 1, . . . , n. We retain the same
notation for matrices A,B P Rnˆn: A ĺ B if and only
if Aij ď Bij for all i, j “ 1, . . . , n. On the other hand
A ě B (resp. A ą B) for matrices A,B P Rnˆn if and
only if A ´ B is positive semidefinite (resp. positive
definite).

3 Main assumptions

Consider the system

9xptq “ fpxptqq– Axptq ` φpxptqq, xp´∆q– x0, (4)

yptq “ hpxpt´ ∆qq– Cxpt´ ∆q `ψpxpt´ ∆qq, t ě 0

for t ě 0, where ∆ ą 0 is the constant (known) mea-
surement delay, x P Rn, y P R, the measurement y is
a function of the state at time t ´ ∆. The matrix A is
in Brunowski canonical form and C “ p 1 0 ¨ ¨ ¨ 0 q.
Moreover, φ and ψ are locally Lipschitz continuous with
φp0q “ 0 and ψp0q “ 0. The vector of initial conditions
xp´∆q is x0. We will denote by xpt, x0q (resp. ypt, x0q)
the state (resp. output) trajectory of (4) ensuing from
x0 at t “ ´∆ (resp. at t “ 0) and xpt, x0q is unique
and defined over its maximum right extension interval
(theorem 3.7 and proposition 3.10 of Smith (2011)). The
problem is to give a prediction of the state at time t us-
ing the delayed measurement. Our assumptions are the
following ones (see the appendix for a short review of
incremental homogeneity in the upper bound):

(H0) (incremental homogeneity) CTψ and ATφ are
incrementally homogeneous in the upper bound
(i.h.u.b.) with quadruple pr, r ´ g, g, CTΨq and, re-
spectively, pr, r´ g, g, ATΦq and pI ´AAT qφ is incre-
mentally homogeneous in the upper bound (i.h.u.b.)
with quadruple pr, pI ´AAT qpr` gq, g, pI ´AAT qΦq,
where Φp0, 0q “ 0, Ψp0, 0q “ 0 and

2pgj ´ gj´1q ` gj´1 ` rj´1 ď rj ´ gj ď gj´1 ` rj´1,

j “ 2, . . . , n, (5)

(H1) (boundedness) for each x0 P Rn there exist a
compact set Cx0 Ă Rn such that xpt, x0q P Cx0 @t ě
´∆,

(H2) (incremental observability) for any x10, x
2

0 P Rn :

ypt, x
1

0q “ ypt, x
2

0q @t ě 0 ñ xpt, x10q “ xpt, x
2

0q @t ě
´∆.

2
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Remark 1 Assumptions H0 states that CTψ, ATφ and
pI ´AAT qφ are incrementally homogeneous with a cer-
tain relation between degrees and weights specified by (5).
H0 is a condition for the existence of a semi-global linear
observer for the undelayed state xpt ´ ∆q (see Battilotti
(2013)). It can be seen that assumption H0 is satisfied
for large classes of nonlinear systems:

(i) with locally Lipschitz lower triangular (or norm-
bounded by lower triangular maps) φ:

φpxq– pφ1px1q, ¨ ¨ ¨ ,φnpx1, x2, . . . , xnqq
T

and ψpxq– 0, where each φj, j “ 1, . . . , n, is (norm-

bounded by) a sum of terms with the form x
tj1
j1
¨ ¨ ¨x

tjl
jl

for some reals tji ě 1. For example in the case of

φpxq – px
3
2
1 , x

2
1x

3
2q
T we choose r “ p 12 , 1q

T , g “

p6, 2qT .
(ii) with locally Lipschitz strict upper triangular (or
norm-bounded by strict upper triangular maps) φ:

φpxq–pφ1px3, . . . , xnq, ¨ ¨ ¨ ,φn´2pxnq, 0, 0q
T

and ψpxq – ψ1px2, . . . , xnq, where each φj, j “
1, . . . , n ´ 2, and ψ is (norm-bounded by) a sum of

terms with the form x
tj1
j1
¨ ¨ ¨x

tjl
jl

for some reals tji ě 1.

For example in the case of φpxq – px3x4, x
2
4, 0, 0q

T

and ψpxq – x2x4 we choose r “ p8, 6, 4, 1qT ,
g “ p´1,´1,´1,´2qT .

(iii) for locally Lipschitz homogeneous (in the classical
sense) φ and ψ with weights such that rj`1´ rj “ 2g0
for all j “ 1, . . . , n´1 and homogeneity degree 2g0 and,
resp., 0. For example φpxq – p0, xp2q

T for 1 ă p ă 2,
where we choose r “ p2p2´pq, 2qT , g “ pp´1, p´1qT .˝

Remark 2 H1 and H2 (Battilotti (2011)) are extra con-
ditions to render global the semi-global observer of Bat-
tilotti (2013) by using saturated estimates with dynam-
ically tuned saturation levels. Assumption H1 is some-
what restrictive. However, many physical systems have
this property (Van Der Pol and Fitzhugh-Nagumo oscil-
lators, Lorentz-like systems: see section 6 for examples).
Note that we do not require the knowledge of a Lyapunov
function for the system. ˝

4 The structure of the predictor

Wherever possible we will omit the dependence of the
state trajectories from the initial conditions. The follow-
ing notation is adopted for the delayed state vectors and
measurements:

xpjqptq– xpt´ ∆` j
∆

m
q,

ypjqptq– ypt` j
∆

m
q, j “ 0, . . . ,m. (6)

The predictor we propose has the following structure.
A first block is devoted, on one hand, to the estimation
ξp0qptq of xp0qptq, t ě 0,

9ξ
p0q
ptq“Mpµp0qptq,ξp0qptqq

`Lpµp0qptqqryptq́ Ypµp0qptq,ξp0qptqqs, (7)

where

Mpµ, ξq– Aξ` φpσpcµr, ξqq

Lpµq– pI ´ATGpµqq´1CTKµ2Cg,

Gpµq– diagtΓµ2Agu, Y pµ, ξq– Cξ`ψpσpcµr, ξqq,(8)

for some saturation function σ with levels cµr (see (N4)
in the notation section), c,K ą 0 and diagonal posi-
tive definite Γ P Rnˆn, and, on the other, to the estima-
tion µp0qptq of the maximum magnitude of xp0qptq over
r0,`8q

9µ
p0q
ptq“Gpµp0qptq,ξp0qptqq̀ Qpµp0qptq,ξp0qptq,yptqq (9)

where

Gpµ, ξq– µ1´2|minigi|}µ´r ˛ σpcµr, ξ´ σpcµr, ξqq}2 (10)

Qpµ, ξ, yq– µ1´2|minigi|}µ´r ˛ σpcµr, CT py ´ Y pµ, ξq}2

(see (1) for definitions).

The estimator (7) is a copy of the system equations (4)
plus a innovation termLpµp0qqry´Y pµp0q, ξp0qqs in which
the gain matrix Lpµp0qq depends adaptively on µp0q and
the estimate ξp0q is saturated with levels cpµp0qqr. The
estimate µp0qptq is positive and increasing in time and
approaches a constant value which depends on (the un-
known value of) xp0qp0q and gives an estimate of the
maximum magnitude of xp0qptq over r0,`8q, which by
assumption H1 is bounded (but unknown depending
on the initial condition xp0qp0q). While µp0qptq tends to
this constant value, the estimate ξp0qptq tends to de-
saturate and the terms Qptq and Gptq in (9) tend to
zero. The saturation of the estimates allows to cope with
large initial state estimation errors and drive these er-
rors to a sufficiently small value for which the estimate
ξp0qptq is no longer saturated. When the saturations are
not active any more in (4)-(7)-(9), the estimation error
xp0qptq ´ ξp0qptq tends to zero (by assumption H2).

The estimates ξp0q andµp0q are used in the block devoted,
on one hand, to the estimation ξp1qptq of xp1qptq, t ě 0
(one-step prediction),

9ξ
p1q
ptq “ 9ξ

p0q
ptq (11)

`Mpµp1qptq,ξp1qptqq ´Mpµp1qpt´
∆

m
q,ξp1qpt´

∆

m
qq

3
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and, on the other, to the estimation µp1qptq of νp1qptq–
µp0qpt` ∆

m q, t ě 0,

9µ
p1q
ptq “ 9µ

p0q
ptq (12)

`Gpµp1qptq,ξp1qptqq ´Gpµp1qpt´
∆

m
q,ξp1qpt´

∆

m
qq,

where m ě 1 is a sufficiently large integer. The delay is
divided up into small fractions with duration ∆

m in such
a way that asymptotic convergence to zero of the pre-
diction error is guaranteed. Noticing that, by integrat-
ing over rt´ ∆

m , ts the system equations (4) retarded by

∆´ ∆
m and since xp1qpt´ ∆

m q “ xp0qptq by definition,

xp1qptq “ xp0qptq `

ż t

t´ ∆m

rAxp1qpsq ` φpxp1qpsqqsds, (13)

the predictor (11) is obtained by time-differentiating

ξp1qptq “ ξp0qptq `

ż t

t´ ∆m

Mpµp1qpsq, ξp1qpsqqds (14)

which is a copy of (13) with Axp1q ` φpxp1qq substi-
tuted for its saturated version Mpµp1q, xp1qq. On the
other hand, noticing that, by integrating over rt´ ∆

m , ts

the equations (9) retarded by ∆´ ∆
m and since νp1qpt´

∆
m q “ ν

p0qptq by definition,

νp1qptq “ νp0qptq `

ż t

t´ ∆m

rGpνp1qpsq, ξp0qps`
∆

m
qq

`Qpνp1qpsq, ξp0qps`
∆

m
q, yp1qpsqqsds (15)

(here, yp1qp¨q means yp¨ ` ∆
m q), the predictor (12) is ob-

tained by time-differentiating a copy of (15) after ignor-
ing the innovation term Q. The saturation of the esti-
mates ξp1q and the one-step prediction µp1q of the satu-
ration level is a crucial issue in our design (see section 6).

In general, for each j “ 2, . . . ,m the estimates ξpiqptq and
µpiqptq, i “ 0, . . . , j ´ 1, are used in the blocks devoted,
on one hand, to the estimation ξpjqptq of xpjqptq, t ě 0,
(j-steps prediction)

9ξ
pjq
ptq “ 9ξ

pj´1q
ptq `Mpµpjqptq,ξpjqptqq (16)

´Mpµpjqpt´
∆

m
q,ξpjqpt´

∆

m
qq, j “ 2, . . . ,m,

and, on the other, to the estimation µpjqptq of νpjqptq–
µp0qpt` j ∆

m q

9µ
pjq
ptq “ 9µ

pj´1q
ptq `Gpµpjqptq,ξpjqptqq (17)

´Gpµpjqpt´
∆

m
q,ξpjqpt´

∆

m
qq, j “ 2, . . . ,m.

The saturation of the estimates ξpjq and the j-steps pre-
diction µpjq of the saturation level is a crucial issue in
our design (see section 6). Overall, the predictor (7)-(9)-
(11)-(12)-(16)-(17) consists of 2pm` 1q filters, each pair
chained to the other, and it is initialized as follows: for
all j “ 1, . . . ,m and s P r´∆

m , 0s

µp0qp0q– µ
p0q
0 – µ̂p´∆q,

µpjqpsq– µ
pjq
0 psq– µ̂ps´ ∆`

j∆

m
q,

ξp0qp0q– ξ
p0q
0 – ξ̂p´∆q,

ξpjqpsq– ξ
pjq
0 psq– ξ̂ps´ ∆`

j∆

m
q, (18)

with bounded ξ̂ P C0pr´∆, 0s,Rnq and µ̂ P C0pr´∆, 0s,

r1,`8qq. For simplicity, we can assume ξ̂ ” 0 and µ̂ ”

1.The vector of the initial conditions px0, µ̂, ξ̂q will be
denoted in what follows by ϕ0.

We want to prove that the estimates ξpjqptq converge to
the actual delayed states xpjqptq for j “ 0, . . . ,m, and
most importantly, convergence of ξpmqptq to the unde-
layed state xptq. The main result of this paper is the
following.

Theorem 3 Assume H0, H1 and H2. There exist c,K ą

0, integer m ě 1 and diagonal positive definite Γ P Rnˆn
such that the solution xp¨, x0q, ξ

pjqp¨, ϕ0q,µ
pjqp¨, ϕ0q, j “

0, . . . ,m, of (4) with (7)-(9)-(11)-(12)-(16)-(17) is de-
fined and bounded for all times and initial conditions
ϕ0. Moreover, limtÑ8 }xpt, x0q ´ ξ

pmqpt, ϕ0q} “ 0.

Remark 4 Theorem 3 can be directly extended to sys-
tems (4) with m inputs and p measurements and φ sub-
stituted for φ`BF `D, where pA,Bq are block diagonal
with p diagonal blocks in Brunowski form, C with p di-
agonal blocks Ci “ p1, 0, . . . , 0q, F P Rpˆn and diagonal
D P Rnˆn.

Remark 5 The predictor (7)-(9)-(11)-(12)-(16)-(17) is
robust with respect to square integrable output distur-
bances. Also robustness with respect to non-vanishing
output disturbances can be achieved by suitably modifying
the predictor (this will be the object of future work). ˝

Before proving our main result (theorem 3) we outline
the constructive steps for the predictor (7)-(9)-(11)-(12)-
(16)-(17).

5 Constructive design of the predictor

The predictor (7)-(9)-(11)-(12)-(16)-(17) is character-
ized, besides its initial conditions which have been spec-
ified in (18), by c, K, m and Γ . These quantities are cho-
sen as follows. Let Φ,Ψ and g be as in assumption H0.

4
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(a) K ą 0 and the diagonal positive definite Γ P Rnˆn
are such that 1

0 ă S – 2pKCTC `AT ΓAq (19)

´

´

A`AT Γ2
¯

pI ´AT Γq´1 ´ pI ´AT Γq´T
´

A`AT Γ2
¯T

(b) c,α ą 0 are such that if ΦM ,ΨM P Rnˆn are ma-
trices for which

Φpw1, z1q ĺ ΦM ,@w1, z1 P Rn : }z1} ď nc, }w1} ď nc (20)

Ψpw1, z1q ĺ ΨM ,@w1, z1 P Rn : }z1} ď nc, }w1} ď nc (21)

(we recall that ĺ for matrices means ď for each entry)
then 2

αI ă S´
´

2pI `AT ΓqΦM ` 2KCTΨM
¯

pI ´AT Γq´1

´pI ´AT Γq´T
´

2pI `AT ΓqΦM ` 2KCTΨM
¯T

(22)

´4n2c2 max
i
|gi|rA

T ΓpI ´AT Γq´1 ` pI ´AT Γq´T ΓAs

(c) m is an integer such that

∆r}A} ` n2c2s ă m. (23)

6 Examples and simulations

The system

9x1 “ x2
9x2 “ φ2px1, x2q :“ ´x1 ` p1´ x

2
1x

2
2qx2 (24)

with delayed measurement y “ x1pt ´ ∆q, satisfies as-
sumptions H0, H1, H2 of theorem 6. A predictor has
been designed according to our procedure and a simu-
lation has been worked out with delay ∆ “ 1 and ini-
tial conditions xp´∆q “ p10, 5qT , ξ̂psq “ p0, 0qT and

1 Inequality (19) is solved on account of the fact that S can

be defined recursively as S – Spnq where (recall that Γij
denotes the pi, jq entry of Γ)

Spjq –

»

–

2Γn´j,n´j `Npj´1q
pMpj´1q

q
T

Mpj´1q Spj´1q

fi

fl ,

j “ 2, . . . , n, Sp1q – 2Γn´1,n´1, Γ00 – K,

and Npj´1q
P C0

pRj´1,Rq and Mpj´1q
P

C0
pRj´1,Rj´1

q, j “ 2, . . . , n, are suitable functions of
Γn´j`1,n´j`1, . . . , Γn´1,n´1. Therefore, it is sufficient to pick
any Γn´1,n´1 ą 0 and for each increasing j “ 2, . . . , n select

Γn´j,n´j ą 0 such that Spjq ą 0.
2 The numbers c,α always exist on account of (19) and since
Φ and Ψ are continuous and Φp0, 0q “ 0 and Ψp0, 0q “ 0
(assumption H0).

µ̂psq “ 1 for all s P r´∆, 0s. The prediction of xptq is
worked out through the intermediate predictions of the
delayed states xpt´ .66q and xpt´ .33q (we chose m “ 3,
i.e. the delay period is divided into three subintervals).
In particular, xpt´ 1q is estimated through the observer
(7)-(9) while xpt´ .66q, xpt´ .33q and xptq are estimated
through the chained predictors (16)-(17). The satura-
tion levels of the estimates are set to cµr with c “ .5
and r1 “ 1 and r2 “ 3. The prediction errors for xptq are
shown in Fig. 1.

Fig. 1. Prediction errors for xptq with saturated estimates
and saturation level prediction (xp´∆q “ p10, 5qT ).

Fig. 2. Prediction errors for xptq using predictors with-
out saturated estimates and saturation level prediction
(xp´∆q “ p10, 5qT ).

The saturations of the predictions and the predictions
of the saturation levels at time t ´ .66, t ´ .33 and t in
the chained predictors (16)-(17) are a crucial issue in the
predictor design. Also, the numbers r1 and r2 according
to which the saturation levels are differently weighted
(µr1 and, resp., µr2) and which represent the weights as-
sociated with the incremental homogeneity degrees g1
and g2 of the nonlinearity of (24) are crucial for a cor-
rect prediction of xptq. Indeed, a simulation has been
worked out by implementing the prediction of xpt´ .66q,
xpt ´ .33q and xptq without saturations and saturation
levels prediction, i.e. simple prediction steps. Due to the
large initial state values xp´∆q and the strong nonlin-
earity x21x

3
2 in (24), the prediction error dynamics has a

non-zero attractor (Fig. 2). Notice that there is a non-
zero steady-state prediction error despite the fact that
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the steady-state estimation error for the undelayed state
xpt´ 1q is zero (Fig.3). This shows that a nonlinear ob-
server for the undelayed state xpt´ 1q (such as (7)-(9))
cascaded with simple prediction steps (i.e. without sat-
urations and saturation levels prediction) is not suffi-
cient for correctly predicting the state at delayed time
instants. A theoretical explanation for this fact is that
using simple prediction steps, i.e. without saturations
and level saturation prediction, such as

9ξ
pjq
ptq “ 9ξ

pj´1q
ptq `Aξpjqptq ` φpξpjqptqq (25)

´rAξpjqpt´
∆

m
q ` φpξpjqpt´

∆

m
qqs, j “ 2, . . . ,m,

the j-steps prediction error epjqptq satisfies an integral in-

equality }epjqptq} ď βpjqptq ` αpjq
şt

t´ ∆m
γpjqp}epjqpθq}qdθ

where γpjqp¨q is an increasing locally Lipschitz func-
tion such that γpjqp0q “ 0, and αpjq ą 0 and
βpjqp¨q depend on the initial conditions xp´∆q with
limtÑ`8 β

pjqptq “ 0. In the case of our example,
γpjqpsq “ sp1 ` s4q. The prediction error epjqptq is not
guaranteed to tend to zero as t Ñ `8 unless m is
such that ∆

mγ
pjqpsupθPrt´ ∆m ,ts

}epjqpθq}q ď }epjqptq} for

all t ě 0. This requires m to be large when the predic-
tion error is large, which is not feasible with an integer
m since the prediction error depends on the unknown
xp´∆q and, moreover, for large values of the prediction
error the number of the chained predictors (16)-(17)
would be very high. By introducing saturations and
level saturation prediction as pointed out in (16)-(17)
(and using the incremental homogeneity properties of
the nonlinearities) the function γpjq is linear and epjqptq
tends to zero as tÑ `8.

Fig. 3. Estimation errors for the undelayed state xpt ´ 1q
with unsaturated predictions (xp´∆q “ p10, 5qT ).

7 Proof of the main result

In order to prove theorem 3 we first prove that ξp0qptq
converges to the delayed state xp0qptq – xpt ´ ∆q and,
secondly, that ξpjqptq converges to the delayed state
xpjqptq– xpt´ ∆` j ∆

m q for j “ 1, . . . ,m.

7.1 The observer for xp0q

The state xp0qp¨q– xp¨ ´ ∆q satisfies the equations

9xp0q “ Axp0q ` φpxp0qq, y “ Cxp0q `ψpxp0qq, (26)

which we consider together with the first block equations
(7)-(9) of the predictor. The vector of the initial condi-

tions x
p0q
0 , µ

p0q
0 and ξ

p0q
0 will be denoted in what follows

by ϕ
p0q
0 . Wherever necessary we will maintain the ex-

plicit dependence of the state trajectories from the ini-
tial conditions.

Proposition 6 Assume H0, H1 and H2. Let c,α,K ą 0
and Γ ,ΦM ,ΨM P Rnˆn be as in section 5. The solution

xp0qp¨, x0q, ξ
p0qp¨, ϕ

p0q
0 q and µp0qp¨, ϕ

p0q
0 q of (26)-(7)-(9) is

defined and bounded for all times and initial conditions
ϕ
p0q
0 . Moreover, limtÑ8 }x

p0qpt, x0q ´ ξ
p0qpt, ϕ

p0q
0 q} “ 0.

PROOF. Throughout the proof, we will omit the su-
perscript p0q. Let e – x ´ ξ be the estimation error.
Therefore, the state equations (26)-(7)-(9) read out as

9x“Ax` φpxq, (27)

9e“ rA´ LpµqCse` γpµ, xq ´ γpµ,σpcµr,´e` xqq,

9µ“Gpµ,´e` xq `Qpµ,´e` x, yq,

where γpµ, xq – φpxq ´ Lpµqψpxq. First of all, notice
that for how we set the initial condition for µptq in (18)
(i.e. µp0q – µ̂p´∆q with µ̂ P C0pr´∆, 0s, r1,`8qq) and
since G and Q are non-negative functions of their ar-
guments, µptq ě 1 for all t ě 0. Perform the following
coordinate transformation

px, e,µq ÞÑ px,η,µq :

η– X´1pµqe, Xpµq– pI ´ATGpµqq´1. (28)

Recalling that

Gpµq :“ diagtΓµ2Agu, Lpµq :“ XpµqCTKµ2Cg (29)

and using the identities

CCT “ 1, ATGpµqACT “ 0, CXpµq “ C

ATGpµqAAT “ ATGpµq, Xpµq ´ I “ ATGpµqXpµq

and d
dµ pA

TGpµqq “ 2
µ

diagtATAguATGpµq, (27) reads

out in the new coordinates

9x“Ax` φpxq,

9η“´Hpµqη´ 2
9µ

µ
diagtATAguATGpµqXpµqη,

` Zpµ,X´1pµqxq ´ Zpµ,´η` X´1pµqxq ` ρpµ, xq,

9µ“Gpµ,´Xpµqη` xq `Qpµ,´Xpµqη` x, yq, (30)
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with

Hpµq– CTKµ2CgC `ATGpµqA (31)

Zpµ, zq– pI ´ HpµqAT qφpσpcµr,Xpµqzqq (32)

´HpµqCTψpσpcµr,Xpµqzqq ` rA´ATG2pµqsXpµqz

ρpµ, xq– pI ´ HpµqAT qrφpxq ´ φpσpcµr, xqqs

´HpµqCT rψpxq ´ψpσpcµr, xqqs

By (i) and (ii) of lemma 11 and the definition of incre-
mental homogeneity in the upper bound, for all µ ě 1
and w, z P Rn

Hpµqpµr ˛ zq “ µr`g ˛ pHpµg ˛ zqq (33)

xxZpµ,µr ˛ wq´Zpµ,µr ˛ zqyyĺµr`g ˛ pΩxxµg ˛ pw´zqyyq

(34)

(recall that ĺ means ď componentwise and xx¨yy means
| ¨ | component wise: see notation section) where

H – CTKC `AT ΓA (35)

Ω– r2pI `HAT qΦM ` 2HCTΨM `A`AT Γ2sX (36)

X – pI ´AT Γq´1, (37)

and ΦM ,ΨM P Rnˆn are the matrices selected in (20)-
(21).

Let V pµ, ηq– }µ´r ˛ η}2. We evaluate the derivative of
V along the trajectories of (30). To this aim, notice on
account of (33) (with z – µ´r ˛ η) and, resp., of (34)
(withw – µ´r˛X´1pµqx and z – µ´r˛p´η`X´1pµqxq)
and using the properties (2)-(3)

BV

Bη
pµ,ηqt́ Hpµqὴ Zpµ,X´1pµqxq´Zpµ,´ὴ X´1pµqxqu

“ ´2pµ´r ˛ µ´r ˛ ηqTHpµqpµr ˛ µ´r ˛ ηq

`2pµ´r ˛ µ´r ˛ ηqT tZpµ,µr ˛ µ´r ˛ X´1pµqxq

´Zpµ,µr ˛ µ´r ˛ p´η` X´1pµqxqqu

ď ´2pµ´r ˛ ηqT
´

µ´r ˛ Hpµqpµr ˛ µ´r ˛ ηq
¯

`2xxµ´r ˛ ηyyT
´

µ´r ˛ xxZpµ,µr ˛ µ´r ˛ X´1pµqxq

´Zpµ,µr ˛ µ´r ˛ p´η` X´1pµqxqqyy
¯

ď ´xxµ´r`g ˛ ηyyT r2H ´Ω´ΩT sxxµ´r`g ˛ ηyy (38)

Moreover, since }µ´r ˛σpcµr, wq} ď nc for all µ ě 1 and
w P Rn, recalling the definition of Q and G in (10) and
that µptq ě 1 for all t ě 0,

ˇ

ˇ

ˇ

9µ

µ

ˇ

ˇ

ˇ
ď

2n2c2

µ2|minigi|
ď 2n2c2µ2minigi (39)

Since xxµ´r´g ˛ηyy ĺ µ´2minigixxµ´r`g ˛ηyy for all µ ě 1
and η P Rn and pµ,ηq ÞÑ ATGpµqXpµqη is i.h.u.b. with

quadruple pr, r ´ g, g, AT ΓXq ((v) of lemma 11), using
the properties (2)-(3)

ˇ

ˇ

ˇ

BV

Bη
pµ,ηqdiagtATAguATGpµqXpµqη

ˇ

ˇ

ˇ
“ (40)

ˇ

ˇ

ˇ
2pµ´r˛µ´r˛ηqTdiagtATAguATGpµqXpµqpµr˛µ´r˛ηq

ˇ

ˇ

ˇ

ď 2 max
i
|gi|xxµ

´r´g ˛ ηyyTAT ΓXxxµ´r`g ˛ ηyy

ď
maxi |gi|

µ2minigi
xxµ´r`g˛ηyyT rAT ΓX `XT ΓAsxxµ´r`g˛ηyy

Moreover, by Young(/Peter-Paul)’s inequality and using
the properties (2)-(3), for all α ą 0

ˇ

ˇ

ˇ

BV

Bη
pµ,ηqρpµ, xq

ˇ

ˇ

ˇ
ď
α

2
}µ´r`g ˛ η}2 `

2

α
}µ´r´g ˛ ρpµ, xq}2

Collecting this with inequalities (38) and (40) and
using (22) (upon noting that the left-hand part of
the inequality (22) is equal to 2H ´ Ω ´ ΩT ´

4n2c2 maxi |gi|rA
T ΓX `XT ΓAs)

9V |p30q ď ´
α

2
}µ´r`g ˛ η}2 `

2

α
}µ´r´g ˛ ρpµ, xq}2 (41)

To conclude the proof, we prove that µptq is bounded
(Claim #1 below) and yptq ´ Y pµptq, ξptqq and
σpcµrptq, ξptqq´ξptq tend asymptotically to zero (Claim
#2 below), which, as we will see, by assumption H2 im-
plies that also eptq tend asymptotically to zero. In other
words, the estimates ξ tend to de-saturate and the in-
novation Lpµqpy ´ Y pµ, ξqq in the observer (7) tend to
zero.

Claim #1. 1 ď µptq ă `8 for all t ě 0.

We already established that 1 ď µptq for all t ě 0.
Since 9µptq ě 0 for all t ě 0, there clearly exists Tϕ0 ě

0 (depending on the initial conditions ϕ0) such that
limtÑT´ϕ0

µptq “ µ8 ď `8 with r0, Tϕ0
q being the right

maximum extension interval of µptq. Assume by absurd
that µ8 “ `8. By H1 there exists T 1ϕ0

P r0, Tϕ0q such
that xxxptqyy ĺ cµrptq for all t P rT 1ϕ0

, Tϕ0
q and, there-

fore, on the same time interval

σpcµrptq, xptqq “ xptq (42)

for which it follows that ρpµptq, xptqq “ 0 for t P
rT 1ϕ0

, Tϕ0
q. Since 9µptq and µptq are non-negative for

all t P rT 1ϕ0
, Tϕ0

q, by integrating (41) over the interval
rT 1ϕ0

, ts for each t P rT 1ϕ0
, Tϕ0

q

ż t

T 1ϕ0

}µ´r`gpθq ˛ ηpθq}2dθ ď
2

α
}µ´rpT 1ϕ0

q ˛ ηpT 1ϕ0
q}2(43)
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By (ii) of lemma 9 and since µ´|minigi|µ´r ĺ µ´r`g for
all µ ě 1, using (42) and recalling the definition of Q
and G in (10) and that µptq ě 1 for all t ě 0,

9µ

µ
“ µ´2|minigi|r}µ´r ˛ σpcµr,´Xpµqη` x

´σpcµr,´Xpµqη` xqq}2 ` }µ´r ˛ σpcµr, CT pCXpµqη

`ψpxq ´ψpσpcµr,´Xpµqη` xqqq}2s

“ µ´2|minigi|r}µ´r ˛ σpcµr,´Xpµqη` σpcµr, xq

´σpcµr,´Xpµqη` xqq}2 ` }µ´r ˛ σpcµr, CT pCXpµqη

`ψpσpcµr, xqq ´ψpσpcµr,´Xpµqη` xqqq}2s

ď }µ´r`g ˛ xxλ1pµ,X
´1pµqxq ´ λ1pµ,´η` X´1pµqxqyy}2

`}µ´r`g ˛ xxλ2pµ,X
´1pµqxq ´ λ2pµ,´η` X´1pµqxqyy}2

where

λ1pµ, zq– ´Xpµqz ` σpcµr,Xpµqzq,

λ2pµ, zq– CT pCXpµqz `ψpσpcµr,Xpµqzqqq (44)

But on account of (iii) of lemma 11 and the definition of
incremental homogeneity in the upper bound, using the
properties (2)-(3)

xxλ1pµ,X
´1pµqxq ´ λ1pµ,´η` X´1pµqxqyy

ĺ µr´g ˛ xx3Xpµ´r`g ˛ ηqyy

xxλ2pµ,X
´1pµqxq ´ λ2pµ,´η` X´1pµqxqyy

ĺ µr´g ˛ xxCT pC ` 2ΨM qXpµ´r`g ˛ ηqyy (45)

By integration of 9µ
µ

over rT 1ϕ0
, ts and collecting the above

inequalities from (43) to (45), for all t P rT 1ϕ0
, Tϕ0

q

lnµptq ď lnµpT 1ϕ0
q `

ż t

T 1ϕ0

r}3Xpµ´r`gpsq ˛ ηpsqq}2

`}CT pC ` 2ΨM qXpµ´r`gpsq ˛ ηpsqq}2sds

ď lnµpT 1ϕ0
q `

2

α
}µ´rpT 1ϕ0

q ˛ ηpT 1ϕ0
q}2r}3X}2

`}CT pC ` 2ΨM qX}2s ă `8

which gives a contradiction since limtÑT´ϕ0
µptq “ `8.

This proves our claim.

Claim #2. limtÑ`8ryptq ´ Y pµptq, ξptqqs “ 0 and
limtÑ`8rσpcµ

rptq, ξptqq ´ ξptqs “ 0.

By integrating 9µ

µ1´2|minigi|
over r0,`8s and using claim

#1, we conclude that

κ1 – µ´r ˛ σpcµr, CT ry ´ Y pµ, ξqsq,

κ2 – µ´r ˛ σpcµr, ξ´ σpcµr, ξqq P L2pRě,Rnq (46)

On the other hand, from (41) and boundedness of µptq
(claim #1) and xptq (assumption H1), since }µ´r`g ˛

η}2 ě V pµ,ηqµ2minigi for all η and µ ě 1,

9V |p30q ď ´V
α

2
min

1ďµďsupθě0µpθq
µ2minigi (47)

`
2

α
max

}x}ďsupθě0}xpθq}

1ďµďsupθě0µpθq

}µ´r´g ˛ ρpµ, xq}2 – ´a1V ` a2

for a1, a2 ą 0, which implies that V pµ,ηq P L8pRě,Rěq.
Since }η}2µ´2maxiri ď V pµ,ηq for all η and µ ě 1 and
by claim #1, we get η P L8pRě,Rnq and, therefore,
since e– x´ξ– Xpµqη, by claim #1 and boundedness
of xptq (assumption H1), also e, ξ P L8pRě,Rnq and

κ1, κ2 P L
8pRě,Rnq (48)

Moreover, since x, ξ P L8pRě,Rnq and by claim #1, also

9x, 9ξ P L8pRě,Rnq, 9µ P L8pRě,Rěq and x, ξ and µ are
uniformly continuous over Rě. If we prove that κ1, κ2 are
uniformly continuous over Rě, as a consequence of (46)
and (48) we get limtÑ`8 κ1ptq “ 0 and limtÑ`8 κ2ptq “
0 by virtue of Barbalat’s lemma. Since µ´r ˛σpcµr, zq “
0 for each µ ě 1 if and only if z “ 0 and by virtue
of claim #1, we obtain claim #2. Let’s see that κ2 is
uniformly continuous over Rě (for κ1 similar arguments
are used). Clearly µ´r and µr are uniformly continuous
over Rě, being continuous with bounded derivative over
Rě, and σpcµr, zq is uniformly continuous over Rě for
any uniformly continuous z over Rě: indeed, using (i)
of lemma 9, lemma 10 and the triangle inequality, for
each k ą 0 we always find δ, h1, h2 ą 0 such that for all
t2, t1 ě 0 : |t2 ´ t1| ď δ

}σpcµrpt2q, zpt2qq ´ σpcµ
rpt1q, zpt1qq}

ď }σpcµrpt2q, zpt2qq ´ σpcµ
rpt2q, zpt1qq}

`}σpcµrpt2q, zpt1qq ´ σpcµ
rpt1q, zpt1qq}

ď 2}zpt2q ´ zpt1q} ` c}µ
rpt2q ´ µ

rpt1q} ď 2h1 ` ch2 ă k

It follows that κ2 is uniformly continuous over Rě, being
the product of uniformly continuous functions over Rě.

Since x, ξ P L8pRě,Rnq and by claim #1, the Ω-limit
setΩ˚ of the trajectory pxptq, ξptq,µptqq of (26)-(7)-(9) is
nonempty, compact and invariant and by virtue of claim
#2 it is contained in the setR – tpx, ξ,µq : Cx`ψpxq “
Cξ ` ψpσpcµr, ξqq,σpcµr, ξq “ ξu. But any trajectory
px˚ptq, ξ˚ptq,µ˚ptqq of (26)-(7)-(9) contained in R must

satisfy the equations 9x˚ptq ” Ax˚ptq`φpx˚ptqq, 9ξ˚ptq “
Aξ˚ptq ` φpξ˚ptqq and Cx˚ptq ` ψpx˚ptqq ” Cξ˚ptq `
ψpξ˚ptqq, which by assumption H2 implies that x˚ptq ”
ξ˚ptq. Therefore, by attractiveness and invariance ofΩ˚,
limtÑ8 }xptq ´ ξptq} “ 0 which proves the proposition.

7.2 The predictor for xptq

The vector of the initial conditions x0, µ̂, ξ̂ will be de-
noted in what follows by ϕ0 and recall that νpjqptq –
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µp0qpt ` j ∆
m q and ypjqptq – ypt ` j ∆

m q for j “ 0, . . . ,m.

We will prove that ξpjqptq and µpjqptq, j “ 1, . . . ,m, are
asymptotic estimates of xpjqptq and, resp., νpjqptq and,
therefore, ξpmqptq is an asymptotic estimate of xpmqptq “
xptq, which proves our main theorem 3.

Proposition 7 Assume H0, H1 and H2 and let
c,α,K ą 0, Γ ,ΦM ,ΨM P Rnˆn and the integer
m be as in section 5. Then the trajectory xp¨, x0q,
ξpjqp¨, ϕ0q,µ

pjqp¨, ϕ0q, j “ 1, . . . ,m, of (7)-(9)-(11)-(12)-
(16)-(17) is defined and bounded for all times and initial
conditions ϕ0 and

lim
tÑ`8

pxpjqpt, x0q ´ ξ
pjqpt, ϕ0qq “ 0

lim
tÑ`8

pνpjqpt, ϕ0q ´ µ
pjqpt, ϕ0qq “ 0, j “ 1, . . . ,m. (49)

PROOF. Throughout the proof we will omit the de-
pendence of the trajectories from the initial conditions.
First of all, µpjqptq, j “ 1, . . . ,m, satisfies for all times t
in its maximum right extension domain

µpjqptq “ µpj´1qptq `

ż t

t´ ∆m

Gpµpjqpsq, ξpjqpsqqds (50)

Indeed, by time-differentiating (50) we obtain (17) and
the result follows from uniqueness of trajectories.

In a similar way we show that ξpjqptq, j “ 1, . . . ,m,
satisfies for all times t in its maximum right extension
domain

ξpjqptq “ ξpj´1qptq `

ż t

t´ ∆m

Mpµpjqpsq, ξpjqpsqqds (51)

On the other hand, by definition νpjqptq and xpjqptq, j “
1, . . . ,m, (defined and bounded for all times by H1 and
claim #1 of proposition 6) satisfy for all t ě 0

νpjqptq “ νpj´1qptq `

ż t

t´ ∆m

rGpνpjqpsq, ξp0qps` j
∆

m
qq

`Qpνpjqpsq, ξp0qps` j
∆

m
q, ypjqpsqqsds, (52)

xpjqptq “ xpj´1qptq `

ż t

t´ ∆m

rAxpjqpsq ` φpxpjqpsqqsds (53)

Set

epjq – xpjq ´ ξpjq, ωpjq – νpjq ´ µpjq, j “ 1, . . . ,m.

The proof of the proposition proceeds by induction.
First, we prove the boundedness of epjqptq and ωpjqptq
for all j “ 1, . . . ,m and, finally, using invariance theo-
rems we prove their convergence to zero.

Boundedness of epjqptq and ωpjqptq, j “ 1, . . . ,m. In
view of the boundedness of νpjqptq (proposition 6) it is
sufficient to prove the boundedness of epjqptq and µpjqptq,
j “ 1, . . . ,m. Fix j P t1, . . . ,m´ 1u and assume that

1 ď µpj´1qptq ď Zpj´1q (54)

}epj´1qptq} ď Zpj´1q (55)

for all t ě 0 and for some Zpj´1q ą 0 (depending on
the initial condition ϕ0). First of all, notice that, by
(50) and the induction hypothesis (54) and since G is
non-negative, µpjqptq ě 1 for all t ě 0. From (50) and
the induction hypothesis (54), since µ1´2|mini gi|}µ´r ˛

σpcµr, wq}2 ď µn2c2 for all µ ě 1 and w P Rn,

µpjqptq “ µpj´1qptq `

ż t

t´ ∆m

Gpµpjqpsq, ξpjqpsqqds

ď Zpj´1q ` n2c2
ż t

t´ ∆m

µpjqpsqds (56)

It follows, on account of the choice of m in (23) and by
(ii) of lemma 8 with s – µpjq, k0 – n2c2, k1 – Zpj´1q

and δ– ∆
m , that

µpjqptq ď Z̃pjq (57)

for all t ě 0 and for Z̃pjq ą 0 (depending on ϕ0).

Also, let β ą 0 be (depending on ϕ0) such that

}xpjqptq} ď β (58)

for all t ě 0 (assumption H1). Moreover, on account
of part (iv) of lemma 11 φ is i.h.u.b. with quadruple
pr, g` r, g,Φq, i.e. for all µ ě 1 and w, z

xxφpµr ˛ wq ´ φpµr ˛ zqyy

ĺ µg`r ˛

´

Φpw, zqxxµg ˛ pw ´ zqyy
¯

(59)

From this with µ – 1 and w – xpjq and z –

σcpµ
pjq
q
r

pxpjqq, using (58) and (ii) of lemma 9, we obtain
for all t ě 0

}φpxpjqptqq ´ φpσcpµ
pjq
q
r
ptqpxpjqptqqq}

ď max
}w},}z}ďβ

}Φpw, zqxxw ´ zyy}– α (60)

for α ą 0 (depending on ϕ0).

On the other hand, from (59) with µ :“ µpjq, w –

pµpjqq´r˛σcpµ
pjq
q
r

pxpjqq and z – pµpjqq´r˛σcpµ
pjq
q
r

pξpjqq,
using (i) of lemma 9 and since }µ´r ˛ σpcµr, wq} ď nc
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and µv ĺ µxxvyy for all µ ě 1, v P Rn and w P Rn, we
obtain for all t ě 0

}φpσcpµ
pjq
q
r
ptqpxpjqptqqq ´ φpσcpµ

pjq
q
r
ptqpξpjqptqqq} ĺ 2 ¨

max
}w},}z}ďcn

1ďµďµpjqptq

›

›

›
µxxr`gyyptq ˛

´

Φpw, zqxxµxxgyyptq ˛ pw ´ zqyy
¯
›

›

›

– κpµpjqptqq (61)

with increasing continuous non-negative function κ.

Subtracting (51) from (53) and taking into account the
monotonicity of κwith (57) and the induction hypothesis
(55) together with (60) and (61), we have for all t ě 0

}epjqptq} ď Zpj´1q`
∆

m
rα` κpZ̃pjqqs ` }A}

ż t

t´ ∆m

}epjqpsq}ds

On account of (23), (57) and applying (i) of lemma 8

with s– }epjq}, k0 – }A}, k1 – Zpj´1q` ∆
m rα`κpZ̃

pjqqs

and δ– ∆
m , it follows that

}epjqptq} ď Zpjq, 1 ď µpjqptq ď Zpjq (62)

for all t ě 0 and for some Zpjq ě Z̃pjq. This proves (by
induction) the boundedness of epjqptq and µpjqptq (and
therefore ωpjqptq), j “ 1, . . . ,m.

Convergence of epjqptq andωpjqptq, j “ 1, . . . ,m, to zero.
We proceed again by induction. Assume that for some
j P t1, . . . ,m´ 1u

lim
tÑ`8

epiqptq “ 0, lim
tÑ`8

ωpiqptq “ 0, i “ 0, . . . , j ´ 1.(63)

We have established above that pepiqptq,ωpiqptqq are
bounded for all i “ 1, . . . , j. It follows that the Ω-limit
setΩ˚ of each trajectory pxpjqptq, ξpjqptq,νpjqptq,µpjqptqq
is non-empty, compact and invariant (corollary 5.6 of
Smith (2011)). But limtÑ`8 rxp0qptq ´ ξp0qptqs “ 0
(proposition 6) and since by definition xpjqptq ”

xp0qpt` j ∆
m q

lim
tÑ`8

rxpjqptq ´ ξp0qpt` j
∆

m
qs “ 0 (64)

Moreover, recalling claim #2 (proof of proposition 6)
with t` j ∆

m replacing t

lim
tÑ`8

r´ξp0qpt` j
∆

m
q ` σcpµ

p0q
q
r
pt`j ∆m qpξp0qpt` j

∆

m
qqqs

“ 0

Therefore, by (i) of lemma 9 and since by definition
νpjqptq ” µp0qpt` j ∆

m q,

lim
tÑ`8

rσcpν
pjq
q
r
ptqpxpjqptqqq ´ xpjqptqs (65)

“ lim
tÑ`8

rσcpν
pjq
q
r
ptqpxpjqptqqq ´ σcpν

pjq
q
r
ptqpξp0qpt` j

∆

m
qqqs

` lim
tÑ`8

r´xpjqptq ` ξp0qpt` j
∆

m
qs ` lim

tÑ`8
r´ξp0qpt` j

∆

m
q

`σcpµ
p0q
q
r
pt`j ∆m qpξp0qpt` j

∆

m
qqqs “ 0

and

lim
tÑ`8

Qpνpjqptq, ξp0qpt` j
∆

m
q, ypjqptqq “ 0

lim
tÑ`8

Gpνpjqptq, ξp0qpt` j
∆

m
qq “ 0 (66)

It follows from (64), (65), (66), invariance ofΩ˚ and the

induction hypothesis (63) that each trajectory px
pjq
˚ ptq,

ξ
pjq
˚ ptq,ν

pjq
˚ ptq,µ

pjq
˚ ptqq (with initial condition ϕ˚) con-

tained inΩ˚ satisfies (50)-(51)-(52) and (53) for all t ě 0
with

x
pj´1q
˚ ptq ” ξ

pj´1q
˚ ptq, ν

pj´1q
˚ ptq ” µ

pj´1q
˚ ptq

σcpν
pjq
˚
q
r
ptq
px
pjq
˚ ptqq ” x

pjq
˚ ptq, x

pjq
˚ ptq ” ξ

p0q
˚ pt` j

∆

m
q,

Qpν
pjq
˚ ptq, ξ

p0q
˚ pt` j

∆

m
q, y

pjq
˚ ptqq ” 0

Gpν
pjq
˚ ptq, ξ

p0q
˚ pt` j

∆

m
qq ” 0 (67)

where y
pjq
˚ is the output trajectory ypjq which corre-

sponds to x
pjq
˚ . If we show that e

pjq
˚ ptq– x

pjq
˚ ptq´ξ

pjq
˚ ptq

and ω
pjq
˚ ptq – ν

pjq
˚ ptq ´ µ

pjq
˚ ptq are zero for all

t ě ∆
m then, by attractiveness and invariance of Ω˚,

limtÑ`8 e
pjqptq “ 0 and limtÑ`8ω

pjqptq “ 0 and this
concludes the proof of (49) by induction.

Let us prove that ω
pjq
˚ ptq and e

pjq
˚ ptq are zero for all t ě

∆
m . Using (50)-(51)-(52) and (53) with the additional
constraints (67), we have for all t ě 0

e
pjq
˚ ptq “

ż t

t´ ∆m

rAê
pjq
˚ psq ` φpσ

cpν
pjq
˚
q
r
psq
px
pjq
˚ psqqq

´φpσcpµ
pjq
˚
q
r
psq
pξ
pjq
˚ psqqqsds, (68)

ω
pjq
˚ ptq “´

ż t

t´ ∆m

Gpµ
pjq
˚ psq, ξ

pjq
˚ psqqds (69)

By (i) of lemma 9 and lemma 10 and using the triangle
inequality, }σhpwq ´ σkpzq} ď }h ´ k} ` 2}w ´ z} for
all w, z P Rn and h, k P Rną. Using this with (iii) of
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lemma 9 and (59) with µ – 1, w – σcpν
pjq
˚
q
r

px
pjq
˚ q and

z – σcpµ
pjq
˚
q
r

pξ
pjq
˚ q together with the boundedness of ν

pjq
˚

and µ
pjq
˚ ,

}φpσcpν
pjq
˚
q
r
ptq
px
pjq
˚ ptqqq ´ φpσ

cpµ
pjq
˚
q
r
ptq
pξ
pjq
˚ ptqqq} (70)

ď

´

max
xxwyyĺcpν

pjq
˚
qrptq

xxzyyĺcpµ
pjq
˚
qrptq

}Φpw, zq}
¯”

c}pν
pjq
˚ q

rptq ´ pµ
pjq
˚ q

rptq}

`2}e
pjq
˚ ptq}

ı

ď ρ1r}pν
pjq
˚ q

rptq ´ pµ
pjq
˚ q

rptq} ` }e
pjq
˚ ptq}s

for all t ě 0 and for some ρ1 ą 0 (depending on the
initial condition ϕ˚). But the function µ ÞÑ µq, q ą 0,
is continuous over any closed interval r1,µ8s and with
bounded derivative over p1,µ8q. By the mean value the-
orem |µq´νq| ď qpsupµPp1,µ8q µ

q´1q|µ´ν| for all µ,ν P

r1,µ8s. Therefore, by boundedness of µ
pjq
˚ ptq and ν

pjq
˚ ptq,

}pν
pjq
˚ q

rptq ´ pµ
pjq
˚ q

rptq} ď ρ2|ω
pjq
˚ ptq| for all t ě 0 and

for some ρ2 ą 0 (depending on ϕ˚). From (68) with (70)
we get for all t ě 0

}e
pjq
˚ ptq}ďr}A}̀ ρ1p1̀ ρ2qs

ż t

t´ ∆m

r|ω
pjq
˚ ptq| ` }e

pjq
˚ ptq}sds (71)

On the other hand, on account of σcpν
pjq
˚
q
r
ptq
px
pjq
˚ ptqq ”

x
pjq
˚ ptq in (67), by (i) of lemma 9, lemma 10 and using

the triangle inequality with }pν
pjq
˚ q

rptq ´ pµ
pjq
˚ q

rptq} ď

ρ2|ω
pjq
˚ ptq| for all t ě 0, we get for all t ě 0

|Gpµ
pjq
˚ ptq, ξ

pjq
˚ ptqq|

ď ρ3}σpcpµ
pjq
˚ q

rptq, ξ
pjq
˚ ptq ´ σpcpµ

pjq
˚ q

rptq, ξ
pjq
˚ ptqqq}

ď ρ3r}e
pjq
˚ ptq} ` }σpcpµ

pjq
˚ q

rptq, x
pjq
˚ ptqq

´σpcpν
pjq
˚ q

rptq, ξ
pjq
˚ ptqq} ď ρ3r3}e

pjq
˚ ptq} ` ρ2|ω

pjq
˚ ptq|s

for some ρ3 ą 0 (depending on the initial condition ϕ˚)
and therefore from (69)

|ω
pjq
˚ ptq| ď ρ3p3` ρ2q

ż t

t´ ∆m

r|ω
pjq
˚ ptq| ` }e

pjq
˚ ptq}sds (72)

Summing (71) and (72), applying part (ii) of lemma 8

with s– |ω
pjq
˚ |` }e

pjq
˚ }, k0 – }A}`ρ1p1`ρ2q`ρ3p3`

ρ2q, k1 – 0 and δ – ∆
m , we conclude that ω

pjq
˚ ptq “ 0

and e
pjq
˚ ptq “ 0 for all t ě ∆

m . This concludes the proof.

8 Conclusions

We have presented a class of nonlinear predictors for
stable systems with delayed measurements and constant
and known delay. These nonlinear predictors consist of

m ` 1 couple of filters, each couple generates an esti-
mate of the state vector (and its maximum magnitude)
at some delayed time instant which differ from the pre-
vious by a small fraction of the overall delay. This frac-
tion is sufficiently small to guarantee convergence of the
estimate to the real value. These estimates are used by
consecutive couples of filters to generate the estimates
at the next delayed time instant, with the last couple
generating the desired prediction of the state. Further
research will be devoted to the case of unknown delay
and unstable systems.
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A Incremental homogeneity in the generalized
sense: a review

The notion of (incremental) homogeneity in the general-
ized sense has been introduced in Battilotti (2011) (see
also Battilotti (2013)) in the context of semi-global sta-
bilization and observer design problems. Here we recall
this notion in a slightly more general form.

A.1 Definitions

A function φ P C0pRą ˆ Rn,Rlq, pµ, xq ÞÑ φpµ, xq, is
said to be incrementally homogeneous in the generalized
sense (i.h.) with quadruple pr, d, h,Φq if there exist d P
Rl, h P Rn, r P Rną and Φ P C0pR2n,Rlˆnq such that for
all ε ą 0 and w, z P Rn

φpε, εr˛wq´φpε, εr˛zq“εd˛
´

Φpw, zqpεh ˛ pw´zqq
¯

Note that the function φ may depend on the dilating
parameter itself. The function x ÞÑ φpxq – x1 ` x32 (φ
does not depend on the dilating parameter) is i.h. with
quadruple pr, 0, h,Φq, where r – p1, 2qT , h – p1, 6qT and
Φpw, zq – p1, w2

2 ` z22 ` z2w2q. The function pµ, xq ÞÑ
φpµ, xq – µpx1 ` x32q (φ does depend on the dilating
parameter) is i.h. with quadruple pr, 1, h,Φq.

When restricting to z “ 0 in the above definition, we
obtain the definition of homogeneity in the generalized
sense. For functions x ÞÑ φpxq this definition general-
izes the classical notion of homogeneity (Rosier (1992)).
Note that homogeneity in the generalized sense is char-
acterized by two vector degrees pd, hq instead of being
characterized by only one degree d as in the case of ho-
mogeneity in the classical sense and the function may
depend on the dilating parameter itself.

There are functions, like sinx, which are not i.h. but
their absolute value is bounded by the absolute value of
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a function which is i.h. This motivates the following def-
inition (xxayy denotes the column vector of the absolute
values of the elements of a P Rn).

A function φ P C0pRą ˆ Rn,Rlq, pµ, xq ÞÑ φpµ, xq,
is said to be incrementally homogeneous in the upper
bound in the generalized sense (i.h.u.b.) with quadru-
ple pr, d, h,Φq if there exist d P Rl, h P Rn, r P Rną,

Φ P C0pR2n,Rlˆně q such that for all ε ě 1 and w, z P Rn

xxφpε, εr˛wq´φpε, εr˛zqyyĺεd˛
´

Φpw, zqxxεh ˛ pw´zqyy
¯

The function pµ, xq ÞÑ φpµ, xq – µ px2 x32gpx1q q
T

, g
any bounded and globally Lipschitz continuous function,
is i.h.u.b. with triple pr, d, h,Φq, where r – p1, 2qT , d –

p3, 7qT , h – p1, 0qT and

Φpw, zq–

ˆ

0 1
z32

~gpw1q´gpz1q~
~w1´z1~

~w2
2 ` z

2
2 ` w2z2~~gpw1q~

˙

(here we used w3
2gpw1q ´ z32gpz1q “ pw3

2 ´ z32qgpw1q `

z32pgpw1q ´ gpz1qq).

A.2 Properties of incrementally homogeneous func-
tions

P0 (addition) For any i.h.u.b. (resp. i.h.) func-
tions φ P C0pRą ˆ Rn,Rlq, pµ, yq ÞÑ φpµ, yq, with
quadruple pr, d, h,Φq and ψ P C0pRą ˆ Rn,Rlq,
pµ, yq ÞÑ ψpµ, yq, with quadruple pr, d, h,Ψq, the func-
tion pµ, yq ÞÑ φpµ, yq ` ψpµ, yq is i.h.u.b. (resp. i.h.)
with quadruple pr, d, h,Φ` Ψq .

P1 Any i.h.u.b. (resp. i.h.) functionφ P C0pRąˆRn,Rlq
with quadruple pr, d, h,Φq and diagonalΦ is also i.h.u.b.
(resp. i.h.) with quadruple pr, d1, h1,Φq for all pairs
pd1, h1q such that d` h ĺ d1 ` h1 (resp. d` h “ d1 ` h1).

In particular, we can replace the degrees pd, hqwith some
upper bounds pd1, h1q or swap :pd1, h1q “ ph, dq.

P2 (composition) For any i.h.u.b. functionsφ P C0pRąˆ
Rs,Rlq, pµ, yq ÞÑ φpµ, yq, with quadruple pr, d, h,Φq and
ψ P C0pRąˆRn,Rsq, pµ, xq ÞÑ ψpµ, xq, with quadruple

pr,´h` r, p,Ψq if there exists ΦM P C0pR2s,Rlˆsě q such
that for all ε ě 1 and w, z P Rn

Φpε´r ˛ψpεr ˛ wq, ε´r ˛ψpεr ˛ zqq ĺ ΦM pw, zq (A.1)

then pµ, xq ÞÑ φpµ,ψpµ, xqq is i.h.u.b. with quadruple
pr, d, p,ΦMΨq. 3

3 Using properties (2), for all ε ě 1 and w, z P Rn

xxφpε,ψpε, εr ˛ wqq ´ φpε,ψpε, εr ˛ zqqyy “

In particular, for φ with constant Φ (A.1) is trivially
satisfied with ΦM “ Φ.

Let pA,Bq be in Brunowski canonical form. Note thatAT

is the Moore-Penrose pseudoinverse ofA, viz.ATAAT “
AT , AATA “ A, pATAqT “ ATA and pAAT qT “ AAT .
Therefore I ´ AAT is the orthogonal projection onto
pImtAuqK “ ImtI´AAT u while I´ATA is the orthogo-
nal projection onto pImtAT uqK “ ImtI´ATAu (ImtW u
denotes the vector space generated by the columns of
the matrix W ). It is easy to see that

P3.1 (shifting I) for any z P ImtI ´ AAT u (resp.
z P ImtI ´ ATAu) and i.h.u.b. (resp.i.h.) φ P

C0pRą ˆ Rn,Rlq, pµ, xq ÞÑ φpµ, xq, with quadru-
ple pr, d, h,Φq, the function pµ, xq ÞÑ Aφpµ, xq (resp.
pµ, xq ÞÑ ATφpµ, xq) is i.h.u.b. (resp.i.h.) with quadru-
ple pr, Ad` z, h, AΦq (resp. pr, AT d` z, h, ATΦq). 4

P3.2 (shifting II) for any z P ImtI ´ ATAu (resp. z P
ImtI ´ AAT u) and i.h.u.b. (resp.i.h.) φ P C0pRą ˆ
Rn,Rlq, pµ, xq ÞÑ φpµ, xq, with quadruple pr, d, h,Φq
and constant Φ, the function pµ, xq ÞÑ φpµ, Axq (resp.
pµ, xq ÞÑ φpµ, ATxq) is i.h.u.b. (resp.i.h.) with quadru-
ple pr, d, AT ph ´ rq ` r ` z,ΦAq (resp. pr, d, Aph ´ rq `
r` z,ΦAT q). 5

xxφpε, εr ˛ ε´r
˛ ψpε, εr ˛ wqq ´ φpε, εr ˛ ε´r

˛ ψpε, εr ˛ zqqyy

ĺ εd ˛

ˆ

Φpw1, z1q

ˇ

ˇ

ˇ

ˇw1“ε´r˛ψpε,εr˛wq

z1“ε´r˛ψpε,εr˛zq

ˆ

Ψpw, zqxxεp ˛ pw ´ zqyy

˙˙

ĺ εd ˛

ˆ

pΦM
pw, zqΨpw, zqqxxεp ˛ pw ´ zqyy

˙˙

4 Using Aεd “ AATAεd “ AAT εAd`z with z P ImtI´AAT
u,

for all ε ě 1 and w, z P Rn

xxAφpε, εr ˛ wq ´Aφpε, εr ˛ zqyy

ĺ pAεdq ˛

ˆ

A

ˆ

Φpw, zqxxεh ˛ pw ´ zqyy

˙˙

“ εAd`z
˛

ˆ

AΦpw, zqxxεh ˛ pw ´ zqyy

˙

5 Using AAT εh´r
“ AεA

T ph´rq`z with z P ImtI´AAT
u and

properties (2) and (3), for all ε ě 1 and w, z P Rn

xxφpε,Apεr ˛ wqq ´ φpε,Apεr ˛ zqqyy

“ xxφpε, εr ˛ ε´r
˛ pApεr ˛ wqqq ´ φpε, εr ˛ ε´r

˛ pApεr ˛ zqqqyy

ĺ εd ˛

ˆ

Φxxεh´r
˛

ˆ

Apεr ˛ xxw ´ zyyq

˙˙

ĺ εd ˛

ˆ

ΦxxpAAT εh´r
q ˛

ˆ

Apεr ˛ xxw ´ zyyq

˙˙

“ εd ˛

ˆ

pΦAqxxεA
T ph´rq`r`z

˛ pw ´ zqyy

˙

(A.2)
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B Auxiliary results

Lemma 8 Assume that s P C0pr´δ,`8q, r0,`8qq, for
some δ ą 0, is such that sptq is bounded for all t P r´δ, 0s
and

sptq ď k0

ż t

t´δ

spτqdτ` k1 (B.1)

for all t ě 0 and k0, k1 ě 0.

(i) If δk0 ă 1 then for all t ě 0

sptq ď
k1 ` k0δmaxθPr´δ,0s spθq

1´ k0δ
(B.2)

(ii) If k1 “ 0 then sptq “ 0 for all t ě δ.

PROOF. Part (i). We can rewrite (B.1) as

sptq ď k0

ż t

maxt0,t´δu

spτqdτ` k11 (B.3)

with k11 – k1`k0δmaxθPr´δ,0s spθq. Substituting sp¨q in
the argument of the integral with its bound in (B.3) and
repeating this substitution r-times we obtain

sptq ď k11

r
ÿ

i“0

pk0δq
i ` kr`1

0

ż t

maxt0,t´δu

. . .

¨ ¨ ¨

ż tr

maxt0,tr´δu

sptr`1qdt1 ¨ ¨ ¨ dtr`1 (B.4)

By virtue of Gronwall-Bellman inequality from (B.3) it
follows that sptq ď k11e

k0t. Using this inequality in (B.4)
we obtain

sptq ď k11

r
ÿ

i“0

pk0δq
i `

pk0tq
r`1

pr ` 1q!
k11e

k0t

(we used the majorization
şt

maxt0,t´δu
siek0sds ď

ek0t t
i`1

i`1 ). Passing to the limit for r Ñ 8 and since

k0δ ă 1, we get sptq ď
k11

1´k0δ
for all t ě 0, which proves

(i).

Part (ii). For t ě δ we can rewrite (B.1) as sptq ď

k0
şt

maxt0,t´δu
spτqdτ. Proceeding as in part (i) with k11 –

0, we obtain sptq “ 0 for all t ě δ.

Lemma 9 If σph, ¨q P D0pRn,Rnq is a saturation func-
tion with levels h P Rną, for all w, z P Rn

(i) xxσph,wq ´ σph, zqyy ĺ 2xxw ´ zyy

(ii) xxσph,wqyy ĺ xxwyy, (iii) xxσph,wqyy ĺ xxhyy.

PROOF. We prove only (i), while (ii) and (iii) follow
easily from the definition of saturation function. No-
tice that σph,wq “ pσ1ph,w1q, . . . , σnph,wnqq

T since
σph, ¨q P D0pRn,Rnq. Fix i “ 1, . . . , n.

Case A). For all wi, zi P R such that ~wi~ ě hi and ~zi~ ě
hi we have ~σiph,wiq´σiph, ziq~ “ 0 ď 2σiph, |wi´zi|q ď
2~wi ´ zi~ if wizi ą 0 and ~σiph,wiq ´ σiph, ziq~ “ 2hi ď
2σiph, |wi ´ zi|q ď 2~wi ´ zi~ if wizi ă 0.

Case B). For all wi, zi P R such that ~wi~ ě hi and
~zi~ ď hi we have ~pσiph,wiq ´ σiph, ziq~ “ ~hi ´ zi~ “
hi ´ ~wi~ ` ~wi ´ zi~ ď ~wi ´ zi~ “ σiph, |wi ´ zi|q if
~wi ´ zi~ ď hi and ~σiph,wiq ´ σiph, ziq~ “ ~hi ´ zi~ ď
2hi “ 2σiph, |wi ´ zi|q if ~wi ´ zi~ ě hi.

Case C). For all wi, zi P R such that ~wi~ ď hi and
~zi~ ě hi follow the steps of case B).

In a similar way we can prove the following related result.

Lemma 10 If σph, ¨q,σpk, ¨q P D0pRn,Rnq are satura-
tion functions with levels h P Rną and, respectively,
k P Rną, xxσph, xq ´ σpk, xqyy ĺ xxk ´ hyy for all x P Rn.

PROOF. Fix i “ 1, . . . , n and assume that hi ď ki
(the case ki ď hi is treated in the same way). For all
xi P R such that ~xi~ ď ki we have ~σiph, xiq´σipk, xiq~ “
0 ď |ki ´ hi|. For all other cases, we have ~σiph, xiq ´
σipk, xiq~ “ ~xi ´ ki~ ď |ki ´ hi|.

Lemma 11 With assumption H0 and for each c,K ą 0
and diagonal positive definite Γ ,

(i) the function pµ, zq ÞÑ Hpµqz, defined in (31)-(29), is
i.h. with quadruple pr, r` g, g, Hq, where H is defined
in (35)-(37),

(ii) the function pµ, zq ÞÑ Zpµ, zq, defined in (32)-(28)-
(29), is i.h.u.b. with quadruple pr, r ` g, g,Ωq, where
Ω is defined in (36)-(37) and ΦM ,ΨM P Rnˆn are
matrices satisfying (20)-(21),

(iii) the functions pµ, zq ÞÑ λ1pµ, zq and pµ, zq ÞÑ
λ2pµ, zq, defined in (44), are i.h.u.b. with quadruples
pr, r´g, g, 3Xq and, resp., pr, r´g, g, CT pC`2ΨM qXq,

(iv) the function z ÞÑ φpzq is i.h.u.b. with quadruple
pr, r` g, g,Φq,

(v) the function pµ, zq ÞÑ ATGpµqXpµqz is i.h.u.b. with
quadruple pr, r´ g, g, AT ΓXq.

PROOF. Proof of part (iv). Notice that φ “ AATφ`
pI ´AAT qφ and that Apr´ gq ĺ AAT pr` gq (by (B.7)
since AATA “ A) and AAT pr`gq`pI´AAT qpr`gq “
r` g. From H0 and P0, P1 and P3.1 we get the desired
result.
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Proof of parts (i), (ii) and (v). We break up the proof
in several claims. Condition (5) in assumption H0 reads
out in compact form as

2Ag`AAT pr´ gq ĺ Apr´ gq ĺ AAT pr` gq (B.5)

and notice the following ensuing inequalities

AT pr` 2Ag´ gq ĺ ATApr´ gq (B.6)

AAT pAr´ rq ĺ AAT pAg` gq (B.7)

(the first by multiplying the first inequality of (B.5) by
AT and using ATAAT “ AT , the second by multiply-
ing the second inequality of (B.5) by AAT and using
AATAAT “ AAT ).
Claim I. pµ, zq ÞÑ ATGpµqz (resp. pµ, zq ÞÑ ATG2pµqz)
is i.h.u.b. with quadruple pr, r´ g, g, AT Γq (resp. pr, r`
g, g, AT Γ2q). Since by its definition pµ, zq ÞÑ Gpµqz is
i.h.u.b. with quadruple pr, r, 2Ag, Γq and Γ is diagonal, by
property P1 with d1 – r` 2Ag´ g and h1 – g, pµ, zq ÞÑ
Gpµq is i.h.u.b. with quadruple pr, r` 2Ag´ g, g, Γq. By
P3.1 with z – pI ´ ATAqpr ´ gq, pµ, zq ÞÑ ATGpµq
is i.h.u.b. with quadruple pr, AT pr ` 2Ag ´ gq ` pI ´
ATAqpr ´ gq, g, AT Γq. On account of (B.6) and P1 we
get that pµ, zq ÞÑ ATGpµqz is i.h.u.b. with quadruple
pr, r ´ g, g, AT Γq, i.e. the first part of the claim. On the
other hand, since by its definition pµ, zq ÞÑ G2pµqz is
i.h.u.b. with quadruple pr, r, 4Ag, Γ2q and Γ is diagonal,
by P1 with d1 – r ` 4Ag ´ g and h1 – g, pµ, zq ÞÑ
Gpµq is i.h.u.b. with quadruple pr, r` 4Ag´ g, g, Γq. By
P3.1 with z – pI ´ ATAqpr ` gq, pµ, zq ÞÑ ATGpµq
is i.h.u.b. with quadruple pr, AT pr ` 4Ag ´ gq ` pI ´
ATAqpr ` gq, g, AT Γ2q. On account of (B.6) and P1 we
get that pµ, zq ÞÑ ATG2pµqz is i.h.u.b. with quadruple
pr, r` g, g, AT Γ2q, i.e. the second part of the claim.
Claim II. pµ, zq ÞÑ Xpµqz, with Xpµq– pI´ATGpµqq´1,
is i.h.u.b. with quadruple pr, r ´ g, g, Xq, X –

pI ´ AT Γq´1. Notice that pµ, zq ÞÑ z is i.h.u.b. with
quadruple pr, r, 0, Iq. Therefore, since I is diagonal and
invoking P1 with d1 – r` g and h1 – ´g, pµ, zq ÞÑ z is
i.h.u.b. with quadruple pr, r´g, g, Iq. On the other hand,

notice thatXpµq– pI´ATGpµqq´1 “
řn´1
j“0 pA

TGpµqqj .

As already established, pµ, zq ÞÑ pATGpµqq0z “ z is
i.h.u.b. with quadruple pr, r ´ g, g, Iq. We proceed by
induction. Assume that pµ, zq ÞÑ pATGpµqqjz for some
j “ 1, . . . , n ´ 1, is i.h.u.b. with quadruple pr, r ´
g, g, pAT Γqjq. Since pATGpµqqj`1 “ pATGpµqqjATGpµq
and both pµ, zq ÞÑ pATGpµqqjz (induction step)
and pµ, zq ÞÑ ATGpµqz (claim I) are i.h.u.b. with
quadruple pr, r ´ g, g, pAT Γqjq and, respectively,
pr, r ´ g, g, AT Γq, by property P2 it follows that
pµ, zq ÞÑ pATGpµqqj`1z is i.h.u.b. with quadruple
pr, r ´ g, g, pAT Γqj`1q. By induction and property P0,

since X – pI ´ AT Γq´1 “
řn´1
j“0 pA

T Γqj , it follows that

pµ, zq ÞÑ Xpµqz is i.h.u.b. with quadruple pr, r´g, g, Xq.
Claim III. pµ, zq ÞÑ Hpµqz is i.h. with quadruple
pr, r` g, g, Hq. Since by its definition pµ, zq ÞÑ Gpµqz is

i.h. with quadruple pr, r, 2Ag, Γq, by using property P3.1
with z – 0 and P3.2 with z – pI ´ ATAq2g, ATG0A
is i.h. with quadruple pr, AT r, 2g ´ AT r ` r, AT ΓAq.
Since ATG0A is diagonal, by P1 with d1 – r ` g and
h1 – g, pµ, zq ÞÑ ATG0pµqAz is i.h. with quadruple
pr, r ` g, g, AT ΓAq. Similarly, pµ, zq ÞÑ CTKµ2CgCz is
i.h. with quadruple pr, r`g, g, CTKCq. By P0 the claim
follows.

Claim IV. pµ, zq ÞÑ σpcµr, zq (resp. pµ, zq ÞÑ σpcµr,
Xpµqzq) are i.h.u.b. with quadruple pr, r´g, g, 2Iq (resp.
(r, r ´ g, g, 2X q). On account of (i) of lemma 9 with
h – cµr, pµ, zq ÞÑ σpcµr, zq is i.h.u.b. with quadruple
pr, r, 0, 2Iq. By P1 with d1 – r´ g and h1 – g, pµ, zq ÞÑ
σpcµr, zq is also i.h.u.b. with quadruple pr, r ´ g, g, 2Iq,
i.e. the first part of the claim. Finally, by virtue of P2
and claim II we obtain the second part of the claim.

Claim V. pµ, zq ÞÑ AXpµqz (resp. pµ, zq ÞÑ ATGpµq
Xpµqzq) is i.h.u.b. with quadruple pr, r ` g, g, Aq (resp.
pr, r´g, g, AT ΓXq). Note that pµ, zq ÞÑ z is i.h.u.b. with
quadruple pr, r, 0, Iq, therefore by P1 with d1 – r ´ g
and h1 – g, pµ, zq ÞÑ z is also i.h.u.b. with quadruple
pr, r ´ g, g, Iq. Using P3.1 with z – pI ´ AAT qpg ` rq,
pµ, zq ÞÑ Az is i.h.u.b. with quadruple pr, Apr´gq`pI´
AAT qpg ` rq, g, Aq. Upon noticing that Ar ´ AAT r ĺ

Ag ` AAT g (from (B.7) since AATA “ A) and on ac-
count of (B.7), we get by P1 that pµ, zq ÞÑ Az is i.h.u.b.
with quadruple pr, r ` g, g, Aq. From claim II and P2 it
follows that pµ, zq ÞÑ AXpµqz is i.h.u.b. with quadruple
pr, r ` g, g, Aq. The second part of the claim follows di-
rectly from claims I and II and P2.

Claims III and V prove (i) and (v) of the lemma.
Let us prove part (ii). Since }µ´r ˛ σpcµr, wq} ď

cn for all w P Rn, we find out that any matrix
ΦM P Rnˆn for which (20) holds true is such that
ATΦpµ´r ˛ σpcµr,Xpµqwq,µ´r ˛ σpcµr,Xpµqzqq ĺ

ATΦM for all w, z P Rn and µ ě 1. By virtue
of H0, claim IV and property P2, it follows that
pµ, zq ÞÑ ATφpσpcµr,Xpµqzq is i.h.u.b. with quadruple
pr, r ´ g, g, 2ATΦMXq. Finally, from claim III, P2 and
P0 and on account of part (iv) of the lemma it follows
that pµ, zq ÞÑ pI ´ HpµqAT qφpσpcµr,Xpµqzq is i.h.u.b.
with quadruple pr, r` g, g, 2pI `HAT qΦMXq.

In a similar way, using H0, claims III, IV and P2, we
see that pµ, zq ÞÑ ´HpµqCTψpσpcµr,Xpµqzqq is i.h.u.b.
with quadruple pr, r` g, g, 2HCTΨMXq for any matrix
ΨM P Rnˆn for which (21) holds true.

On the other hand, by claims I, V and P2 and P0,
pµ, zq ÞÑ rA´ATG2pµqsXpµqz is i.h.u.b. with quadruple
pr, r` g, g, rA` AT Γ2sXq. Using P0 we obtain part (ii)
of our lemma.

Proof of part (iii). As part (ii) using H0, claims II and
IV and P0, P2.
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