Notes on Linear Control Systems: Module VII

Stefano Battilotti

Abstract—Controllability and observability. Eigenvalue assign-
ment and stabilization via state-feedback. PBH controllability
criterion. State Observers and detectors. PBH observability
criterion. Eigenvalue assignment and stabilization via output-
feedback: the separation principle.

I. CONTROLLABILITY

An important problem in control theory is to find an input
function which steers the state from an initial value xq to a
final value 2 in a given time ¢;. The characterization of the
states which can be reached at time ¢y starting from a given
state g is related to the notion of “reachable” states.

Definition /.7: A state x; € R is said to be reachable from
T at time ty if there exists an input function u and ty > 0 such
that

X(tf7IOau) =Zf (1)

Therefore, a state x; is reachable from z if there exists an
input function u which steers the solution x(¢,zg,u) to the
point ¢ in £ sec. The set of reachable states from xy := 0
is a vector space.

Proposition /.1: The set of reachable states from xg = 0 is
a vector subspace of the state space R".

Therefore, if z, and x; are both reachable from xo = 0
then c,x, + cpxp is reachable from xy = 0 for any c,, ¢, € R.

Let 2, and x; two reachable states from xg = 0 at ¢, and
trp. The state c,xq + cpap for reals cq, ¢y is reachable from
9 =0att; = max{tfa,tfb}.

Now, we want to characterize the set of reachable states in
terms of the matrices A and B. To this aim, let us introduce
the following time-varying n X n matrix

t

G(t) := J eA"BBTeA Tdr (2)
0

This matrix is symmetric and it is known as controllability

gramian. Also, define the controllability matrix

R:= (B AB A’B A"1B) 3)

Proposition /.2: For eacht # 0: Span{G(t)} = Span{R}.
Moreover, the set of reachable states from xo = 0 at time ty is
Span{G(ts)}.

Note that, if Span{G(t;)} = R", any state z; € R"™ is
reachable from xg := 0 no matter what the final ¢; is. In this
case, by proposition 1.2 Span{R} = R".

Definition /.2: If Span{R} = R" then the system is said to
be controllable (or controllable).
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Now, we are in a position to characterize any state which
is reachable from a given zy € R™. Since

x(t, zg,u) = eArg + A7) Bu,dr 4)

it follows that a state x; is reachable from xy € R™ at time
ty if and only if zy — e xq is reachable from 0 at time ¢ f-

Proposition /.3: The set of states reachable at time t¢ from
x9 € R™ is the set of states xy for which x; — eAtrzg is
reachable at time t ¢ from xo := 0 and it is equal to

{zeR": 2z = ez +y,y € Span{R}} ®)

As a final task, we want to find the input function u for
which a state x ¢ is reachable from zo € R™ at time . To this
aim, first we find the input function u for which a state x ¢ is
reachable is reachable from 0 at time ¢ ;. If y € Span{G(¢;)}
then xy is reachable from 0 at time ¢; by proposition 1.2.
Therefore, there exists w € R™ such that s = G(ty)w. The
input function u defined as

u(t) := BT (1=t (6)
is such that
zp = x(tf, z0, 1) @)
Indeed,

x(ty, o, u) = f

0

ty
e =7 Bu, dr

t
= J ' A=) BBT AT (=) i = G(tf)w = xy
0

Next, we find the input function u for which x is reachable
from xo € R" at time t;. If 2y — ez € Span{G(ts)}
then z; — eAtz is reachable from xy € R"™ at time
ty by proposition 1.3. Therefore, if w € R"™ is such that
zp — ety = G(tf)w, the input function u defined as

u(t) := BTeA (=1 (8)
is such that
Tf = X(tf7 Xo, u) (9)

Proposition /.4: If Span{R} = R", any state x; is reach-
able from any xo within any time ty and an input funtion which
steers the state xq to xy withinty sec is

u(t) := BTeAT(tf_t)G_l(tf)(xf — eMigg) (10)
Exercize 1.1: Consider the double integrator
x1(t) = x2(1)
X5(t) = u(t) (11)



and calculate the set of reachable states from 0. Determine the

input function u (if possible) which steers the state from zg =
T T ...

(1 0) toxy=(8 —6) withinty =1 sec.

In this case
0 1 0
=5 o) 2= (1)

The controllability matrix is

e (5 am) - (7 )

and Span{R} = RZ, Therefore, the set of reachable states
from 0 is R2. Also the set of reachable states from any xg is
R? (proposition 1.3).

The controllability gramian is

12)

¢
G(t) := f A" BB eA Tdr
0

SXOMIOIRTEE
Ll - Y[ )

(1t
=0 1)

Note that Span{R} = Span{G(ts)} = R? (proposition 1.2)
since G(ts) is nonsingular for each t¢ # 0.
Let us calculate the input function u (if possible) which
T T
(1 0) tox; = (8 —6)

(13)

steers the state from zo :=
(proposition 1.4). Let

w = G_l(tf)(a:f — eAtfxo)

12 ( ty  —5t3 8 1
TE A\l 1 —6)  \o
f 2°f  3Yf

12 ( Tty + 3t; ) (120)
74 742 3] =
t \—5t7 — 2t} —66

The desired input function is

(14)

120

— AT(1=t),, —
u(t):=BTe? 0w =(1-¢ 1) (—66

) = —120t+54.<

Exercize 1.2: Consider the model

).{1 (t) = —X1 (t)

5(2 (t) = X2<t) + u(t) (15)

and calculate the set of reachable states from 0. Determine the
input function u (if possible) which steers the state from xg =
toxy = (1 —6)T and, respectively, toxy = (4 —6)T.

(1) 2-0)

The controllability matrix is

Ri= (B AB) - (2 (1))

2
0
In this case

(16)

and Span{R} = Span{(0 I)T}. Therefore, the set of reach-
able states from 0 is Span{ (0 1)T}. Since

et 0
At _ ( . et>

T .
the set of reachable states from any x( := (wm xog) is

a7

{zeR": z = ez +y,y € Span{R}}

={zeR":z= (e me),ceR}

Therefore the state z; = (1 —6)T is reachable from zg =
(2 0)T within t; = [n2 sec. On the other hand, the state
zy = (4 —6)" is not reachable from zo = (2 0) .

Using (17) the controllability gramian is

t
G(t) ;:J eA"BBTe? Tdr
0

[ ) Ee a2
[0 e)r=30 o)

Note that for each ty # 0
0
Span{R} = Span{G(t;)} = span{ (1) }

(18)

Let us calculate the input function u which steers the state
2o=(2 0) tox;=(1 —6) within t; = In2 sec. Let
w € R? be such that z; — e?tr g = G(tf)w, ie.

2y — A2y (_06) = G(In2)w = <8 g) w

We obtain
()

The desired input function is

(19)

u(t) := BTeA (2=, — 3 (0 em2=t) (?) = —6e <

II. OBSERVABILITY

Another important problem in control theory is to recon-
struct the intial value x( of the state from the observations of
the inputs and the outputs. The characterization of the states
which can be reconstructed from the inputs and the outputs is
related to the notion of unobservable states.

Definition 2./: Two states x,,z;, € R"™ are said to be
indistinguishable if there exists t; > 0 such that for any input
function u defined over [0, ¢s] and for all t € [0, ¢ ]

y(t, zq, ) = y(t,p,u) (20)

Therefore, two states are indistinguishable if they produce
as initial conditions the same output under the same input. If
the initial state x( is zero, we have the following definition.



Definition 2.2: A state x € R" is said to be unobservable if
there exists ty > 0 such that for any input function u defined
over [0,ts] and for all t € [0, t 7]

y(t,z,u) = y(t,0,u) 21

The set of unobservable states is a vector space.
Proposition 2.1: The set of unobservable states is a vector
subspace of the state space R".
Now, we want to characterize the set of unobservable states in
terms of the matrices A and C. To this aim, let us introduce
the following time-varying n X n matrix
t
Go(t) := J A TCTCeAdr (22)
0
This matrix is symmetric and it is known as observability
gramian. At the same time, define the observability matrix

C
CA
O := . (23)

CAn—l

Proposition 2.2: Foreacht # 0: Ker{Go(t)} = Ker{O}.
Moreover, the set of unobservable states is Ker{Go(tf)}.

Note that, if Ker{Go(tf)} = {0}, the only unobservable
state is = 0 whatever the observation interval [0,%y] is. In
this case, by proposition 2.2 Ker{O} = {0}.

Definition 2.3: If Ker{O} = {0} then the system is said to
be observable.

Now, we are in a position to characterize the states x, which
are indistinguishable from a given z. Since

y(t,l'(“ u) = Y(taxba ll), Vit e [Ovtf]
< y(t7$a — Ty, u) = y(ta 07“)7 Vit e [07tf:| (24)

it follows that z, is indistinguishable from a given z; if and
only if z, — x is unobservable.

Proposition 2.3: The set of states x, is indistinguishable
from a given xy is the set of states x, for which x, — x} is
unobservable and it is equal to

{zeR": 2z =z, +y,y € Ker{O}} (25)

Relying on the previous characterizations, we study how
to reconstruct the initial states zo (and, therefore, the entire
solution x(t, zg,u)) from the observation of the inputs and
the outputs over a time interval [0,¢]. The reconstruction
of zy can be related to the observability gramian Go and
the unforced output response y(9 (¢, z0). If the system is
observable we claim that xy can be reconstructed from

Ly
f A 0Ty (0, 20)d0
0
Indeed,

tf -
f et 00Ty (0, 20)do
0

ty
_ J e CTCeM20d0 = Golts)xo
0

and therefore
tf
20 = G5l (ty) | OOy O 0, 0) (o)t
0

Proposition 2.4: If Ker{O} = {0}, the only unobservable
state is O and the initial state x can be reconstructed from the
observation of the input u and the ensuing output y(t)(xo, u)
over the time interval [0,t¢],t; > 0, as

ty

To = Gal(tf)J A 00Ty (0, 0)do
0

Exercize 2.1: Consider the double integrator

x1(t) = x2(t)

X2(t) = u(?)

y(t) =x1(t)
and calculate the set of unobservable states. Reconstruct the
initial value of the state xo from the unforced output response

1 + t over the time interval [0,t;] witht; = 1 sec.
In this case

A—<8 (1)>7B—<(1)),C—(1 0)

The observability matrix is

0-(5)-( )

and Ker{O} = {0}. Therefore, the set of unobservable states
is {0}. Also the set of indistinguishable states from any z, is

{za}

The observability gramian

(26)

¢
Gol(t) := f A T CeAdr
0

L0 o )
L0 e (2o (e £0)

a (1t
6_(01

Note that Ker{O} = Ker{Go(t;)} = {0} since Go(ty) is
nonsingular for each ¢y # 0. Next, we see how to reconstruct
xo from the unforced output response 1 + ¢ over the time
interval [0,¢;] with ¢ty = 1 sec. Then

27

T 12
G61<tf>€A tcT _

1,43 1,2
12 §1tf AYE
th \—3t}  ty t

143 1,2 1 1
NG L LA NPT E Sak L
i\ 162+ gt Sl

The initial state x( is reconstructed from the unforced response
1+4+¢tas

(28)

f
xo = Gal(tf)L eATQCTyéunfomed)(x )db
L/l 1p
— 3 2
_ 12L (_% : 9) (1+06)d6
1 1 1
1_1p 1
- 3732 _
IQL (—; +9) (1 + 0)do (1> =



Exercize 2.2: Consider the model

x1(t) = —xu(t)
Xo (t) = Xo (t) + u(t)

y(t) = x2(t) (29)
and calculate the set of indistinguishable states from z =
1 1)

In this case
-1 0 0
A= ( 0 1>,B:= (1>7 C=(0 1)
The observability matrix is
C 0 1
0= (5a)= (o 1) (30)

and Ker{O} = Span{(1 O)T}, Therefore, the set of unob-

servable states is
Ker{O} = Span{ (é) }

(propositions 2.2). The set of indistinguishable states from z =
1 1) s
{zeR": 2z =a+y,yeKer{O}}
={zeR":z= <i) ,c€ R}

Therefore, all the initial states (c 1)T, ¢ € R, cannot
be reconstructed from the observation of the input u and
the ensuing output y(t,z,u) over any time interval [0,t¢],
ty>0. <

III. EIGENVALUES ASSIGNMENT AND STABILIZATION

We have seen that for controllable systems it is possible to
drive the state from any initial state g to O within any given
time ¢; with an input function

u(t) := —BTeA (s DG (ty)eM ag

where G(ty) is the controllability gramian. We have also seen
that this control input lacks in robustness. In this section, we
want to study the problem of steering all the states from any
initial state xo to 0 within an infinite time interval (i.e. t; =
+00) with a given convergence rate. This can be formulated
as a problem of “assigning” the eigenvalues of the matrix A
in such a way that the natural modes are all convergent with
the given convergence rates.

A. FEigenvalues assignment via state feedback

Consider the class of control laws

u(t) = Fx(t) + v(t) (31)

with matrix F'(1 x n) and v is the new control input. These
control laws are commonly referred to as static state feedback
laws, in the sense that the state information is used to im-
plement the control law and the relation between z and v on
one side and u on the other is instantaneous, i.e. no dynamics.

The system x(t) = Ax(t)+ Bu(t), subject to the control input
(31), is represented by the new equations

x(t) = (A + BF)x(t) + Bv(t) (32)

In other words, the matrix A has been changed into A+ BF
(see Figure 1). If we are able to find a matrix F' in such a
way that the eigenvalues of A + BF are equal to a given set
{AF,..., A%} < C, then the natural modes are all convergent
with rate convergence corresponding to the given negative
real parts. On the other hand, this guarantees also asymptotic
stability of (32). This problem can be formulated as follows.
Let o(N) denote the spectrum of a square matrix N, i.e. the
set of its eigenvalues.

Definition 3./: (Spectrum assignment by state feedback).
Given numbers {\f,..., ¥}, \f € C~ foralli = 1,...,n,
either real or complex conjugate, find a matrix F'(1 x n) such
thato(A + BF) = {\¥,.. ., \¥ ]

A necessary and sufficient condition for the existence of F
is the following.

Proposition 3./: The Spectrum assignment by state feed-
back problem is solvable if and only if the system is control-
lable, i.e. the controllability matrix R is nonsingular. In particu-

lar, if R is nonsingular then for given numbers {\¥,... A*},
A e C foralli = 1,...,n, the Spectrum assignment
problem is solvable with

F = —yp*(4) 33)

where v is the last row of R™" and p*(\) := [/, (A — A%).

1) Controllability as a necessary condition for the solvabil-
ity of the Spectrum assignment problem: We want to show
that a necessary condition for the solvability of the Spectrum
assignment by state feedback problem is the controllability of
the system. To this aim, we will assume to have a matrix F'
which solves the Spectrum assignment problem. If the system
is not controlable, we will come to a contradiction. Indeed, if
the system not controlable, R is not nonsingular and say

n > r = rankp{R}

Let vy,...,v, € R™ be a basis of Span{R} (we may assume
that v; := A* 1B, i =1,...,r, ie. the first  columns of R)
and define

-1

T:= (vl See U wWq wn,r) (34)

, Way— e € R™ are such that
,wn_, altogether are a basis of R",

where  wiq,...

ViyeooyUp, W1y

i.e. the matrix
(o1 -+ v ow Wy )

is nonsingular. If we transform the state as z = Tz this will

induce a transformation on the matrices A, B, F' as follows
A=TAT™' :B=TB, F =FT. (35)

It can be seen that there exist matricesNAll(r x 1), Ay (r %
(n—1)),A2((n—7r) x (n—r)) and B1(r x 1) such that

i_ -1 _ Ay Ap 5 _ By
A=TAT _<0 i) B=TB=(" (36)



u. X =Ax + Bu
y=0Cx

Figure 1. Control scheme for eigenvalue assignment by state feedback.

(this follows from ASpan{R} < Span{R} and B €
Span{R}).
Note that for all A e C"

det(\ — (A + BF)) = det(\ — T(A + BF)T ™)
= det(T(\ — (A+ BF))T™)
= detTdet(\] — (A + BF))detT ™"

and, therefore, the roots of det(\] — (A+ BF)) and det(\ —
(A + BF)) are the same, i.e.

o(A+ BF) = o(A + BF) (37)

From (36) and writing F' := (F, F,) for some matrices
Fi(1 xr) and Fy(1 x (n —r)), then

0(A+ BF) = o(A + BF)
Y 12111 + 31151 1‘112 + B1F2
= O'(Au + Blﬁl) ) J(Agg)

Moreover, o(Ag) < o(A) since o(A) = o(A). It follows
that the eigenvalues of A which correspond to O’(AQQ) cannot
be changed into any given subset of {\¥,... A%} and this
contradicts the existence of F' which solves the Spectrum
assignment problem.

2) Controllability as a sufficient condition for the solvability
of the Spectrum assignment problem: Ackermann formula for
spectrum assignment: Next, we want to show that a sufficient
condition for the solvability of the Spectrum assignment by
state feedback problem is the controllability of the system.
This is the constructive part of our result and gives a matrix
F, defined in (33), which assigns the given spectrum to the
matrix A (i.e. solves the Spectrum assignment problem).

Assume that the system is controllable, i.e. R is nonsingular.
Let ~y be the last row of R~! and define the reals af, ..., a¥_,
in such a way that

PO =TT =2
j=1

=ay +afA+---+ak

EATTIEAT O (38)

Note that the roots of p*(\) are exactly the given
{AF, . AR

We will outline the procedure for obtaining the matrix F' in
suitable new coordinates F' (for which the matrices 4 and B

have ad hoc expressions) and then back to F' in the original
coordinates. Define
~vA
T:= .
v An—l

It can be shown that 7" is nonsingular (this follows from the
invertibility of R). It can be also seen that

A=TAT™!
0 1 0 0 0
0 0 1 0 0
= : (39)
0 0 o - 0 1
—@p —a1 —az —Qp-2 —0p-1
and
0
0
B=TB=|: (40)
0
1
where aq,...,a,_1 are the coefficients of the characteristic

polynomial p(\) of A:
pA) =ag + @A+ Fap A" A" 41)

Define

* *
an—2 — Qp_o G0pn-1 — anfl)

then
0 1 0 0 0
0 0 1 0 0
0 0 0 e 0 1
—ay  —ai —aj —ap_o —ap_4
and

det(\ — (A + BF))
=af +afA+ -+ a AL AT = pF()) (43)



Therefore, {\*,...,\*} are the eigenvalues of A + BF.
Getting back in original coordinates

F:=FT (44)
But o(A + BF) = 0(A + BF). Indeed,
det(A — (A + BF)) = det(\ — (TAT~' + TBFTT™'))
=det(T(\ — (A+ BF))T™)
= detTdet(\ — (A + BF))detT ™"

We conclude that the Spectrum assignment problem by state
feedback is solved by F' in (44). Moreover, it is easy to see,
after some manipulations, that

F = —p*(4) (45)
where 7 is the last row of R~! and
p*(A) = agl + a1 A+ 4 a,_1 AV + A, (46)

The above formula (45) for F' is known as Ackermann formula
for spectrum assignment.

B. Stabilization via state feedback

If the system is not controllable there is a subset of the
eigenvalues of A + BF that are invariant under any choice of
F (invariant spectrum). This subset is exactly the spectrum of
the matrix Agg (see (36)) which is a subset of the spectrum of
A. The matrix Ays can be calculated from TAT ! where T
is defined as in (34). Even if the system is not controlable, it
is possible to find a F such that o(A + BF) = {A¥, ..., \}}
as long as the invariant spectrum of A+ BF' is a subset of the
given set {A¥,..., A*}. Denote by §r this invariant spectrum
of A+ BF.

Proposition 3.2: Given numbers {\}, ..., A%}, A} e C™ for
alli = 1,...,n, either real or complex conjugate, there exists a
matrix F'(1 x n) such that 0 (A + BF) = {\¥,...,\*} if and
only if §r < {\F,..., \*}.

1) Design of stabilizing state feedback controllers: We
show how to design F' when §r < £ = {A\¥,...,A*}. Let
r := rankg{R}. Under the coordinate transformation z = Tz,
where T is defined as in (34), the matrices A and B are
trasformed into

i Ay Ap > By
A= o B= 4
( 0 A22> ’ (0 > @0
with A1 (r x 1), A1a(r x (n—7)), Asa((n—7) x (n—7)) and
B (r x 1). We want to show that
rankg (Bl AuBl 1‘171”1_1-31) =T (48)

This means that the Eigenvalues assignment problem is solv-
able with matrices An and B;. As a matter of fact, since
TAIT' = (TAT—1) = AJ for all integer j, we have

r =rankg{R} = rankR{(B AB A"le)}
=rankg{T (B AB A"1B)}

rankz{(TB TAT-'TB TAITITB))
rankg{(B AB A"1B)}

) B, AuB  AT'B,
= rankR{ ( 0 0 0 }

= rankg{(B;

A1 By ATT'By)} (49)

i.e. (48). Define

F:=(F 0 (50)
with Fy (1 x r) such that
o(Ay + F1By) = 8\§r
(F exists by virtue of (48) and proposition 3.1) and
F:=FT (51)

Note that for all A € C™

det(\ — (A + BF)) = det(\[ — T(A + BF)T ™)
= det(T(\ — (A+ BF))T™)
= detTdet(A\ — (A + BF))detT™*

and, therefore, the roots of det(\ — (A+ BF)) and det(\ —

(A + BF)) are the same, i.e.
o(A+ BF) = o(A + BF) (52)
Moreover,
0(A+ BF) =0(A+ BF) = 0(Ay, + B1F}) U 0(Ag)
= 0'(/111 + Blﬁl) uUgr=2¢
The construction of the matrix F' can be summed up as
follows:

Step procedure for the design of stabilizing state-feedback
controllers

(i) Let r := rankg{R}. Find wi,...,w,_, such that
B,AB,--- A" 'B,w,,...,w,_, is a basis of R” and define
T as

T:= (B AB A1B wa—y) " (53)

(ii) Find the matrices Ay (r x 1), A12(r x (n—7)), Ao ((n —
r) x (n—r)) and By (r x 1) for which
TB = <31> (54)

12111 A12> .
~ B =
’ 0

A=TAT ' =
( O A22

(iii) Find Fy(1 x r) such that o(A1, + F1B1) = £\Fg. In
particular,
Fy = —y,p¥(An) (55)

where p¥(N\) = af + oA + - aX AT+ AT s the
polynomial which has the roots in £\%’ r and

pE(An) = af T +af Ay + -+ af AT+ AT (56)
and 7, is the last row of the inverse of
Ry:= (B, AB AT By) (57)
(iv) Define
F:=(F 0 (58)
and, finally, set
F:=FT (59)
Exercize 3.1: Given
Az(ll _02),B=(é> BeR (60)



find, if possible, F such that 0 (A + BF) = {—2, —2}.
The controllability matrix R is

R=(B AB)= (; 1:125>

Therefore, the system is controllable if and only if 5 # 1.
Case 8 = 1. The system is not controllable. We use proposition
3.2. In this case we have to check if the invariant spectrum of
A is a subset of {—2, —2}. Note that

r:=rankg{R} = rankg{(B AB)}

— ranks { G j) b-1

For calculating the invariant spectrum of A, we change the
coordinates as follows. A basis of Span{R} is

- ()

(we can take the first column of R since r» = 1). Define

T= (v w)= (} ji)] % <} ji)

In the new coordinates z = T’z

5 1 (-1 1 5 o (1
A=TAT _<0 2))3_3_(())

Since r =1, /111 = —1, 2112 =1, Agg = —2 and Bl =1 and
we conclude that the invariant spectrum is §g := 0(12122) =
{—2}. Since Fr := {2} < £ := {—2,—2}, by proposition
3.2 there exists F' such that o(A + BF) = {—2,—2}. Let
construct this matrix F'. We have

(61)

(62)

F:=(F 0) (63)

where Fy is such that o(/i;l +Blf71) = &\Fr = {—2}. Such
Fy exists since Aj; and Bj represent a controllable system,
indeed

rankg{B;} =1=r (64)
On the hand, o(A;; + B F}) = {—2} if and only if F} = —1.
Finally, define

F:=FT = (-1 ())T=—%(1 1) (65)

We can check that
-1 0 1/1
O’(A+BF)_O'<(1 _2>—2<1)(1 1))

(3 )

Case 0 # 1. The system is controllable. In this case we use
proposition 3.1. The spectrum to be assigned is {—2, —2} and,
therefore,

(66)

PO = (27

The matrix F' which solves the Spectrum assignment problem
by state feedback with £ := {—2, —2} is

F = —yp*(A) (67)

where « is the last row of R~!. Since

R=(B AB)= (; 1:125)

then
_ 1 1-28 1
1 _
= 1—6( —p 1)

and

o= (-8 1)

1-p

Moreover

p*(A) = (A+20)? = A + 4A + 41

_—1o2+4—1o+410_10
1 =2 1 -2 0 1)~ o
Finally,

F = —p*(A) = 13 (=8 1) G 8) = (-1 0) (63)

We can check that
o(A+BF) = o( <_11 02> + (;) (-1 0))

-0 (1_2[3 02> ={-2,-2}.<

C. The PBH controllability criterion

(69)

The invariant spectrum §r of A + BF can be determined
without a coordinate transformation by calling upon the so-
called PBH controllability criterion (the acronym PBH is given
by the initials of the researchers Popov, Belevitch and Hautus
who introduced the criterion).

Proposition 3.3: (PBH controllability criterion). A neces-
sary and sufficient condition for reachability, i.e. R nonsingular,
is

rankR{()\I —A B)} =n

for each \ € o(A). Moreover,

<n = AEFr
rankg{(A\l — A  B)} { (70)

=n = A¢Jr

Proposition 3.4: (PBH controllability criterion). A neces-
sary and sufficient condition for reachability, i.e. R nonsingular,
is that

rankgp{(A\] — A B)} =n

for each \ € C".

Exercize 3.2: We want to revisit the results of example 3.1
through the PBH controllability criterion.

Case $ = 1. The system is not controllable. It is easily seen
that o(A4) = {—1, —2}. By proposition 3.3

B)}
=rankR{<_1 8 1)}:1<n=2:>{—2}633

A= —2= rankg{(A — A



and

A =—1=rankp{(A] — A B)}
01

:rankR{ (_01 1 1)}—2—n${—1}¢33

Therefore, there exists F' such that 0(A + BF) = {—2, —2}.
Case B # 1. The system is controllable and §r is empty. By
proposition 3.3

A= —2:>rankR{()\IfA B)}

:rankR{ <_1 8 é)}=2=n=>{—2}¢33
and

A= —1=rankg{(M — A B)}

= rankR{ <01 (1) ;) } =2=n={-1}¢Fr<

D. Design of asymptotic observers

We have seen that for observable systems it is possible
to reconstruct the initial state o, and therefore, the state
x(t, xo,u), through the observations of the unforced output
response y ) (¢, o) over a time interval [0, ] as

ty -
T = Gal (tf) f e QCTy(t)(unforced) (lo)da
0

where Go(-) is the observability gramian. In this section,
we want to study the problem of reconstructing or estimating
the state x(t, zq, u) through observations of y and u over an
infinite time interval (i.e. T' = 400) with a given convergence
rate. This can be formulated as a problem of “assigning”
the convergence rate of the error between the state and its
reconstruction. Consider the class of “state estimators”

X(t) = AR(t) + Bu(t) + K(y(t) — CX(1)). (71)

If e := x — T is the estimation error, then the error dynamics
is described by the equations

é(t) = x(t) — x(t)
— AR + Bu(t) + K(y(t) — CX(t)) — Ax(t) — Bu(t)

= (A—- KC)e(t), (72)

with matrix K (nx1). If we are able to find a matrix K in such
a way that the eigenvalues of A— K C are equal to a given set
{AF, ..., A¥} with negative real part, then the natural modes of
(72) are all convergent with rate convergence corresponding to
the given negative real parts and the state is reconstructed from
the output with the assigned rate. The system (71) is known as
asymptotic state observer and dynamically and asymptotically
reconstructs the state x(t) with X(t).

Our problem can be formulated as follows.

Definition 3.2: (Asymptotic state observation). Given num-
bers {AF,...., 5}, AF € C foralli = 1,...,n, either
real or complex conjugate, find a matrix K (n x 1) such that
o(A—KC) ={AF, ..., A5}

Note that

0(A-KC)=0((A-KC)")=a(AT —=C"K") (73)

If we establish the following equivalences

Ao AT
B« COT

Fo-KT (74)

we find out that it is possible to assign the eigenvalues of
A— K C with some matrix K if and only it is possible to assign
the eigenvalues of A + BF with some matrix F'. Therefore,
a necessary and sufficient condition for the existence of K
comes directly from proposition 3.5.

Proposition 3.5: The Asymptotic state observation problem
is solvable if and only if the system is observable, i.e. the
observability matrix O is nonsingular. In particular, if O is
nonsingular then for any given numbers {\F,... , ¥}, \¥ e C~
foralli = 1,...,n, the Asymptotic state observation problem
is solvable with

K =p*(A)y (75)
where 7 is the last column of O~ and p* (\) := H?:1 (A=A7).
1) Observability as a sufficient condition for the solvability
of the asymptotic state observation problem: dual Ackermann
formula: Since the assignment of the eigenvalues of A — KC'
with some matrix K is equivalent to the assignment of the
eigenvalues of A + BF with some matrix F' under the
equivalences (74), by proposition 3.1 the Asymptotic state
observation problem is solvable if and only the controllability
matrix defined with A < AT and B « C7, i.e. the matrix

R:=(CT ATCT (AT)y=1CT) (76)
is nonsingular. Since for all j e N
(AT = (AT )
and
R .= (CT ATCT (AT)n—lcT)
c \7
CA
- : =0T (78)
can

it follows that the Asymptotic state observation problem is
solvable if and only the observability matrix is nonsingular.

Moreover, by proposition 3.1 if O is nonsingular and under
the equivalences (74), for any given numbers {\¥,... A*},
AfeC foralli =1,...,n, the Asymptotic state observation
problem is solvable with

KT :=F=—yp*(A") (79)
where v denotes the last row of
R'=(cT ATCT (AT)1cT)™" (80
We have by changing signs and transposing (79)
K =@ ATy’ (81)



On account of (77)

(p*(A")T = (afT +af AT +ak(AT) + ...

+ah (AT (AT

(p*(A™)T = (afT + a¥ AT +ak (A7 + ...
+a7>§71(A7z—1)T + (An)T)T
=afl+afA+alA*+ - +ai_ A"+ A" = p*(A)

Also, note that since transpose and inverse commute

( (€T ATCT (AT)nqCT)*l )T
c o\ o\
()
Cant Cant

=0t

and since + is the last row of the matrix inside the transpose
on the left of the first equality, it follows that y := T is the
last column of O~'. This gives (75) back.

2) Observability as a necessary condition for the solvability
of the asymptotic state observation problem: Let’s see that
observability is a necessary condition for the solvability of
the Asymptotic state observation problem. If the system is not
observable, under the equivalences (74) there exist nonsingular
T'(n x n) and matrices Al ((n—s) x (n—1s)), Aly((n—s) x

s), Ads(s x s) and CT ((n — s) x 1), with

n—s:=rankg{(C"T ATCT (AT)y»=1CT)}

= rankg{O "} = rankg {0} (82)
such that
AT AT ol
Tpr—1_ (A1 A1z T_ (4
TATT ( . Aé@) . TC ( . ) (83)

Indeed, T is defined as follows. Let vy, ..
basis of

., Un_s € R™ be a

Span{(CT ATCT (ATH)y»=1CT)} = Span{OT}

(we may assume v; := (AT)""'CT) and

—1

T:= (v1 Upn_s W1 ws) (84)

where wq, . .., ws € R™ are chosen independent each other and
from vy, ,vg, 1.€. V1, ,VUp_g, W1, -+ , W, are a basis of
R™. Taking transposes in (83), we conclude that there exist
matrices A1 ((n—s) x (n—s)), Aja(s x (n—5)), Aga(s x s)
and C1(1 x s) such that

An 0 > CSt=(C; 0)  (85)
AlQ

SAST! = <
A22

where S := (TT)~! = (T~!)T. Note that, since inverse and
transpose commute so that

(86)

E. Design of state detectors

It is clear from (85) that if the system is not observable
there is a non-empty subset of the eigenvalues of A — KC
that is invariant under any choice of K (invariant spectrum).
In this case, the system (71) is known as state detector and
dynamically and asymptotically reconstructs the state x(t)
with X(¢) but not with guaranteed rate (since some of the
eigenvalues of A — KC are not assignable). The invariant
subset under any choice of K is exactly the spectrum of the
matrix Aso (see 85) which is a subset of the spectrum of
A. Indeed, with the coordinate transformation z = Sz the
matrices A — KC' is transformed into A — KC with
A0

A=S8A58"" = ( -
A Ag

) ,C=CS"=(C 0) 87

and
K = SK
Note that for all A € C”
det(\] — (A — KC)) = det(\ — S(A — KC)S™Y)
= det(S(\ — (A — KC))S™)
= detSdet(\ — (A — KC))detS™!

and, therefore, the roots of det(\ — (A — KC)) and of
det(AI — (A — KC)) are the same, i.e.

0(A—KC)=0(A—-KC)

©= (%)

for some matrices K ((n —s) x 1) and Ky(s x 1), then

14:111 - [:(1(?1 0 )

App — K€ Az
(90)

Moreover, o(Agy) © o(A) since o(A) = o(A). It follows that
the eigenvalues of A which correspond to o(Asy) are invariant
under any choice of K. The matrix 12122 can be calculated from
SAS™! where S is defined as in (86).

Even if the system is not observable, it is possible to find
a K such that o(A — KC) = {\¥,...,\*} as long as the
invariant spectrum of A — KC is a subset of the given set
{AF,...,A%}. Denote by §o this invariant spectrum of A —
KC.

(88)
(39)
Assuming that

U(A—KC)—J(A—KC)—U<

= O'(All — f(lél) U 0'(12122)



Proposition 3.6: Given numbers {\¥,... A5}, \¥ e C™ for
alli = 1,...,n, either real or complex conjugate, there exists a

matrix K (n x 1) such that 0(A — KC) = {\¥,..., \*} if and
only if §o < {AF, ..., A%}
Let’s see how to construct K if §o < £ := {AF,... A*}.

Assume that §o < £. Let n — s := rankg{O}. Under the
coordinate transformation z = T'x the matrices A and C are
transformed into

-1 m)em@
with A1 ((n—s) x (n—s)), A1a(s x (n—s5)), Aga(s x s) and
C1(1 x (n—s)). We want to show that
G
C'1j411 } L

oD

rankR{ (92)

Cvll[l;zl—s—l
This means that the Asymptotic state observation problem is
solvable with matrices C; and A;; (proposition 3.5). As a

matter of fact, since SA7S™' = (SAS~') = AJ for all
integer j, we have

s = rankg{O}
C C
= rankR{ CA } = rankR{ CA Tﬁl}
CA"_l CAn—l
cT! C
CT-'TAT? Sy
= rankR{ . = rankR{ CA }
cr-iranirt C A
G0
) ) Gy
R CiA
= ranka{ | Gy Ay 0 | b =vania{ | |o3)
CiA* 0 % in—s—1
o Cy A7
C1Aj 0
Define
o [}'1
o ( ‘ ) (94)

with K;((n — s) x 1) such that
U(z‘in - é1k1) = 2\30
(K, exists by virtue of (92) and proposition 3.5) and
K:=S'K
Note that for all A e C™

det(\] — (A — KC)) = det(\ — S(A — KC)S™Y)
= det(S(\ — (A — KC))S™)
= detSdet(\ — (A — KC))detS™!

95)

and, therefore, the roots of det(\] — (A — KC)) and of
det(A] — (A — KC)) are the same, i.e.

0(A—KC)=0(A—-KC)

“= (%)

for some matrices K ((n — s) x 1) and K»(s x 1), then
0(A-=KC)=0(A-KC)=0(A1; + C1K}) U o(Ag)
= O’(AH + élf(l) ugo =2

(96)

Assuming that

The construction of the matrix K can be summed up as
follows:
Step procedure for the design of state detectors:
(i) Let n — s := rankg{O}. Find wy,...,ws € R™ such that
CT,(CA)T, - (CA"*~1)T wy,--- ,w, are a basis of R
and define S as

o7

(i) Find the matrices A11((n — s) x (n — s)), A12(s x (n —
s)), Aaa(s x s) and Cq(1 x s) for which

. _ A 0 ~ _
A=SAS 1:(~“ - ),czcs L= (C; o
Ay Ay (¢ 0)
(98)
(iii) Find K, ((n —s) x 1) such that (A1, — C1 K1) = £\Fo.
In particular,
K1 = pi(An)ve (99)

where p*(\) 1= B 4+ BEN 4 - 4 BE__ APTIT A TS s
the polynomial with roots in £\Fo and

PE(Aur) o= BEL + BFAn + -+ B AT+ A

and 7, denotes the last column of the inverse of

~é.1,
CiAn
0 := . (100)
01121?17871
(iv) Define
o [}1
o ( ‘ ) (101)
and
K:=S"'K (102)
Exercize 3.3: Given
-1 0
A=<1 _2>,C’=(1 a),aeR (103)



find, if possible, K such that (A — KC) = {—2, —3}.
The observability matrix O is

o= (&)= (uty )

Since detO = —a(a+1), the system is observable if and only
if a # —1and a # 0.

Case a = 0. The system is not observable. We use proposition
3.6. In this case we have to check if the invariant spectrum of
A is a subset of {—2, —3}. We have n — s := rankg{O} = 1.
For calculating the invariant spectrum of A, we change the
coordinates as follows. A basis of Span{OT} is

()

(we can take the first column C'T of O since s = 1). Define

-
(v _ (1 0y _
()¢ )

Therefore, in the new coordinates z = Sz

~ -1 0

_ —1 _ g4 _

A=SAS A < 1 2) ,

C=08"'=C=(1 0)
Since s = 1, Ajy = —1, Ajp = 1, Ay = —2 and C; = 1 and
we conclude that the invariant spectrum is Fo = 0(Aag) =
{—2}. Since Fo = {—2} < £ := {—2, -3}, by proposition
3.6 there exists K such that (A — KC) = {—2,-3}. Let
construct the matrix K. We have

=)

where K is such that 0([111 ff(lél) = £\Fo = {-3}. Such
K exists since

(104)

(105)

rankg{Ci} =1 =5 (106)

i.e.flu apd ~C~’1 represent an observable~system. On the hand,
0(A11 — K;1Cy) = {—3} if and only if K; = 2. Finally, define

a1 _ (2
o1k - ()

We can check that

o(A—KC) = o (‘11 _02) = (g) (1 0))

=0 (_13 _02> ={-2,-3}

Case o« = —1. The system is not observable. We have to
check if the invariant spectrum of A is a subset of {—2, —3}.
We have s := rankg{O} = 1. For calculating the invariant
spectrum of A, we change the coordinates as follows. A basis

of Span{OT} is
1

(we can take the first column C'T of OT since s = 1). Define

(-0

(107)

(108)

By direct calculations

o 1/1 1
S T2 \-1 1

Therefore, in the new coordinates z = Sz

A=5A571 = <_12 _01) LO=0ST=(2 1) (109)
Since s = 1, Ajy = —2, Aj5 =1, Ayp = —1and C; =2 and
we conclude that the invariant spectrum is o := U(/Igg) =
{-1}. Since Fo := {—1} ¢ £ := {—2,—3}, by proposition
3.6 there does not exist K such that (A — KC) = {—2,—-3}.
Case a # 1, # 0. The system is observable. In this case we
use proposition 3.5. The spectrum to be assigned is {—2, —3}
and, therefore,

p*\) = (A +2)A+3) = 2+ 51 +6

The matrix K which solves the Asymptotic state observation
problem with £ := {—2, -3} is
K = p*(A)y (110)

where « is the last column of O~!. Since

o= (&) -(u1y 5)

then
1 —2a -«
o
ala+1) <1—a 1 )
and
_ 1 —x
7 ala+1) \ 1
Moreover

p*(A) = (A+2I)(A+3I) = A2 + 5A + 61

() ()l )6 )

Finally,
1 2 0\ (—«
ala+1)\2 0 1

(111)

We can check that

U(AKC):”(<_11 —02)(a—11-1) @) (1 0‘))

]2 __2a
=0 ( L8t f+§a) ={-2,-3}< (112)
a+1 a+1

F. The PBH observability criterion

The invariant spectrum of A — KC' can be determined
without a coordinate transformation by calling upon the so-
called PBH observability criterion. Denote by §o this invariant
spectrum.



Proposition 3.7: (PBH observability criterion). A necessary
and sufficient condition for observability, i.e. O nonsingular, is

that
rankR{ <AI5 A) } =n

for each \ € o(A). Moreover,

rankR{ (AIC: A)} {<n = A€Fo
=n

= A¢Fo
N —A
C

has rank n for each A ¢ o(A) (remember that det(\ —A) =0
only for A € o(A) by definition of eigenvalues), we have the
following equivalent form of the PBH observability criterion.

Proposition 3.8: (PBH observability criterion). A necessary
and sufficient condition for observability, i.e. O nonsingular, is

that
rankR{ ()JC A) } =n

for each \ € C™.

Exercize 3.4: Revisit the results of example 3.3 by using the
PBH observability criterion.
Case a = 0. The system is not observable. It is easily seen
that o(A) = {—1, —2}. We have

A=-2= rankR{ ()\IC_ A> }

-1 0

(113)

Since the matrix

=rankR{ -1 0 }=1<n=2:{—2}630
1 0
and
A=—-1= rankR{ ()\I A> }
0
:rankR{ —1 1 }—2—”3{ 1} ¢ o
1 0
By proposition 3.7 there exists K such that (A — KC) =
{-2,-3}.
Case o = —1. The system is not observable. We have
A=-2= rankR{ (/\IC A) }
-1 0
:rankR{ -1 0 }:n:2:>{—2}¢50
1 -1
and
A=—-1= rankR{ (/\IC A) }
0 0
:rank]R{ -1 1 }:1<2:n:>{—1}€§o
1 -1

By proposition 3.7 there does not exist K such that o(A —
KC) ={-2,-3}.

Case o # 0, # —1. The system is observable. We have

A=-2= rankR{ ()\IC_ A> }

-1 0

=rankR{ -1 0 }znz?z{—Q}@é&o
1 «

and

A=—-1= rankR{ ()\IC A> }
0 0

=rankR{ 1 1 }—n—2:{ 1} ¢ Fo.<
1 «

G. Eigenvalues assignment by output feedback: the separation
principle

The control laws used for eigenvalue assignment in section
II-A are not practically implementable since the state infor-
mation is required. Consider the class of control laws

u(t) = FX(t) + v(t)

%(t) = AR(t) + Bu(t) + K(y(t) — CR(t)) (114)

with matrices F'(1 x n), K(n x 1) and with v the new control
input. These control laws are commonly referred as output
feedback laws, in the sense that only the output and input
information is used to implement the control law. With this
control law the resulting system is represented by the new
equations

@Eg) - (1540 A+ BiF— K(J> (EEQ) + @) v(t)
(115)

which is a system with states (z, ) and inputs v. If we are able
to find matrices F' and K in such a way that the eigenvalues
of

A BF
(KC’ A+BF - KC’> (116)

are equal to a given set

AT AR ot )

with negative real part, then the natural modes are all conver-
gent with rate convergence corresponding to the given negative
real parts. The problem can be formulated as follows.

Definition 3.3: (Spectrum assignment by output feedback).
Given numbers {\F,... . %} o {p¥,...,pur} < C-, find
matrices F'(1 x n), K(n x 1) such that

A BF

A necessary and sufficient condition for the existence of F',
H, G and K is the following.

Proposition 3.9: The Spectrum assignment problem by out-
put feedback is solvable if and only if the system is control-
lable and observable, i.e. the controllability and observability
matrices R and O are nonsingular. In particular, if R and O
are nonsingular then for any given numbers {A¥,... A} U



{p¥,....,ut} < C~, the Spectrum assignment problem with
output feedback is solvable with

F= 7’-YRp}k%(A)7
K =p5(A)o,

where v, is the last row of R™1, ~o is the last column of O~ !,

n 2n
pR(A) = Hj:l()‘ — AY) and p§y(A) = Hj:n+1()‘ — i)
Assume that the system is controllable and observable. By
changing state coordinates as

(-G 56

the system (115) in the new coordinates is

(117)

x(t) = (A+ BF)x(t) — BFe(t) + Bv(t)
e(t) = (A— KO)x(t)
or in compact form

() - (07 ) G+ (5) v

Therefore, the eigenvalues of (116) are equal to the eigenvalues

of
A+ BF —BF
0 A—-KC
since these two matrices differ by a coordinate transformation,
and clearly

(A + BF —BF
o

0 AKO>=0(A+BF)UU(A—KC)

Therefore, the spectrum {\¥,... A%} o {pfF,..., u*} can be
assigned to (116) if and only if the spectrums {A¥,... \¥}
and {p¥, ..., p}} can be assigned to A+ BF and, respectively,
A—KC. This proves the proposition by means of propositions
3.1 and 3.5.

H. Design of output feedback stabilizers

If the system is not controllable (resp. not observable) it is
clear that there is a subset of the eigenvalues of A + BF
(resp. A — KC) that is invariant under any choice of F
and K (invariant spectrum). Even if the system is either not
controllable or not observable, it is possible to find a F' and
K such that c(A+ BF) = {A\f,...,A*} and (A — KC) =
{pk, ... pt}, where {uF, ..., pk} and {A¥,... A%} are given
numbers, as long as the invariant spectrum of A + BF (resp.
A — KC) is a subset of the given set {\f,..., \*} (resp. a
subset of {u¥, ..., u%}). Denote by Fp this invariant spectrum
of A+ BF and §o the invariant spectrum of A — KC.
The following proposition can be proved as a combination
of propositions 3.2 and 3.6.

Proposition 3./0: Given two sets of numbers £ :=
{AF, .. A% <« C and £o = {pf,...,ut} < C~, there
exist matrices F'(1 x n), K(n x 1) such that

A BF
"(Kc A—KC> =£rv Lo

if and only if §gr < £ and §o < Lo.

The construction of the matrices F' and K can be summed
up as follows:
Step procedure for the design of output feedback stabilizers:
(i) Let r := rankg{R}. Find wy,...,w,_, € R™ such that
B, AB,--- A" 'B,wy,--- ,wn_, are a basis of R™ and
define T as

T:= (B AB A™1B wn—p) " (118)

(ii) Find the matrices Ay (rxr), Apa(r x (n—1)), Aga((n —
r) x (n—r)) and By(r x 1) for which

P o (An AL\ 5 ., (B
A=TAT (0 G ) B=TB= (]

(i) Find F;(1 x 7) such that o(Ay; + F1B;) = £\Fx. In
particular,

Fl = —WSP:(AU)

where p¥(\) = af + afA 4+ -+ aF N+ A" is the
polynomial which has the roots in £\Fr and

(120)

pE(An) = af T+ af Ay + -+ af AT+ AT (121)

and ~; is the last row of the inverse of

Ry:=(By ABy AT By) (122)

(iv) Define
F:=(F 0 (123)

and, finally,
F:=FT (124)
(v) Let s := rank{O}. Find wy,...,ws € R™ such that

CT(CA)T, - (CA* YT wy, -, w,_, are a basis of R"
and define S as

C
CA

CAsfl

.
wy

(125)

T
wn—s

(vi) Find the matrices Aq1(s x s), Aya((n— 8) x 8), Aga((n—
s) x (n—s)) and C1(1 x s) for which

Ay 0

=), C=cst
Alg Azz)

A=SAS7! = (
= (G 0)

(vii) Find with K;(1 x (n — s)) such that o(A;; — C1 K1) =
L\Fo. In particular,
fﬁ = p:(;ln)%

where pj()\) = 56“ + ﬁf)\ + -+ 5::7571>\n7571 4+ A5 s
the polynomial which has the roots in £\Fo and

PE(AN) = BET + B A + -+ B AT AR

(126)

127)



and -, is the last column of the inverse of

~él
Ci1An
Oo = .
(:\11;1?17871
(viii) Define
K= <K1> (128)
0
and eventually
K:=S"'K (129)

IV. TRACKING OF REFERENCE INPUTS WITH SPECTRUM
ASSIGNMENT

In this section we want to show, given a n-times contin-
uously differentiable function y,.f(t) together with a system
& = Ax + Bu, y = C, in the (controllable canonical) form

1‘1:$2
C.C2=£U3

Tp—1 = Tnp
Ty = —AoT1 — A1T2 — *** — Ap—1Tn + U,

Y =1, (130)
with ag, a1, - ,a,—1 € R, how it is possible to design a state-
feedback control u = Fz+ ®(y,cf(t), yii)f (t),- - yizgc (1) +v

with F e R*™ and ® : R"*! — R such that the closed-loop
system

T = X2

$2 =3

C.En—l =Tn

&y = —QoT1 — A1T2 — **+ — Ap_1Zy + Fa + O(t),

y =11, (131)

has the property that lim;_, ;o |y(t) — yres(t)] = 0 for all
zo € R". In this problem we want to design our control input
u(t) in such a way that the steady-state output response ys ()
of the closed-loop system is identically equal to y,¢y(%).

Let

i—1 .
zj 1= xj—yﬁjef )(t), j=1,...,n,

21 y?f)f (t)
(t
2= | |, zest) = yrf{_( ) . (132)
Zn v (®)

where yﬁj )f(t) is the j-th order derivative of y,.¢(t). In these

coordinates

z21 =22

Zo9 = 23

Zn—1= 2n

Zn = —Q0oZ1 — Q122 — - — (p_1%n

—a0yres (t) = aryyep (1) = -+ = an_ayry () = yrep () +u,
Y =21+ Yres(t), (133)
Let {\F,..., A%} < C~ be a given set of eigenvalues we want

to assign to (133) and af,...,a’_; € R be such that

Jj=1

Define the state feedback control on (133)

u=Fz+ q)(yref(t),yy(«i)f(t)a T 7y7(nzj)‘(t)) +v (134)
where
An—1 — a;szl)

LA¥ e C, and

F = (ao—aa" ay —a¥
i.e. it is such that (A + BF) = {\¥,..
(s (1), Yoy (t): -y 27(1)
= aoyre (£) + aryp (1) + - anoayy 7 (0) + u 0

The closed-loop system resulting from (133) is

21 = Z9

2:’2 = Z3

Zpn—1 = Zn

2 * ® *

Zp = —QgZ1 — Q122 — - — Ay _1%n

Y=z + yref(t)a (135)

and such that lim; , o |z(¢)] = 0 for all zp € R™ or,
equivalently in z-coordinates, lim;_, o |2(t) — 2"/ ()| = 0
for all 2 € R™. In particular, lim;_, , o, |y(t) — y"*/ (t)]| = 0,
which is our control objective.
In z-coordinates we have
W= 2t Qs (1), yrp (0, yy g (1) + v

= P+ ®* (e (t), ylh (1), -,y (1) + v (136)

where

1 n
* (s (1), 54 (1), ylH(2)
1 n—1 n
= afyrer(t) + alyy(t) + -+ ak_ V(@) + ) e).
Notice that if we take y,.f(t) = 0 then

u=Fxr+wv (137)

which is the state feedback controller which assigns the
spectrum {AF, ..., \*} < C~ to the system (130). Hence,
the additional control term ®* (Y, (¢), yﬁle) (t),--- ,yﬁZ}(t) in
(136) is exactly the one that enforces the system’s output to

track the reference signal y,.s(t).



