Notes on Linear Control Systems: Module IV

Stefano Battilotti

Abstract—Stability and attractivity of equilibrium points.
Lyapunov stability. Lyapunov functions. Lyapunov criteria for
stability. Eigenvalues criterion for stability of linear systems. The
Routh table. I/S and I/O stability. System performances versus
eigenvalues and pole placement in the complex plane.

I. LYAPUNOV STABILITY

Let us consider a nonlinear differential system
X(t) = f(x(t)) (D

with initial state X, = xo and assume f(0) = 0. The
asymptotic behaviour of its solutions, i.e. when ¢ tends to
infinity, can be analyzed with respect to constant solutions
Te.

Definition /.1: An equilibrium point z. of (1) is any point
z. € R™ such that f(x.) = 0, i.e. a constant solution of (1).
The system (1) has at least the equilibrium point x. := 0. The
equilibrium points may either appear as a continuum of points
or isolated points.

Exercize 1.1: The system

X(t) = f(x(t)) == x(t) —x*(t) 2)

has two equilibrium points which correspond to the roots of
f(z) = 0. This roots are x.1 = 0 and z.2 = 1, which are
isolated points. On the hand, the equilibrium points of

x(t) =0 3)

are all the points x € R, which is a continuum of points. <
A open neighbourhood U (x.) of a point 2, € R™ is the set
{reR": |z — x| < p} with p > 0.

Definition /.2: An equilibrium point x. of (1) is locally
attractive if there exists a open neighbourhood U (z.) of x such
that

Jim_ [, 0) =] = 0 @

for all zy € U(z,). The point x. is globally attractive if (4)
holds for all zo € R™.

Definition /.3: An equilibrium point x. of (1) is (Lyapunov)
stable if

Ve>030>0:|zg— ] <§
= |x(t,0) — x| <e ¥Vt =0 5)

An equilibrium point x. of (1) is
o locally asymptotically (Lyapunov) stable if it is locally
attractive and (Lyapunov) stable,
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« globally asymptotically (Lyapunov) stable if it is globally
attractive and (Lyapunov) stable.
« (Lyapunov) unstable if it is not (Lyapunov) stable.

Notice that while local asymptotic stability implies stability,
the converse is false. Property (5) means nothing but that
x(t, o) remains for all times close to z. if z( is close to
Te.

Proposition /.1: The following properties are equivalent:
(i) z. is (Lyapunov) stable
(ii) there exist an increasing continuous function k
[0, +0) — [0, +o0) such that k(0) = 0 and

Ve >0:|lxg — x| < k(e) = |x(t, 20) —xe| <eVt=0 (6)

A longstanding criterion for studying the local and global
stability of equilibrium points is the Lyapunov criterion. A
function V : R™ — R is said

« positive definite (resp. semidefinite) at = = z. if V(z) >
0 for all = # z. in a neighbourhood of z. (resp. V(x) =
0 for all « in a neighbourhood of z.) and V(z.) = 0.

« positive definite (resp. semidefinite) at z = z. on R" if
V(z) > 0 for all x # z, (resp. V(x) = 0 for all x) and
V(ze) =0.

« negative definite (resp. semidefinite) at z = z. if —V ()
is positive definite (resp. semidefinite) at z = z..

« negative definite (resp. semidefinite) at x = x. on R" if
—V(x) is positive definite (resp. semidefinite) at x = x,
on R".

Proposition /.2: Let z. be an equilibrium point. If there
exists a continuously differentiable function V : R® — R such
that:

« V is positive definite at © = ., %(x)f(:v) is negative
semidefinite at x = x. then x, is stable.

o V is positive definite at x = ., %—‘;(x)f(x) is negative
definite at x = x, then x. is locally asymptotically stable.

« Vispositive definite at v = x. onR", 3 (z) f () is nega-
tive definite at v = x. on R™ and lim |, .o, V() = 400

then x. is globally asymptotically stable.

If there exists a continuously differentiable function V
R™ — R, positive definite at x = x., such that

o 2Y(z)f(z) is negative semidefinite at z. then x. is (Lya-

punov) stable.
g‘; () f(x) is negative definite at x = x. then then x. is
locally asymptotically stable.

%(x)f(:c) is negative definite at t = 1z, on R™ and
lim |40 V(z) = +00 then x. is globally asymptoti-
cally stable.

The functions V' (z) satisfying the above conditions are
called Lyapunov functions.



Exercize 1.2: For the system (2) consider the equilibrium
point . ; = 1 and the (candidate) Lyapunov function V(z) =
(x — 1)2, which is positive definite at x = 1 on R. We have
oV
oz
Notice that a(x) is negative definite at = = 1. It follows that
Ze,1 = 1 is locally asymptotically stable. However, z.; =
1 cannot be globally asymptotically stable, since any initial
condition xg < 0 in (2) generates a solution x(¢, z() such that
x(t,xg) > —00 as t — .

If we consider the equilibrium point z. 2 = 0, we find out
that it is not (Lyapunov) stable. Indeed, as alredy mentioned,
any initial condition Xy < 0 in (2) generates a solution
x(t)(xo) such that x(t)(xg) — —o0 as t — 0.

Exercize /.3: Consider the simple pendulum with no fric-
tion (k = 0)

(z)f(x) = 2(z — 1)(z — 2?) = —2z(x — 1)* :=a(z) (7)

. o . X2t

i) = 1) = (g 32t ) ®
and a Lyapunov function

V(z) = 1:1:% + Q<1 — cos(z1)). )

2 l

V(x) is positive definite at z = 0 (over the domain —27 <
r1 < 27) and

L)1) =0,
which is negative semidefinite at z = 0. We conclude that
z. = 0 is Lyapunov stable. If we consider non-zero friction
(k # 0) we take

(10)

Viz) = %xTPa: + %(1 — cos(z1)) (11)
where
k2 k.
P= (2532 2{1) (12)
2m

It can be seen that V' (z) is positive definite at 2 = 0. Moreover,

lgk 1k
V@@ =2 Eesmey - 2 a3
which is negative definite at x = 0. We conclude that z. = 0
is locally asymptotically stable. <
Next, consider as a particular case of (1) the linear system
x(t) = Ax(t) (14)

The equilibrium points z. of (14) are the solutions of Az, = 0,
i.e. T, € KerA which is a vector subspace of R™. Therefore,
for a linear system there cannot be any isolated equilibrium
point other than z, = 0.

Since the solution x(¢,xq) of (14) is a linear combination
of modes, the following facts hold true:

o If all the modes of (14) are convergent then
limy—, 1 o [[X(¢, o) = 0 for all 25 € R™ and, therefore,
the equilibrium point z. := 0 of (14) is globally attrac-
tive.

« if the equilibrium point x, := 0 of (14) is globally
attractive then lim;_, o |X(¢, zo)| = 0 and all the modes
of (14) are convergent.

« if all the modes of (14) are convergent, x. := 0 is the

only equilibrium point and A is nonsingular.

By summing up,

Proposition /.3: The equilibrium point z. := 0 of (14)
is globally attractive if and only if all the modes of (1) are
convergent.

Since a mode associated to a certain eigenvalue A of A is
convergent if and only if Re(\) < 0 we obtain the following
important conclusion.

Proposition /.4: The equilibrium point x. := 0 of (14) is
globally attractive if and only if Re(\) < 0 for all A € o(A).

This, together with Proposition 1.3, gives:

Proposition /.5: The equilibrium point z. := 0 of (14) is
globally asymptotically stable if and only if Re(\) < 0 for all
Aea(A).

This follows from the fact that the solution x(¢,zg) = e
is linear with respect to z.

Since only the equilibrium point z. := 0 of (14) can be
globally asymptotically stable, in this case we simply say that
(14) itself is (globally) asymptotically stable.

For an asymptotically stable linear system (14) typical
Lyapunov functions are quadratic: V(z) = 2" Px, where
P is a (n x n) positive definite matrix. A positive definite
matrix P is a (n x n) is a matrix such that 2" Px > 0 for
all z € R™. Notice that that if P is positive definite then
V(z) = o Px is positive definite at z = 0 on R™. Moreover,
hme”HjLOO V(l‘) = +00. We have

At(L’o

(Z—V(m)Am =22 PAx =2"(PA+ ATP)z (15)
x
If
PA+ATP=-Q (16)
with @ a (n x n) positive definite matrix then
(Z—V(LE)AI = —2'Qx := a(x) (17
x

where a(z) is negative definite at * = 0. We have the
following important conclusion.

Proposition /.6: The equilibrium point z. := 0 of (14) is
globally asymptotically stable if and only if for each (n x n)
positive definite matrix () there exist a (n x n) positive definite

matrix P such that

PA+ATP=—Q.

This is the Lyapunov criterion for asymptotic stability of linear
systems. In this case, V(z) = 2 Px is a Lypunov function
for (14).

Exercize /.4: Consider the linearization of (8) around the
equilibrium point z, = (0,0)':

. X
i) = ax() = gy 0, )

l

(18)

(19)

and assume 7% > 479. The system (19) is (globally) asymptot-

ically stable since the eigenvalues of A are all negative real.
A (candidate) Lyapunov function for (19) is
5kg g

V(z) =2 Pz, P:= <4n;l L ) (20)

l 4m



Indeed

T & 0
PA+A'P=-Q=-2|7" X2 < 21
< 0 imz gl]>

In conclusion, we can state also a criterion of stability for
an equilibrium point z. of (1) from the the stability of its
linearization around x..

Proposition /.7: Consider the nonlinear system (1) and let
z. be an equilibrium point. If the linearization of (1) around x.
is globally asymptotically stable, then z. is locally asymptoti-
cally stable for (1).

Exercize 1.5: Since (19) is (globally) asymptotically stable,
then the equilibrium point 2, = (0,0) of the simple pen-
dulum (8) is locally asymptotically stable (but not globally
asymptotically stable since we have another equilibrium point
ze = (m,0)7). <

Proposition /.8: Consider the nonlinear system (1) and let
. be an equilibrium point. If the linearization of (1) around
z. is unstable for the presence of eigenvalues with positive real
part, then z. is unstable for (1).

Exercize 1.6: Since the linearization of (8) around the equi-
librium point z, = (7,0)" has one positive eigenvalue, then
the equilibrium point z, = (7,0)" of the simple pendulum
(8) is unstable. <

II. STABILITY TESTS: THE ROUTH CRITERION

As we mentioned in the previous section, asymptotic stabil-
ity of a linear system (14) can be assessed by the eigenvalues
of A. However, it is not always possible to calculate exactly the
eigenvalues of A since they are roots of a n-degree polynomial

p(>‘) = a")\n + an—l)\n71 + e+ al)\ + ag (22)

On the other hand, for stability it is sufficient to check if
all the eigenvalues of A have negative real parts, rather than
determine exactly their values. We will say that p()) is
Hurwitz if all its roots have negative real parts. A first easy
necessary condition for assuring if a polynomial is Hurwitz is
the following.

Proposition 2.1: If p()\) is Hurwitz then a,a; > 0 for all
i =0,1,...,n — 1, i.e. all the coefficients a; are nonzero and
have the same sign.
Proof. Assume that p(\) is Hurwitz. The polynomial p(\) can
be factorized as

/\2

Kﬂ A amp T+ 262+ Ay

= =1 Wn,i w )

_1

where 7; = vl 0 for real roots \; < 0 and w,,; :=
vai+w? and (o= —w‘iii > 0 for pairs of complex
conjugate roots j; = o + jw; with ozz < 0 The coefficients
of each term 1 + A7; and 1 + 2@
sign. Therefore, the coefficients of the products of these

terms must have the same sign. This prove the proposition.
O

The converse of proposition (2.1) does not hold, unless n =
lorn=2.

Proposition 2.2: If eithern = 1 orn = 2, p(\) is Hurwitz
if and only if apa; > 0 foralli = 0,1,...,n— 1.

Sufficient and necessary conditions for the roots of a poly-

nomial p(X) being all with negative real part can be obtained
from the so-call Routh criterion. This criterion is based on the
construction of a table (the Routh table) as follows.
Step (I): construction of the n-th and (n — 1)-th rows. Let (")
be the row of the coefficients a;’s in (22) which correspond to
powers A\, A\"~2_ ... and ("1 be the row of the coefficients
a;’s in (22) which correspond to powers A" ~1 \"73

Note that (™ may have one element more than 7("~1) (n is
even) or it may have the same number of elements (n is odd).
Set k - n — 2.

Step (II): construction of the k-th row.

If (k> 0)&(r"™ > 0) then
’ T§k+1)7
k+1
if k is odd then o=
k
1 ==+ 1;
else 1 := 5 +1;

else goto (IIT). (23)

If »*+1) has one element less than 7(**2) then complete
r#+1) with one zero so that »(**2) and r( Y have the same
number of elements.
For j =1,...,u repeat r ( ) = rglff)
Set k — k — 1 and goto (II)
Step (IIT): end.

Note that at each step r(**2) we may have one element
more than r*t1) (k is even) or it may have the same number
of elements (k is odd). Each element r§k) of a row r*) can

be calculated alternatively as
T(kt2)
(k+1) _ 0.

1
r§k> = — (kH)det (
1

Notice also that the algorithm stops at step k if )
It is also possible to simplify a row r(*) by replacing it with
ar®) where o is any positive number.

The Routh table is said to be regular if the numbers 7”(] )
7 = 0,...,n are all nonzero. We will say that there is
a permanency between rgk) and r%kﬂ) if rgk)ry”l) > 0.
Otherwise we will say that there is a variation. We will
denote by Ny (p) and Np(p) the number of variations and,
respectively, of permanencies in the Routh table generated by
the polynomial p(\). Clearly, for a polynomial p()\) with a
regular Routh table we have Ny (p) + Np(p) = n. Also,
denote by N_(p) the number of roots of p(A) with negative
real part, by N (p) the number of roots of p(A) with positive
real part and by Ny(p) the number of roots of p(\) with null
real part.

Proposition 2.3: If a polynomial p(\) generates a regular
Routh table then Ny (p) = Ni(p), Np(p) = N_(p) and
No(p) = 0.

(k+1),
Tj+1 5

(k+2)
(k+1)



A consequence of the above proposition is that a sufficient
condition for p(\) being Hurwitz is that p(\) generates a
regular Routh table and Ny (p) = 0. This sufficient condition
is actually also necessary.

Theorem 2.1: A polynomial p()\) is Hurwitz if and only if
DP(X) generates a regular Routh table and Ny (p) = 0.

Note that theorem 2.3 implies that if p(\) has at least one
root with null real part then the Routh table cannot be regular
(for example p(\) = A? + 1). On the other hand, if the Routh
table is not regular this does not necessarily imply that p()\)
has at least one root with null real part (for example p(\) =
A2 —1).

Exercize 2.1: Discuss the sign of the roots of p(A) = \° +
AT+ 2X3 — 207 + 20 + 4.

Let us construct the Routh table for p(\). The rows 7
and r® are

Gl 1 2 2
r
r@ 3 2 4 24
The row r(®) is calculated as
(k+2) (k+2)
(3) . 1 Ty Tit1 .
7y = ————det s ,Jg=1...,pu
J r§k+1) <T5k+1) Tﬁ;l))
or equivalently
r§3) = r§?1 — er(-i)l, i=1..,u (25)

1

where v = 3 and p = 2 (since the index of the row to be

constructed is odd). We obtain

r® 1 2 2
r@® 3 -2 4 (26)
o] 5 3
Similarly,
r® 1 2 2
@ 3 -2 4
T
LB 8 2 @7
2) 3, 3
T( -7 4
and finally
e 22
r® 3 -2 4
A
C) I TR (28)
50
PRGN (-
FO 4

Therefore, the Routh table is regular. Moreover, Ny (p) = 2
and Np(p) = 3. By the Routh criterion p(\) has three roots
with negative real part and two roots with positive real part.

It is worth noting that in this case the necessary condition
2.1 can be used since a5 = 1 and ay = —2 and asas < 0 and
we can conclude that p()) is not Hurwitz. <

Exercize 2.2: Discuss the sign of the roots of p(\) =
—2X3 — A2 —4)\ —11.

The Routh table generated by p(A) is

r@® 2 4
@ -1 -11
,
r 18 (29)
FO] —11

Therefore, the Routh table is regular. Moreover, Ny (p) = 2
and Np(p) = 1. By theorem 2.3 p()) has one (real) negative
root and two roots with positive real part. It is worth noting
that in this case the necessary condition 2.1 cannot be used
since aga; > 0 for all 7. <

Exercize 2.3: Discuss the sign of the roots of p(A) = \° +
A+ 203 + 207 + 3\ + 15.

The Routh table generated by p()) is

r® 1 2 3
r® 1 2 15
r@® 0 —12

(30)

Therefore the Routh table is not regular since 7“53) = 0 and
by theorem 2.1 it follows that p()) is not Hurwitz. It is worth
noting that also in this case the necessary condition 2.1 cannot
be used since asa; > 0 for all 7.

Exercize 2.4: Discuss the sign of the roots of p(A) = \* +
623 + 1102 + 6\ + K for K varying over (—o0, ).

The Routh table generated by p(A) is

r#) 1 11 K

r3 6 6

r@ 10 K 3D
rM| (10 - K)

(0) K

Note that we could have simplified the Routh table by multi-
plying (1) by 20 without altering the regularity of the table

and the discussion of the sign of the roots of p()\)

r@ 1 11 K

r3 6 6

r@ 10 K (32)
rO 10— K

(0 K

We can discuss the number of variations and permanencies
in the first column of the Routh table as follows. First, we
discuss the sign of each ng)’ j=0,...,4
. r(0)=0f0rK=0andr§1) =0 for K =10
. r%4)7 r§3> and r§2) are positive for all K
. r§1)>0f0rK<10
. r§0)>0f0rK>0
These results can be visualized in the following table. We will
draw a full line if the sign of rgj), 7 =0,...,4 is positive and
a dashed line if its sign is negative:

0 10

<

<

<

<
o~ o~ o~

<




A variation in the first column of the Routh table corresponds
to a variation of line (full or dashed) in the above table.
Therefore, we have

o for K =0 or K = 10 the table is not regular

o for K < 0 the table is regular and Ny (p) = 1 and
Np(p) =3

« for K € (0,10) the table is regular and Ny (p) = 0 and
Np(p) =4

o for K > 10 the table is regular and Ny (p) = 2 and
Np(p) =2

We conclude by virtue of theorem 2.3

o for k = 0 or k = 10 the table in not regular = p(\) is
not Hurwitz

o for K < 0 the table is regular and N (p) = 1 and
N_(p) = 3 = p(A) is not Hurwitz

o for K € (0,10) Ny (p) = 0 and N_(p) = 4 = p(A) is
Hurwitz

o for K > 10 Ni(p) =2 and N_(p) = 2 = p(}) is not
Hurwitz.

<
Exercize 2.5: Discuss the sign of the roots of p(\) = \* +
A3+ 202 + (1 + K)\ + K for K varying over (—00, ).
The Routh table generated by p(\) is

4 1 2 K

r(?’) 1 1+ K

r@| —K+1 K (33)
=

r(0) K

We can discuss the number of variations and permanencies
in the first column of the Routh table as follows. First, we
discuss the sign of each rgj), j=0,...,4

.r§0)=0f0rK=O,r§1)=0f0rK=—%i§and
r® =0 for K =1

. r%4) and 7“53) are positive for all K

.r%2)>0f0rK<1

. ril)>Of0rKe(—%—§,—%+75)orK>1

. r§0)>0f0rK>O

These results can be visualized in the following table.

<

<
w
=

=
~

<

<
~ o~ o~ ~ ~
N
—

<

Oz

where N denotes the numerator of r§1) and D denotes the
denominator of 7«5” and we draw a full line if the sign of IV
(resp. D) is positive and a dashed line if its sign is negative.

Therefore, we have
o for K =0and K = f% + % the table is not regular

o for K < —% — % the table is regular and Ny (p) = 1
and Np(p) =3
o for Ke(—1- @, 0) the table is regular and Ny (p) = 1
and Np(p) =3
o for K € (0,—3+ %) the table is regular and Ny (p) = 0
and Np(p) =4
o for Ke(—1+ %, 1) the table is regular and Ny (p) = 2
and Np(p) =2
o for K > 1 the table is regular and Ny (p) = 2 and
Np(p) =2
We conclude by virtue of theorem 2.3

o for K=0and K = —§ + % the table in not regular
= p()\) is not Hurwitz

o for K < 0 the table is regular and Ny(p) = 1 and
N_(p) = 3 = p(A) is not Hurwitz

o for K e (0,—3+ %) the table is regular and N, (p) = 0
and N_(p) =4 = p(\) is Hurwitz

o for K > —1 + Y3 the table is regular and N (p) = 2
and N_(p) = 2 = p(}\) is not Hurwitz.

III. EXTENSIONS OF THE ROUTH CRITERION

The Routh criterion can be used also for determining if the
roots of a polynomial are inside a given region of the complex
plane. In particular, any half-plane

S(a):={AeC":Re(N) < —a} 34

We may require that the modes tend asymptotically to zero
as fast as possible. This exactly correspond to require that the
eigenvalues of A be inside a region &(«) with given a. The
following proposition holds true.

Proposition 3.1: The polynomial p()\) has all roots in & («)
if and only if p(A — «) has all roots in &(0), i.e. p(A — &) is
Hurwitz.

Proof. This simply follows from the fact that p(\) has a root
A if and only if p(A — «) has a root A + a. The root A + «
has negative real part if and only if Re(\) < —a. O

Exercize 3.1: Discuss for which values of K € (—0, ) the
roots of p(A) = A3 + 62 + (12 + K)\ + 2K + 8 are in S(1).

By proposition 3.1 it is sufficient to discuss for which values
of K € (—0, )

pA—1):=A=13+6A-1)*+(12+ K)(A—1)

2K +8 =N +3\+ B+ KA+ K +1 (35)
is Hurwitz. The Routh table generated by p(A — «) is
r(3) 1 K+3
@ 3 K+1
r
r K +4 (36)
rO K +1



We can discuss the number of variations and permanencies in
the first column of the Routh table as follows.

Therefore, we have

o for K = —4 and K = —1 the table is not regular

o for K < —4 the table is regular and Ny (p) =
Np(p) =2

o for K € (—4,—1) the table is regular and Ny (p) = 1
and Np(p) =2

1 and

o for K > —1 the table is regular and Ny (p) = 0 and
Np(p) =3
We conclude by virtue of theorem 2.3
e for K = —4 and K = —1 the table in not regular =

p(A — 1) is not Hurwitz

o for K € (—o0,—1) the table is regular and N (p(\ —
1)) = 1 and N_(p(A —1)) = 2 = p(A—1) is not
Hurwitz

o for K > —1 the table is regular and N, (p(A —1)) =0
and N_(p(A —1)) =3 = p(A — 1) is Hurwitz

On account of proposition 3.1

o for K € (—o0, —1] = the roots of p(\) are not in &(1)
o for K > —1 = the roots of p(\) are in &(1).

<
(OPT]OPLALJ*************************************

The Routh criterion can be used also for determining if the
roots of a polynomial are inside the following region of the
complex plane

3

T(0) = {AeC": g +0<Arg(N) < T -6 (37

where 6 € [0, ). We may require that the modes show as less
oscillations as possible. This exactly correspond to require that
the eigenvalues of A be inside a region ¥(6) with given 6,
i.e. with a damping as close to 1 as possible. The following
proposition holds true.

Proposition 3.2: The polynomial p(\) has all roots in ()

if and only if p(e’®\)p(e=7%)) has all roots in &(0), i.e.
p(e?®\)p(e=79)) is Hurwitz.
Proof. Indeed, p(\) has a root X if and only if
p(e??X)p(e=7%)\) has two complex conjugate roots et7?).
Moreover, Arg(e™9)\) = F60 + Arg()\). The root eT/9)
has negative real part if and only if Arg(e™/?)) € (Z,3F)
and, therefore, if and only if Arg(\) € (5 + 6,2 — ).
U
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Exercize 3.2: Discuss for which values of K € (—0, o) the

roots of p(A) = A + X + K are in T(%).

By proposition 3.1 it is sufficient to discuss for which values
of K € (—0, ©)

p(e’E\)p(e 7T N)
= [(@TN? + (78N + K][(e 75N + (75N + K]
MEVES + (K+ DN+ KA+V3)A+ K2 (38)

is Hurwitz (recall that e=7% = cos # + j sin §). The Routh table

generated by p(\ — ) is
ey 1 K+1 K2
#(3) V3 K(1++/3)
e ~K ++/3 V3K? (39)
P EUK(A4V3)—V3(14+V3))
K—v3
r(o) \/gKQ

We can discuss the number of variations and permanencies in
the first column of the Routh table as follows.

; ; 1+/3 i
i 0 i \/§4+\/§ i \/g
r® | | |
r) | | |
r2 | | :
) | | |
r(© : : :

Therefore, we have

o« for K=0, K = \/giig and K = /3 the table is not
regular

o for K < 0 the table is regular and Ny (p)
Np(p) =2

« for K € (0, \f”*f) the table is regular and Ny (p) = 0
and Np(p) = 4

o for K e (\/giig, +/3) the table is regular and Ny (p) =
2 and Np(p) =2

o for K > +/3 the table is regular and Ny (p)
Np(p) =2

We conclude by virtue of theorem 2.3

e for K=0, K = \/giig and K = +/3 the table in not
regular = p(e?s\)p(e~7% \) is not Hurwitz

= 2 and

= 2 and

efor K < 0 or K > \/giig the table
is regular and N, (p(e’TA)p(e™7%))) = 2 and
N_(p(e?SA)p(e 75 X)) = 2 = p(e!TA)p(e 7% \) is not
Hurwitz

o« for K € (\/§ yEnve] \f 3) the table is reg-
ular and N, (p(e/% ) (e9%)) = 0 and
N_(p(e/EN)p(e7EN) = 4 = p(e/ENp(e7EN)

is Hurwitz
On account of proposition 3.2

o« for K <Oor K > fii? = the roots of p(\) are not
in T(§)

1+

o for K € (\/§4+

ﬁ, \/3) = the roots of p(\) are in T(F).

<



IV. 1/S AND I/O STABILITY

Let us consider the system

x(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t), (40)

with initial state xo = xo. Let x(?,y(?) denote the unforced
responses and x(*)| y(*) the forced responses. The asymptotic
behaviour of its solutions, i.e. when ¢ tends to infinity, can be
analyzed with respect to the input u(¢) when zy = 0.

Definition 4.1: A system (40) is input-to-state stable in the
zero state (0-1/S stable) if for each input function u such that
sup;>g [u(t)| < M for some M > 0 there exists N > 0 such
that

sup % (¢, u) | < .

=

(41)

A system (40) is input-to-output stable in the zero state (0-1/O
stable) if for each input function u such that sup, ||lu(t)| <
M for some M > 0 there exists N > 0 such that
sup [y (t, w)| < N. (42)
t=0
The above definitions require that the forced (state or output)
responses be bounded with bounded inputs. Non-zero initial
conditions x( are taken into account in the next definitions.
Definition 4.2: A system (40) is input-to-state stable (I/S
stable) if for each xy € R™ and input function u such that
sup;>g [u(t)| < M for some M > 0 there exists N > 0 such
that

sup | x(t, zp, )| < N,
>0

i (0) —
tlir-iloo |x\™) (¢, zg)|| = 0. 43)
A system (40) is input-to-output stable (I/O stable) if for each
xo € R™ and input function u such that sup, |u(t)|| < M for
some M > ( there exists N > 0 such that

sup ||ly(¢, zg, u)|| < N,
=0

lim [y (t,z0)| = 0.

t—+00

(44)

The above definition of I/S require that the state response be
bounded with bounded inputs and for each initial condition
zo (the bound depends also on x() with asymptotic stability.
Hence, a necessary condition for I/S stability is asymptotic
stability. Moreover, I/S stability implies I/O stability (the
converse is false) and I/S (resp. O/S) stability implies 0-1/S
(resp. 0-1/0) stability. Surprisingly, asymptotic stability is also
a sufficient condition for I/S stability.

Theorem 4.1: A system (40) is I/S stable if and only if it is
asymptotically stable.
It turns out that 0-I/S, resp. 0-1/O, stability depends exclusively
on the poles of H(s) = (s — A)7!B, resp. W(s) = C(sI —
A)"B+ D.

Theorem 4.2: A system (40) is O-I/S stable (resp. 0-1/0
stable) if and only if the poles of H(s) (resp. W(s)) are all in
C~.

Proof. This follows easily in the Laplace domain from

Sx™ (t,w)](s) = H(s)u(s),

Lly™ (t,w)](s) = W(s)u(s) (45)

and the residuals theorem. ]

As for asymptotic stability it is necessary and sufficient
that the eigenvalues of A be all in C~, for I/O stability
it is necessary and sufficient that the poles of W(s) be all
in C™. These are two crucial issues in control design and
should be always guaranteed by the designer, according to the
mathematical model (in time or Laplace domain) we work
with.

V. EIGENVALUES AND POLES PLACEMENT VERSUS
SYSTEM’S PERFORMANCES

The position of poles of W(s) or the eigenvalues of A in
C~ is a crucial issue in control design. In particular, it is
important to place this eigenvalues or poles in some subregions
of C~ like for example G(«) or J(6) to guarantee certain
performances of the state or output responses. In this section
we will try to explain this point, referring to systems with
an I/O transfer function characterized by one real pole (first
order systems) and, respectively, by a couple of complex
conjugate poles (second order systems). A reason for the
analysis being restricted to first and second order systems is
that the I/O transfer function W(s) of a system (with n poles)
is comparable with a good approximation to that of a second
order system (with 2 complex conjugate poles, which are also
the dominant poles). Moreover, we consider the response of
the system to step inputs, which are usually adopted by the
designer for testing the system’s performances.

A. First order systems

Consider the system with I/O transfer function

1
W(s) = 46
() 1+ s7 (46)
with 7 > 0. The parameter 7 is the time constant associated
to the pole (or eigenvalue) s = \ := f% of (46). The step
output response to an input u(t) := 6(-1)(¢) is
y(tu) = L7 [W(s)Llu(t)]()](t)
1 ¢
=8 ——]=(1—-e 7)Yt
M) = e

Note that
(s5) — 5 () —1=W
y , hrfw y'“(t,u) =1 (0)

which is the asymptotic value or steady state value of the
output response y{/or¢¢d)(¢), The difference

Y () =y (tw) -y = e

is the transient output response, which tends to asymptotically
vanish: i.e. lim;_,, oy (¢) = 0. For ¢t = 7 sec the transient
response is within 36.8% of its steady-state value, for ¢t = 27
sec the transient response is within 13.5% of its steady-state
value y(**) and for ¢t = 37 sec the transient response is within
5% of its steady-state value y(ss). Therefore, it takes 37 sec



for the output response to remain within %5 of its steady-state
value. After 77 sec the output response remains within %0.09
of its steady-state value.

The (%5)-settling time (denoted by T,g%‘r’)) is the time
instant for which the output response y(/°7¢¢)(¢) remains for
all subsequent times within %5 of its steady-state value:

ly®)(¢)] < 0.05]y*2)|, vt = T,

As mentioned above it takes 37 sec for the output response
to remain within %5 of its steady-state value and therefore
we have Té%‘r’) = 37. In order to guarantee a fast response
of the system, we need to have small values of Té%s) = 37
and therefore of 7. This corresponds to place the real pole (or
cigenvalue) s = A := —1 in a region of the form &(a) for a
large o > 0.

On the other hand, it takes ¢t ~ 2.27 sec for the output
response response going from %10 to %90 of its steady-state
value y(*9). The (%10 — %90)-rise time (T} '~y js
the period of time needed for the output response y(*) (¢, u)
passing from %10 to %90 of its steady-state value y(**):

Tﬁ%lo—»%QO) = T(%QO) _ T(%lO)
where T(%90)  and T(%10) gare the times

y () (T(%90) yy) = 0.9y**)  and,
y((T(%10) ) = 0.1y(%),

for which
respectively,

B. Second order systems
Consider the system with I/O transfer function

1
2(¢s

Wn

W(s) . 47)

_1+ + oz

with w, > 0 and ¢ € (0, 1). The parameters w,, and ( are the
natural frequency and, respectively, the damping associated to
the pair of complex conjugate poles (or eigenvalues)

Sz/\:—wn(C"’j\/l_CQ)v

s = A = —wn(C = jV1-C),

which are the roots of the polynomial 1 + iﬁ + j—z, the
denominator of (47). The step output response is after some

calculations

y (8, u) = 7 [W(s)e[u(t)](s)](t)

(48)

1
_ o1
=£ [—8(1 o 3%)](t)
S (1 e in(ua /T = 4 )50 ()

V¢

(49)

with
/1_ 2
¢ := arctan % = arcsin/1 — (2 = arccos (.

The function y(*)(¢,u) has local minimum and maximum
points and tends to W(0) = 1 as t — +oo (its steady-
state value y(**)). The local maximum and minimum points

of y(")(t,u) are found by seeking for the zeroes of its first
order derivative:

d
0=—y®Wt
atY (8, )
wn(t
= el % [—wn/1 = (2 cos(wp/1 — (2t + @)
+¢sin(wp/1 — 2t + ¢)] (50)
or equivalently
A1 — (2
I = tan(w,\/1 — C2 + @) (51)
which, on account of the definition of ¢, has the roots
h
= T h=01,... (52)

a wn/1 — 2

From here we obtain the values of the local minimum (for
even h) and maximum (for odd h) points

(53)

Note that the response y(*)(¢,u) has a global minimum at
t¥ =0 with y(" (£, 1) := Ypmin := 0 and a global maximum

at tT = ﬁﬂ, with
¢
y(u)(tika u) ‘= Ymaz ‘= 1+e 1= (54)
The quantity
__ ¢
S 1= Ypaw — 1 =€ V- (55)

is the maximal overshooting of the response y(*)(¢,u). The
maximal overshooting is the maximal displacement in excess
of the response y(*) (t,u) from its steady-state value y(59),
after the first time 7(**) for which y(*) (¢, u) crosses its steady
state value y(**). In general, the maximal overshoot is given in
% units: $(%) := (Ymaz — 1)100. For not stressing the system
too much, in practical situations it is convenient to have the
smallest as possible maximal overshooting 5. From (55) we
see that 5 is a decreasing function of the damping ¢ and §
decreases from 1 to 0 as the damping ( increases from 0 to
1. Therefore, in order to minimize the maximal overshooting
it is necessary to have the damping of the poles as close as
possible to 1, i.e. to have the poles of W(s) as close as possible
to the real negative axis. This corresponds to place the pair of
complex conjugate poles (or eigenvalues) (48) in a region of
the form J(6) for 6 as close as possible to /2.

Another important parameter for the analysis of the forced
response is the (5%)-settling time 7% For designing a
control system with prompt output response in the sense that
the transient response y(*") (t) = y(*)(¢,u) — y(**) has a high



convergence rate, it is convenient to have the smallest possible
values of TS(S%). Since
|y(u) (ta u) — y(SS) |
|y(*)]

= \7*117 z e~wnt sin(wHMt + ¢)|
1
< \/17_74287‘0"0 (56)

an upper bound T for the settling time 7% (ie. TV >

Ts(5%)) is obtained from the equation

A

1 (5%
L el 005 (57)
N
from which
s In20 + In 1%&
A A (58)
‘ wnC

and it is a decreasing function of the product w,,. Since from
(48) the product w,( is the absolute value of the real part of
the poles (s, s*) of W(s) and since ( is picked to determine
the maximal overshooting (55), in order to minimize TS)%)
Wwe can maximize w,,.



