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Notes on Linear Control Systems: Module IV
Stefano Battilotti

Abstract—Stability and attractivity of equilibrium points.
Lyapunov stability. Lyapunov functions. Lyapunov criteria for
stability. Eigenvalues criterion for stability of linear systems. The
Routh table. I/S and I/O stability. System performances versus
eigenvalues and pole placement in the complex plane.

I. LYAPUNOV STABILITY

Let us consider a nonlinear differential system

9xptq “ fpxptqq (1)

with initial state x0 “ x0 and assume fp0q “ 0. The
asymptotic behaviour of its solutions, i.e. when t tends to
infinity, can be analyzed with respect to constant solutions
xe.

Definition 1.1: An equilibrium point xe of (1) is any point
xe P Rn such that fpxeq “ 0, i.e. a constant solution of (1).
The system (1) has at least the equilibrium point xe :“ 0. The
equilibrium points may either appear as a continuum of points
or isolated points.

Exercize 1.1: The system

9xptq “ fpxptqq :“ xptq ´ x2ptq (2)

has two equilibrium points which correspond to the roots of
fpxq “ 0. This roots are xe,1 “ 0 and xe,2 “ 1, which are
isolated points. On the hand, the equilibrium points of

9xptq “ 0 (3)

are all the points x P R, which is a continuum of points. Ÿ

A open neighbourhood Upxeq of a point xe P Rn is the set
tx P Rn : }x´ xe} ă ρu with ρ ą 0.

Definition 1.2: An equilibrium point xe of (1) is locally
attractive if there exists a open neighbourhoodUpxeq of xe such
that

lim
tÑ`8

}xpt, x0q ´ xe} “ 0 (4)

for all x0 P Upxeq. The point xe is globally attractive if (4)
holds for all x0 P Rn.

Definition 1.3: An equilibrium point xe of (1) is (Lyapunov)
stable if

@ε ą 0 Dδ ą 0 : }x0 ´ xe} ă δ

ñ }xpt, x0q ´ xe} ă ε @t ě 0 (5)

An equilibrium point xe of (1) is
‚ locally asymptotically (Lyapunov) stable if it is locally

attractive and (Lyapunov) stable,
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‚ globally asymptotically (Lyapunov) stable if it is globally
attractive and (Lyapunov) stable.

‚ (Lyapunov) unstable if it is not (Lyapunov) stable.

Notice that while local asymptotic stability implies stability,
the converse is false. Property (5) means nothing but that
xpt, x0q remains for all times close to xe if x0 is close to
xe.

Proposition 1.1: The following properties are equivalent:
(i) xe is (Lyapunov) stable
(ii) there exist an increasing continuous function κ :
r0,`8q Ñ r0,`8q such that κp0q “ 0 and

@ε ą 0 : }x0 ´ xe} ă κpεq ñ }xpt, x0q ´ xe} ă ε @t ě 0 (6)

A longstanding criterion for studying the local and global
stability of equilibrium points is the Lyapunov criterion. A
function V : Rn Ñ R is said

‚ positive definite (resp. semidefinite) at x “ xe if V pxq ą
0 for all x ‰ xe in a neighbourhood of xe (resp. V pxq ě
0 for all x in a neighbourhood of xe) and V pxeq “ 0.

‚ positive definite (resp. semidefinite) at x “ xe on Rn if
V pxq ą 0 for all x ‰ xe (resp. V pxq ě 0 for all x) and
V pxeq “ 0.

‚ negative definite (resp. semidefinite) at x “ xe if ´V pxq
is positive definite (resp. semidefinite) at x “ xe.

‚ negative definite (resp. semidefinite) at x “ xe on Rn if
´V pxq is positive definite (resp. semidefinite) at x “ xe
on Rn.

Proposition 1.2: Let xe be an equilibrium point. If there
exists a continuously differentiable function V : Rn Ñ R such
that:

‚ V is positive definite at x “ xe, BVBx pxqfpxq is negative
semidefinite at x “ xe then xe is stable.

‚ V is positive definite at x “ xe, BVBx pxqfpxq is negative
definite at x “ xe then xe is locally asymptotically stable.

‚ V is positive definite at x “ xe on Rn, BV
Bx pxqfpxq is nega-

tive definite at x “ xe on Rn and lim}x}Ñ`8 V pxq “ `8
then xe is globally asymptotically stable.

If there exists a continuously differentiable function V :
Rn Ñ R, positive definite at x “ xe, such that

‚
BV
Bx pxqfpxq is negative semidefinite at xe then xe is (Lya-
punov) stable.

‚
BV
Bx pxqfpxq is negative definite at x “ xe then then xe is
locally asymptotically stable.

‚
BV
Bx pxqfpxq is negative definite at x “ xe on Rn and
lim}x}Ñ`8 V pxq “ `8 then xe is globally asymptoti-
cally stable.

The functions V pxq satisfying the above conditions are
called Lyapunov functions.
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Exercize 1.2: For the system (2) consider the equilibrium
point xe,1 “ 1 and the (candidate) Lyapunov function V pxq “
px´ 1q2, which is positive definite at x “ 1 on R. We have

BV

Bx
pxqfpxq “ 2px´ 1qpx´ x2q “ ´2xpx´ 1q2 :“ apxq (7)

Notice that apxq is negative definite at x “ 1. It follows that
xe,1 “ 1 is locally asymptotically stable. However, xe,1 “
1 cannot be globally asymptotically stable, since any initial
condition x0 ă 0 in (2) generates a solution xpt, x0q such that
xpt, x0q Ñ ´8 as tÑ8.

If we consider the equilibrium point xe,2 “ 0, we find out
that it is not (Lyapunov) stable. Indeed, as alredy mentioned,
any initial condition x0 ă 0 in (2) generates a solution
xptqpx0q such that xptqpx0q Ñ ´8 as tÑ8.

Exercize 1.3: Consider the simple pendulum with no fric-
tion (k “ 0)

9xptq “ fpxptqq “
ˆ

x2,t
´
g
l sinpx1,tq

˙

(8)

and a Lyapunov function

V pxq “
1

2
x22 `

g

l
p1´ cospx1qq. (9)

V pxq is positive definite at x “ 0 (over the domain ´2π ă
x1 ă 2π) and

BV

Bx
pxqfpxq “ 0. (10)

which is negative semidefinite at x “ 0. We conclude that
xe “ 0 is Lyapunov stable. If we consider non-zero friction
(k ‰ 0) we take

V pxq “
1

2
xJPx`

g

l
p1´ cospx1qq (11)

where

P “

ˆ

k2

2m2
k
2m

k
2m 1

˙

(12)

It can be seen that V pxq is positive definite at x “ 0. Moreover,

BV

Bx
pxqfpxq “ ´

1

2

g

l

k

m
x1 sinpx1q ´

1

2

k

m
x22 (13)

which is negative definite at x “ 0. We conclude that xe “ 0
is locally asymptotically stable. Ÿ

Next, consider as a particular case of (1) the linear system

9xptq “ Axptq (14)

The equilibrium points xe of (14) are the solutions of Axe “ 0,
i.e. xe P KerA which is a vector subspace of Rn. Therefore,
for a linear system there cannot be any isolated equilibrium
point other than xe “ 0.

Since the solution xpt, x0q of (14) is a linear combination
of modes, the following facts hold true:
‚ If all the modes of (14) are convergent then
limtÑ`8 }xpt, x0q} “ 0 for all x0 P Rn and, therefore,
the equilibrium point xe :“ 0 of (14) is globally attrac-
tive.

‚ if the equilibrium point xe :“ 0 of (14) is globally
attractive then limtÑ`8 }xpt, x0q} “ 0 and all the modes
of (14) are convergent.

‚ if all the modes of (14) are convergent, xe :“ 0 is the
only equilibrium point and A is nonsingular.

By summing up,
Proposition 1.3: The equilibrium point xe :“ 0 of (14)

is globally attractive if and only if all the modes of (1) are
convergent.

Since a mode associated to a certain eigenvalue λ of A is
convergent if and only if Repλq ă 0 we obtain the following
important conclusion.

Proposition 1.4: The equilibrium point xe :“ 0 of (14) is
globally attractive if and only if Repλq ă 0 for all λ P σpAq.

This, together with Proposition 1.3, gives:
Proposition 1.5: The equilibrium point xe :“ 0 of (14) is

globally asymptotically stable if and only if Repλq ă 0 for all
λ P σpAq.
This follows from the fact that the solution xpt, x0q “ eAtx0
is linear with respect to x0.

Since only the equilibrium point xe :“ 0 of (14) can be
globally asymptotically stable, in this case we simply say that
(14) itself is (globally) asymptotically stable.

For an asymptotically stable linear system (14) typical
Lyapunov functions are quadratic: V pxq “ xJPx, where
P is a pn ˆ nq positive definite matrix. A positive definite
matrix P is a pn ˆ nq is a matrix such that xJPx ě 0 for
all x P Rn. Notice that that if P is positive definite then
V pxq “ xJPx is positive definite at x “ 0 on Rn. Moreover,
lim}x}Ñ`8 V pxq “ `8. We have

BV

Bx
pxqAx “ 2xJPAx “ xJpPA`AJP qx (15)

If

PA`AJP “ ´Q (16)

with Q a pnˆ nq positive definite matrix then

BV

Bx
pxqAx “ ´xJQx :“ apxq (17)

where apxq is negative definite at x “ 0. We have the
following important conclusion.

Proposition 1.6: The equilibrium point xe :“ 0 of (14) is
globally asymptotically stable if and only if for each pn ˆ nq
positive definite matrix Q there exist a pnˆnq positive definite
matrix P such that

PA`AJP “ ´Q. (18)

This is the Lyapunov criterion for asymptotic stability of linear
systems. In this case, V pxq “ xJPx is a Lypunov function
for (14).

Exercize 1.4: Consider the linearization of (8) around the
equilibrium point xe “ p0, 0qJ:

9xptq “ Axptq “
ˆ

x2,t
´
g
l x1,t ´ k

mx2,t

˙

(19)

and assume k2

m2 ą
4g
l . The system (19) is (globally) asymptot-

ically stable since the eigenvalues of A are all negative real.
A (candidate) Lyapunov function for (19) is

V pxq “ xJPx, P :“

ˆ

5k
4m

g
l

g
l

g
l

k
4m

˙

(20)
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Indeed

PA`AJP “ ´Q “ ´2

˜

g2

l2 0

0 k2

4m2 ´
g
l

¸

.Ÿ (21)

In conclusion, we can state also a criterion of stability for
an equilibrium point xe of (1) from the the stability of its
linearization around xe.

Proposition 1.7: Consider the nonlinear system (1) and let
xe be an equilibrium point. If the linearization of (1) around xe
is globally asymptotically stable, then xe is locally asymptoti-
cally stable for (1).

Exercize 1.5: Since (19) is (globally) asymptotically stable,
then the equilibrium point xe “ p0, 0qJ of the simple pen-
dulum (8) is locally asymptotically stable (but not globally
asymptotically stable since we have another equilibrium point
xe “ pπ, 0q

J). Ÿ

Proposition 1.8: Consider the nonlinear system (1) and let
xe be an equilibrium point. If the linearization of (1) around
xe is unstable for the presence of eigenvalues with positive real
part, then xe is unstable for (1).

Exercize 1.6: Since the linearization of (8) around the equi-
librium point xe “ pπ, 0qJ has one positive eigenvalue, then
the equilibrium point xe “ pπ, 0qJ of the simple pendulum
(8) is unstable. Ÿ

II. STABILITY TESTS: THE ROUTH CRITERION

As we mentioned in the previous section, asymptotic stabil-
ity of a linear system (14) can be assessed by the eigenvalues
of A. However, it is not always possible to calculate exactly the
eigenvalues of A since they are roots of a n-degree polynomial

ppλq “ anλ
n ` an´1λ

n´1 ` ¨ ¨ ¨ ` a1λ` a0 (22)

On the other hand, for stability it is sufficient to check if
all the eigenvalues of A have negative real parts, rather than
determine exactly their values. We will say that ppλq is
Hurwitz if all its roots have negative real parts. A first easy
necessary condition for assuring if a polynomial is Hurwitz is
the following.

Proposition 2.1: If ppλq is Hurwitz then anai ą 0 for all
i “ 0, 1, . . . , n ´ 1, i.e. all the coefficients ai are nonzero and
have the same sign.
Proof. Assume that ppλq is Hurwitz. The polynomial ppλq can
be factorized as

K
r
ź

i“1

p1` λτiq
µi

s
ź

i“1

p1` 2ζi
λ

ωn,i
`

λ2

ω2
n,i

qνi

where τi :“ ´ 1
λi
ą 0 for real roots λi ă 0 and ωn,i :“

a

α2
i ` ω

2
i and ζi :“ ´ αi

ωn,i
ą 0 for pairs of complex

conjugate roots µi “ αi ˘ jωi with αi ă 0. The coefficients
of each term 1 ` λτi and 1 ` 2ζi

λ
ωn,i

` λ2

ω2
n,i

have the same
sign. Therefore, the coefficients of the products of these
terms must have the same sign. This prove the proposition.
�

The converse of proposition (2.1) does not hold, unless n “
1 or n “ 2.

Proposition 2.2: If either n “ 1 or n “ 2, ppλq is Hurwitz
if and only if anai ą 0 for all i “ 0, 1, . . . , n´ 1.

Sufficient and necessary conditions for the roots of a poly-
nomial ppλq being all with negative real part can be obtained
from the so-call Routh criterion. This criterion is based on the
construction of a table (the Routh table) as follows.
Step (I): construction of the n-th and pn´ 1q-th rows. Let rpnq

be the row of the coefficients aj’s in (22) which correspond to
powers λn, λn´2, . . . and rpn´1q be the row of the coefficients
aj’s in (22) which correspond to powers λn´1, λn´3, . . .

rpnq “
`

an an´2 an´4 ¨ ¨ ¨
˘

rpn´1q “
`

an´1 an´3 an´5 ¨ ¨ ¨
˘

Note that rpnq may have one element more than rpn´1q (n is
even) or it may have the same number of elements (n is odd).
Set k Ñ n´ 2.
Step (II): construction of the k-th row.
If pk ě 0q&pr

pk`1q
1 ą 0q then

γ :“
r
pk`2q
1

r
pk`1q
1

;

if k is odd then µ :“
k ` 1

2

else µ :“
k

2
` 1;

else goto pIIIq. (23)

If rpk`1q has one element less than rpk`2q then complete
rpk`1q with one zero so that rpk`2q and rpk`1q

j`1 have the same
number of elements.
For j “ 1, . . . , µ repeat rpkqj “ r

pk`2q
j`1 ´ γr

pk`1q
j`1 ;

Set k Ñ k ´ 1 and goto (II).
Step (III): end.

Note that at each step rpk`2q we may have one element
more than rpk`1q (k is even) or it may have the same number
of elements (k is odd). Each element rpkqj of a row rpkq can
be calculated alternatively as

r
pkq
j :“ ´

1

r
pk`1q
1

det

˜

r
pk`2q
1 r

pk`2q
j`1

r
pk`1q
1 r

pk`1q
j`1

¸

Notice also that the algorithm stops at step k if rpk`1q
1 “ 0.

It is also possible to simplify a row rpkq by replacing it with
αrpkq where α is any positive number.

The Routh table is said to be regular if the numbers rpjq1 ,
j “ 0, . . . , n are all nonzero. We will say that there is
a permanency between r

pkq
1 and r

pk`1q
1 if rpkq1 r

pk`1q
1 ą 0.

Otherwise we will say that there is a variation. We will
denote by NV ppq and NP ppq the number of variations and,
respectively, of permanencies in the Routh table generated by
the polynomial ppλq. Clearly, for a polynomial ppλq with a
regular Routh table we have NV ppq ` NP ppq “ n. Also,
denote by N´ppq the number of roots of ppλq with negative
real part, by N`ppq the number of roots of ppλq with positive
real part and by N0ppq the number of roots of ppλq with null
real part.

Proposition 2.3: If a polynomial ppλq generates a regular
Routh table then NV ppq “ N`ppq, NP ppq “ N´ppq and
N0ppq “ 0.
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A consequence of the above proposition is that a sufficient
condition for ppλq being Hurwitz is that ppλq generates a
regular Routh table and NV ppq “ 0. This sufficient condition
is actually also necessary.

Theorem 2.1: A polynomial ppλq is Hurwitz if and only if
ppλq generates a regular Routh table and NV ppq “ 0.

Note that theorem 2.3 implies that if ppλq has at least one
root with null real part then the Routh table cannot be regular
(for example ppλq “ λ2` 1). On the other hand, if the Routh
table is not regular this does not necessarily imply that ppλq
has at least one root with null real part (for example ppλq “
λ2 ´ 1).

Exercize 2.1: Discuss the sign of the roots of ppλq “ λ5 `
3λ4 ` 2λ3 ´ 2λ2 ` 2λ` 4.

Let us construct the Routh table for ppλq. The rows rp5q

and rp4q are

rp5q

rp4q
1 2 2
3 ´2 4

(24)

The row rp3q is calculated as

r
p3q
j :“ ´

1

r
pk`1q
1

det

˜

r
pk`2q
1 r

pk`2q
j`1

r
pk`1q
1 r

pk`1q
j`1

¸

, j “ 1, . . . , µ

or equivalently

r
p3q
j “ r

p5q
j`1 ´ γr

p4q
j`1, j “ 1, . . . , µ (25)

where γ “ 1
3 and µ “ 2 (since the index of the row to be

constructed is odd). We obtain

rp5q

rp4q

rp3q

1 2 2
3 ´2 4
8
3

2
3

(26)

Similarly,

rp5q

rp4q

rp3q

rp2q

1 2 2
3 ´2 4
8
3

2
3

´ 11
4 4

(27)

and finally

rp5q

rp4q

rp3q

rp2q

rp1q

rp0q

1 2 2
3 ´2 4
8
3

2
3

´ 11
4 4

50
11
4

(28)

Therefore, the Routh table is regular. Moreover, NV ppq “ 2
and NP ppq “ 3. By the Routh criterion ppλq has three roots
with negative real part and two roots with positive real part.

It is worth noting that in this case the necessary condition
2.1 can be used since a5 “ 1 and a2 “ ´2 and a2a5 ă 0 and
we can conclude that ppλq is not Hurwitz. Ÿ

Exercize 2.2: Discuss the sign of the roots of ppλq “
´2λ3 ´ λ2 ´ 4λ´ 11.

The Routh table generated by ppλq is

rp3q

rp2q

rp1q

rp0q

´2 ´4
´1 ´11
18
´11

(29)

Therefore, the Routh table is regular. Moreover, NV ppq “ 2
and NP ppq “ 1. By theorem 2.3 ppλq has one (real) negative
root and two roots with positive real part. It is worth noting
that in this case the necessary condition 2.1 cannot be used
since a3ai ą 0 for all i. Ÿ

Exercize 2.3: Discuss the sign of the roots of ppλq “ λ5 `
λ4 ` 2λ3 ` 2λ2 ` 3λ` 15.

The Routh table generated by ppλq is

rp5q

rp4q

rp3q

1 2 3
1 2 15
0 ´12

(30)

Therefore the Routh table is not regular since rp3q1 “ 0 and
by theorem 2.1 it follows that ppλq is not Hurwitz. It is worth
noting that also in this case the necessary condition 2.1 cannot
be used since a5ai ą 0 for all i.

Exercize 2.4: Discuss the sign of the roots of ppλq “ λ4 `
6λ3 ` 11λ2 ` 6λ`K for K varying over p´8,8q.

The Routh table generated by ppλq is

rp4q

rp3q

rp2q

rp1q

rp0q

1 11 K
6 6
10 K

6
10 p10´Kq

K

(31)

Note that we could have simplified the Routh table by multi-
plying rp1q by 10

6 without altering the regularity of the table
and the discussion of the sign of the roots of ppλq

rp4q

rp3q

rp2q

rp1q

rp0q

1 11 K
6 6
10 K

10´K
K

(32)

We can discuss the number of variations and permanencies
in the first column of the Routh table as follows. First, we
discuss the sign of each rpjq1 , j “ 0, . . . , 4:
‚ r

p0q
1 “ 0 for K “ 0 and rp1q1 “ 0 for K “ 10

‚ r
p4q
1 , r

p3q
1 and rp2q1 are positive for all K

‚ r
p1q
1 ą 0 for K ă 10

‚ r
p0q
1 ą 0 for K ą 0

These results can be visualized in the following table. We will
draw a full line if the sign of rpjq1 , j “ 0, . . . , 4 is positive and
a dashed line if its sign is negative:

0 10

rp4q

rp3q

rp2q

rp1q

rp0q
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A variation in the first column of the Routh table corresponds
to a variation of line (full or dashed) in the above table.
Therefore, we have

‚ for K “ 0 or K “ 10 the table is not regular
‚ for K ă 0 the table is regular and NV ppq “ 1 and
NP ppq “ 3

‚ for K P p0, 10q the table is regular and NV ppq “ 0 and
NP ppq “ 4

‚ for K ą 10 the table is regular and NV ppq “ 2 and
NP ppq “ 2

We conclude by virtue of theorem 2.3

‚ for k “ 0 or k “ 10 the table in not regular ñ ppλq is
not Hurwitz

‚ for K ă 0 the table is regular and N`ppq “ 1 and
N´ppq “ 3 ñ ppλq is not Hurwitz

‚ for K P p0, 10q N`ppq “ 0 and N´ppq “ 4 ñ ppλq is
Hurwitz

‚ for K ą 10 N`ppq “ 2 and N´ppq “ 2 ñ ppλq is not
Hurwitz.

Ÿ

Exercize 2.5: Discuss the sign of the roots of ppλq “ λ4 `
λ3 ` 2λ2 ` p1`Kqλ`K for K varying over p´8,8q.

The Routh table generated by ppλq is

rp4q

rp3q

rp2q

rp1q

rp0q

1 2 K
1 1`K

´K ` 1 K
K2
`K´1
K´1

K

(33)

We can discuss the number of variations and permanencies
in the first column of the Routh table as follows. First, we
discuss the sign of each rpjq1 , j “ 0, . . . , 4:

‚ r
p0q
1 “ 0 for K “ 0, rp1q1 “ 0 for K “ ´ 1

2 ˘
?
5
2 and

r
p2q
1 “ 0 for K “ 1

‚ r
p4q
1 and rp3q1 are positive for all K

‚ r
p2q
1 ą 0 for K ă 1

‚ r
p1q
1 ą 0 for K P p´ 1

2 ´
?
5
2 ,´

1
2 `

?
5
2 q or K ą 1

‚ r
p0q
1 ą 0 for K ą 0

These results can be visualized in the following table.

´ 1`
?
5

2 0 ´1`
?
5

2 1

rp4q

rp3q

rp2q

rp1q

rp0q

The sign of rp1q1 ą 0 has been discussed as follows

´ 1`
?
5

2
´1`

?
5

2 1
N
D

where N denotes the numerator of rp1q1 and D denotes the
denominator of rp1q1 and we draw a full line if the sign of N
(resp. D) is positive and a dashed line if its sign is negative.

Therefore, we have
‚ for K “ 0 and K “ ´ 1

2 ˘
?
5
2 the table is not regular

‚ for K ă ´ 1
2 ´

?
5
2 the table is regular and NV ppq “ 1

and NP ppq “ 3

‚ for K P p´ 1
2´

?
5
2 , 0q the table is regular and NV ppq “ 1

and NP ppq “ 3

‚ for K P p0,´ 1
2`

?
5
2 q the table is regular and NV ppq “ 0

and NP ppq “ 4

‚ for K P p´ 1
2`

?
5
2 , 1q the table is regular and NV ppq “ 2

and NP ppq “ 2
‚ for K ą 1 the table is regular and NV ppq “ 2 and
NP ppq “ 2

We conclude by virtue of theorem 2.3

‚ for K “ 0 and K “ ´ 1
2 ˘

?
5
2 the table in not regular

ñ ppλq is not Hurwitz
‚ for K ă 0 the table is regular and N`ppq “ 1 and
N´ppq “ 3 ñ ppλq is not Hurwitz

‚ for K P p0,´ 1
2`

?
5
2 q the table is regular and N`ppq “ 0

and N´ppq “ 4 ñ ppλq is Hurwitz
‚ for K ą ´ 1

2 `
?
5
2 the table is regular and N`ppq “ 2

and N´ppq “ 2 ñ ppλq is not Hurwitz.
Ÿ

III. EXTENSIONS OF THE ROUTH CRITERION

The Routh criterion can be used also for determining if the
roots of a polynomial are inside a given region of the complex
plane. In particular, any half-plane

Spαq :“ tλ P Cn : Repλq ă ´αu (34)

We may require that the modes tend asymptotically to zero
as fast as possible. This exactly correspond to require that the
eigenvalues of A be inside a region Spαq with given α. The
following proposition holds true.

Proposition 3.1: The polynomial ppλq has all roots in Spαq
if and only if ppλ ´ αq has all roots in Sp0q, i.e. ppλ ´ αq is
Hurwitz.
Proof. This simply follows from the fact that ppλq has a root
λ if and only if ppλ ´ αq has a root λ ` α. The root λ ` α
has negative real part if and only if Repλq ă ´α. �

Exercize 3.1: Discuss for which values ofK P p´8,8q the
roots of ppλq “ λ3 ` 6λ2 ` p12`Kqλ` 2K ` 8 are in Sp1q.

By proposition 3.1 it is sufficient to discuss for which values
of K P p´8,8q

ppλ´ 1q :“ pλ´ 1q3 ` 6pλ´ 1q2 ` p12`Kqpλ´ 1q

`2K ` 8 “ λ3 ` 3λ2 ` p3`Kqλ`K ` 1 (35)

is Hurwitz. The Routh table generated by ppλ´ αq is

rp3q

rp2q

rp1q

rp0q

1 K ` 3
3 K ` 1

K ` 4
K ` 1

(36)
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We can discuss the number of variations and permanencies in
the first column of the Routh table as follows.

´4 ´1

rp3q

rp2q

rp1q

rp0q

Therefore, we have

‚ for K “ ´4 and K “ ´1 the table is not regular
‚ for K ă ´4 the table is regular and NV ppq “ 1 and
NP ppq “ 2

‚ for K P p´4,´1q the table is regular and NV ppq “ 1
and NP ppq “ 2

‚ for K ą ´1 the table is regular and NV ppq “ 0 and
NP ppq “ 3

We conclude by virtue of theorem 2.3

‚ for K “ ´4 and K “ ´1 the table in not regular ñ
ppλ´ 1q is not Hurwitz

‚ for K P p´8,´1q the table is regular and N`pppλ ´
1qq “ 1 and N´pppλ ´ 1qq “ 2 ñ ppλ ´ 1q is not
Hurwitz

‚ for K ą ´1 the table is regular and N`pppλ ´ 1qq “ 0
and N´pppλ´ 1qq “ 3 ñ ppλ´ 1q is Hurwitz

On account of proposition 3.1

‚ for K P p´8,´1s ñ the roots of ppλq are not in Sp1q
‚ for K ą ´1 ñ the roots of ppλq are in Sp1q.

Ÿ

(OPTIONAL)*************************************
The Routh criterion can be used also for determining if the

roots of a polynomial are inside the following region of the
complex plane

Tpθq :“ tλ P Cn :
π

2
` θ ă Argpλq ă

3π

2
´ θu (37)

where θ P r0, π2 q. We may require that the modes show as less
oscillations as possible. This exactly correspond to require that
the eigenvalues of A be inside a region Tpθq with given θ,
i.e. with a damping as close to 1 as possible. The following
proposition holds true.

Proposition 3.2: The polynomial ppλq has all roots in Tpθq
if and only if ppejθλqppe´jθλq has all roots in Sp0q, i.e.
ppejθλqppe´jθλq is Hurwitz.
Proof. Indeed, ppλq has a root λ if and only if
ppejθλqppe´jθλq has two complex conjugate roots e¯jθλ.
Moreover, Argpe¯jθλq “ ¯θ ` Argpλq. The root e¯jθλ
has negative real part if and only if Argpe¯jθλq P pπ2 ,

3π
2 q

and, therefore, if and only if Argpλq P pπ2 ` θ, 3π2 ´ θq.
�

************************************************
Exercize 3.2: Discuss for which values ofK P p´8,8q the

roots of ppλq “ λ2 ` λ`K are in Tpπ6 q.

By proposition 3.1 it is sufficient to discuss for which values
of K P p´8,8q

ppej
π
6 λqppe´j

π
6 λq

:“ rpej
π
6 λq2 ` pej

π
6 λq `Ksrpe´j

π
6 λq2 ` pe´j

π
6 λq `Ks

λ4 `
?
3λ3 ` pK ` 1qλ2 `Kp1`

?
3qλ`K2 (38)

is Hurwitz (recall that e˘jθ “ cos θ˘j sin θ). The Routh table
generated by ppλ´ αq is

rp4q

rp3q

rp2q

rp1q

rp0q

1 K ` 1 K2
?
3 Kp1`

?
3q

´K `
?
3

?
3K2

KpKp4`
?
3q´

?
3p1`

?
3qq

K´
?
3?

3K2

(39)

We can discuss the number of variations and permanencies in
the first column of the Routh table as follows.

0
?
3 1`

?
3

4`
?
3

?
3

rp4q

rp3q

rp2q

rp1q

rp0q

Therefore, we have

‚ for K “ 0, K “
?
3 1`

?
3

4`
?
3

and K “
?
3 the table is not

regular
‚ for K ă 0 the table is regular and NV ppq “ 2 and
NP ppq “ 2

‚ for K P p0,
?
3 1`

?
3

4`
?
3
q the table is regular and NV ppq “ 0

and NP ppq “ 4

‚ for K P p
?
3 1`

?
3

4`
?
3
,
?
3q the table is regular and NV ppq “

2 and NP ppq “ 2
‚ for K ą

?
3 the table is regular and NV ppq “ 2 and

NP ppq “ 2

We conclude by virtue of theorem 2.3

‚ for K “ 0, K “
?
3 1`

?
3

4`
?
3

and K “
?
3 the table in not

regular ñ ppej π6 λqppe´j π6 λq is not Hurwitz
‚ for K ă 0 or K ą

?
3 1`

?
3

4`
?
3

the table
is regular and N`pppej

π
6 λqppe´j π6 λqq “ 2 and

N´pppej
π
6 λqppe´j π6 λqq “ 2ñ ppej π6 λqppe´j π6 λq is not

Hurwitz
‚ for K P p

?
3 1`

?
3

4`
?
3
,
?
3q the table is reg-

ular and N`pppej
π
6 λqppe´j π6 λqq “ 0 and

N´pppej
π
6 λqppe´j π6 λqq “ 4 ñ ppej π6 λqppe´j π6 λq

is Hurwitz

On account of proposition 3.2

‚ for K ď 0 or K ě
?
3 1`

?
3

4`
?
3
ñ the roots of ppλq are not

in Tpπ6 q

‚ for K P p
?
3 1`

?
3

4`
?
3
,
?
3q ñ the roots of ppλq are in Tpπ6 q.

Ÿ
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IV. I/S AND I/O STABILITY

Let us consider the system

9xptq “ Axptq `Buptq,
yptq “ Cxptq `Duptq, (40)

with initial state x0 “ x0. Let xp0q, yp0q denote the unforced
responses and xpuq, ypuq the forced responses. The asymptotic
behaviour of its solutions, i.e. when t tends to infinity, can be
analyzed with respect to the input uptq when x0 “ 0.

Definition 4.1: A system (40) is input-to-state stable in the
zero state (0-I/S stable) if for each input function u such that
suptě0 }uptq} ă M for some M ą 0 there exists N ą 0 such
that

sup
tě0

}xpuqpt,uq} ă N. (41)

A system (40) is input-to-output stable in the zero state (0-I/O
stable) if for each input function u such that suptě0 }uptq} ă
M for some M ą 0 there exists N ą 0 such that

sup
tě0

}ypuqpt,uq} ă N. (42)

The above definitions require that the forced (state or output)
responses be bounded with bounded inputs. Non-zero initial
conditions x0 are taken into account in the next definitions.

Definition 4.2: A system (40) is input-to-state stable (I/S
stable) if for each x0 P Rn and input function u such that
suptě0 }uptq} ă M for some M ą 0 there exists N ą 0 such
that

sup
tě0

}xpt, x0,uq} ă N,

lim
tÑ`8

}xp0qpt, x0q} “ 0. (43)

A system (40) is input-to-output stable (I/O stable) if for each
x0 P Rn and input function u such that suptě0 }uptq} ăM for
some M ą 0 there exists N ą 0 such that

sup
tě0

}ypt, x0,uq} ă N,

lim
tÑ`8

}yp0qpt, x0q} “ 0. (44)

The above definition of I/S require that the state response be
bounded with bounded inputs and for each initial condition
x0 (the bound depends also on x0) with asymptotic stability.
Hence, a necessary condition for I/S stability is asymptotic
stability. Moreover, I/S stability implies I/O stability (the
converse is false) and I/S (resp. O/S) stability implies 0-I/S
(resp. 0-I/O) stability. Surprisingly, asymptotic stability is also
a sufficient condition for I/S stability.

Theorem 4.1: A system (40) is I/S stable if and only if it is
asymptotically stable.
It turns out that 0-I/S, resp. 0-I/O, stability depends exclusively
on the poles of Hpsq “ psI ´ Aq´1B, resp. Wpsq “ CpsI ´
Aq´1B `D.

Theorem 4.2: A system (40) is 0-I/S stable (resp. 0-I/O
stable) if and only if the poles of Hpsq (resp. Wpsq) are all in
C´.

Proof. This follows easily in the Laplace domain from

Lrxpuqpt,uqspsq “ Hpsqupsq,
Lrypuqpt,uqspsq “ Wpsqupsq (45)

and the residuals theorem. �
As for asymptotic stability it is necessary and sufficient

that the eigenvalues of A be all in C´, for I/O stability
it is necessary and sufficient that the poles of Wpsq be all
in C´. These are two crucial issues in control design and
should be always guaranteed by the designer, according to the
mathematical model (in time or Laplace domain) we work
with.

V. EIGENVALUES AND POLES PLACEMENT VERSUS
SYSTEM’S PERFORMANCES

The position of poles of Wpsq or the eigenvalues of A in
C´ is a crucial issue in control design. In particular, it is
important to place this eigenvalues or poles in some subregions
of C´ like for example Spαq or Ipθq to guarantee certain
performances of the state or output responses. In this section
we will try to explain this point, referring to systems with
an I/O transfer function characterized by one real pole (first
order systems) and, respectively, by a couple of complex
conjugate poles (second order systems). A reason for the
analysis being restricted to first and second order systems is
that the I/O transfer function Wpsq of a system (with n poles)
is comparable with a good approximation to that of a second
order system (with 2 complex conjugate poles, which are also
the dominant poles). Moreover, we consider the response of
the system to step inputs, which are usually adopted by the
designer for testing the system’s performances.

A. First order systems

Consider the system with I/O transfer function

Wpsq “
1

1` sτ
(46)

with τ ą 0. The parameter τ is the time constant associated
to the pole (or eigenvalue) s “ λ :“ ´ 1

τ of (46). The step
output response to an input uptq :“ δp´1qptq is

ypuqpt,uq “ L´1rWpsqLruptqspsqsptq

“ L´1r
1

sp1` sτq
s “ p1´ e´

t
τ qδp´1qptq

Note that

ypssq “ lim
tÑ`8

ypuqpt,uq “ 1 “ Wp0q

which is the asymptotic value or steady state value of the
output response ypforcedqptq. The difference

yptrqptq “ ypuqpt,uq ´ ypssq “ e´
t
τ

is the transient output response, which tends to asymptotically
vanish: i.e. limtÑ`8 yptrqptq “ 0. For t “ τ sec the transient
response is within 36.8% of its steady-state value, for t “ 2τ
sec the transient response is within 13.5% of its steady-state
value ypssq and for t “ 3τ sec the transient response is within
5% of its steady-state value ypssq. Therefore, it takes 3τ sec
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for the output response to remain within %5 of its steady-state
value. After 7τ sec the output response remains within %0.09
of its steady-state value.

The p%5q-settling time (denoted by T
p%5q
a ) is the time

instant for which the output response ypforcedqptq remains for
all subsequent times within %5 of its steady-state value:

|yptrqptq| ď 0.05|ypssq|, @t ě T p%5q
a .

As mentioned above it takes 3τ sec for the output response
to remain within %5 of its steady-state value and therefore
we have T p%5q

a “ 3τ . In order to guarantee a fast response
of the system, we need to have small values of T p%5q

a “ 3τ
and therefore of τ . This corresponds to place the real pole (or
eigenvalue) s “ λ :“ ´ 1

τ in a region of the form Spαq for a
large α ą 0.

On the other hand, it takes t « 2.2τ sec for the output
response response going from %10 to %90 of its steady-state
value ypssq. The p%10 Ñ %90q-rise time (T p%10Ñ%90q

r ) is
the period of time needed for the output response ypuqpt,uq
passing from %10 to %90 of its steady-state value ypssq:

T p%10Ñ%90q
r :“ T p%90q ´ T p%10q

where T p%90q and T p%10q are the times for which
ypuqpT p%90q,uq “ 0.9ypssq and, respectively,
ypuqpT p%10q,uq “ 0.1ypssq.

B. Second order systems

Consider the system with I/O transfer function

Wpsq “
1

1` 2ζs
ωn
` s2

ω2
n

(47)

with ωn ą 0 and ζ P p0, 1q. The parameters ωn and ζ are the
natural frequency and, respectively, the damping associated to
the pair of complex conjugate poles (or eigenvalues)

s “ λ “ ´ωnpζ ` j
a

1´ ζ2q,

s˚ “ λ˚ “ ´ωnpζ ´ j
a

1´ ζ2q, (48)

which are the roots of the polynomial 1 ` 2ζs
ωn

` s2

ω2
n

, the
denominator of (47). The step output response is after some
calculations

ypuqpt,uq “ L´1rWpsqLruptqspsqsptq

“ L´1r
1

sp1` 2ζs
ωn
` s2

ω2
n
q
sptq

“ p1´
1

a

1´ ζ2
e´ωnζt sinpωn

a

1´ ζ2t` φqqδp´1qptq

(49)

with

φ :“ arctan

a

1´ ζ2

ζ
“ arcsin

a

1´ ζ2 “ arccos ζ.

The function ypuqpt,uq has local minimum and maximum
points and tends to Wp0q “ 1 as t Ñ `8 (its steady-
state value ypssq). The local maximum and minimum points

of ypuqpt,uq are found by seeking for the zeroes of its first
order derivative:

0 “
d

dt
ypuqpt,uq

“ ´
e´ωnζt
a

1´ ζ2
r´ωn

a

1´ ζ2 cospωn
a

1´ ζ2t` φq

`ζ sinpωn
a

1´ ζ2t` φqs (50)

or equivalently
a

1´ ζ2

ζ
“ tanpωn

a

1´ ζ2 ` φq (51)

which, on account of the definition of φ, has the roots

t˚h “
hπ

ωn
a

1´ ζ2
, h “ 0, 1, . . . (52)

From here we obtain the values of the local minimum (for
even h) and maximum (for odd h) points

ypuqpt˚h,uq “ 1´
e
´

hπζ?
1´ζ2

a

1´ ζ2
sinphπ ` φq

“ 1´ p´1qhe
´

hπζ?
1´ζ2 , h “ 0, 1, . . . (53)

Note that the response ypuqpt,uq has a global minimum at
t˚0 “ 0 with ypuqpt˚0 ,uq :“ ymin :“ 0 and a global maximum
at t˚1 “

π

ωn
?

1´ζ2
, with

ypuqpt˚1 ,uq :“ ymax :“ 1` e
´

πζ?
1´ζ2 (54)

The quantity

ps :“ ymax ´ 1 “ e
´

πζ?
1´ζ2 (55)

is the maximal overshooting of the response ypuqpt,uq. The
maximal overshooting is the maximal displacement in excess
of the response ypuqpt,uq from its steady-state value ypssq,
after the first time T pssq for which ypuqpt,uq crosses its steady
state value ypssq. In general, the maximal overshoot is given in
% units: psp%q :“ pymax´1q100. For not stressing the system
too much, in practical situations it is convenient to have the
smallest as possible maximal overshooting ps. From (55) we
see that ps is a decreasing function of the damping ζ and ps
decreases from 1 to 0 as the damping ζ increases from 0 to
1. Therefore, in order to minimize the maximal overshooting
it is necessary to have the damping of the poles as close as
possible to 1, i.e. to have the poles of Wpsq as close as possible
to the real negative axis. This corresponds to place the pair of
complex conjugate poles (or eigenvalues) (48) in a region of
the form Ipθq for θ as close as possible to π{2.

Another important parameter for the analysis of the forced
response is the p5%q-settling time T

p5%q
s . For designing a

control system with prompt output response in the sense that
the transient response yptrqptq “ ypuqpt,uq ´ ypssq has a high
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convergence rate, it is convenient to have the smallest possible
values of T p5%qs . Since

|ypuqpt,uq ´ ypssq|
|ypssq|

“ |
1

a

1´ ζ2
e´ωnζt sinpωn

a

1´ ζ2t` φq|

ď
1

a

1´ ζ2
e´ωnζt (56)

an upper bound T
p5%q

s for the settling time T p5%qs (i.e. T
p5%q

s ě

T
p5%q
s ) is obtained from the equation

1
a

1´ ζ2
e´ωnζT

p5%q
s “ 0.05 (57)

from which

T
p5%q

s “

ln 20` ln 1?
1´ζ2

ωnζ
(58)

and it is a decreasing function of the product ζωn. Since from
(48) the product ωnζ is the absolute value of the real part of
the poles ps, s˚q of Wpsq and since ζ is picked to determine
the maximal overshooting (55), in order to minimize T

p5%q

s

we can maximize ωn.


