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Notes on Linear Control Systems: Module II
Stefano Battilotti

Abstract—State and output solutions of a linear differential
model: the matrix exponential. Natural modes and modal decom-
position. Structural properties of natural modes: observability
from the outputs and excitability with impulsive inputs.

I. SOLUTIONS OF LINEAR MODELS

From now on we will consider the class of differential
models

9xptq “ Axptq `Buptq

yptq “ Cxptq `Duptq (1)

where xptq P Rn is the state vector, uptq P Rm the input
vector and yptq P Rp the output vector. In this chapter we
will characterize the solution xptq :“ xpt, x0,uq of (1) with
initial value x0 and piecewise continuous input function u :
Rě Ñ Rm. Using the matrix exponential (see appendix D),
we want to prove the following result.

Theorem 1.1: The solution of xpt, x0,uq of (1) is continu-
ous and unique over Rě and

xpt, x0,uq “ eAtx0 `

ż t

0

eApt´τqBupτqdτ (2)

Proof. By well-known facts from mathematical analysis the
solution of xpt, x0,uq of (1) is a function of time, defined
over Rě and uniquely determined from the initial value x0
and the input function u. For proving the claim, it is sufficient
to prove that (2) satisfies (1) for t ě 0. Therefore, on account
of (140) and by differentiating the left and right-hand parts of
(2)

d

dt
xpt, x0,uq “ AeAtx0 `Buptq `

ż t

0

AeApt´τqBupτqdτ

“ AeAtx0 `Buptq `A

ż J

0

eApt´τqBupτqdτ

“ AreAtx0 `

ż t

0

eApt´τqBupτqdτ s `Buptq

“ Axpt, x0,uq `Buptq (3)

which is the first equation of (1). This proves that the solution
xpt, x0,uq of (1) is (2). Ÿ

Similarly, we can prove the following result on the output
yptq :“ ypt, x0,uq of (1). Let δδδp0qptq denote the Dirac impulse
at t “ 0.
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Theorem 1.2: The output function ypt, x0,uq of (1) is
continuous and unique over Rě and

ypt, x0,uq “ CeAtx0 `

ż t

0

pCeApt´τqB ` δδδp0qpt´ τqDqupτqdτ

(4)

Proof. On account of (2) and from the second equation of (1)

ypt, x0,uq “ Cxpt, x0,uq `Duptq

“ CpeAtx0 `

ż t

0

eApt´τqBupτqdτq `Duptq

“ CeAtx0 `

ż t

0

pCeApt´τqB ` δδδp0qpt´ τqDqupτqdτ.Ÿ

Note that both (2) and (4) consist of two summands: the
first one is a linear function of x0, the initial value of the
state, and the second one is a function of the input u. We will
denote

xp0qpt, x0q :“ eAtx0 (5)

the unforced (or free) state response, stressing the fact that it is
the solution (2) under null input. On the other hand, we will
denote

xpuqpt,uq :“

ż t

0

eApt´τqBupτqdτ (6)

the forced state response, stressing the fact that it is the state
response under null initial state. Therefore, for each t ě 0

xpt, x0,uq “ xp0qpt, x0q ` xpuqpt,uq (7)

The solution of xpx0,uq of (1) can be obtained as the sum
of the solution of (1) with initial state x0 and null input
(xp0qpt, x0q) and the solution of (1) with null initial state x0
and input u (xpuqpt,uq ). Also, we denote

yp0qpt, x0q :“ CeAtx0 (8)

the unforced (or free) output response and

ypuqpt,uq :“

ż t

0

pCeApt´τqB ` δδδp0qpt´ τqDqupτqdτ (9)

the forced output response. For each t ě 0

ypt, x0,uq “ yp0qpt, x0q ` ypuqpt,uq (10)

The pnˆ nq matrix

Φptq :“ eAt (11)

is known as the state transition matrix while the pnˆmq matrix

Hptq :“ eAtB “ ΦptqB (12)
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is known as the state impulsive response matrix, since the i-th
column rHptqsi of Hptq is obtained as state response of (1)
by applying the input

uptq “ δδδp0qptq

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0
...
0
1
0
...
0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Ð (i-th component) (13)

Indeed, by direct calculations

xpuqpt,uq “

ż t

0

eApt´τqBupτqdτ

“

ż t

0

eApt´τqrBsiδδδ
p0q
pτqdτ

“

ż t

0

reApt´τqBsiδδδ
p0q
pτqdτ “ reAtBsi “ rHptqsi.

On the other hand, the ppˆ pq matrix

Wptq :“ CeAtB ` δδδp0qptqD (14)

is known as output impulsive response matrix, since its i-
th column rWptqsi is obtained as output response of (1) by
applying the input (13). Indeed, by direct calculations

ypuqpt,uq “

ż t

0

pCeApt´τqB ` δδδp0qpt´ τqDqupτqdτ

“

ż t

0

rCeApt´τqB ` δδδp0qpt´ τqDsiδδδ
p0q
pτqdτ

“ rCeAtB ` δδδp0qptqDsi “ rWptqsi.

II. STATE AND OUTPUT RESPONSE: TIME DOMAIN
ANALYSIS

In this chapter we study the properties of the state and
output responses of a linear model. In particular, we will
see that the state and output responses are superposition of
modes (modal decomposition). These modes are characterized
by some specific time functions which uniquely characterize
the behaviour of the state and output responses versus time.

III. MODAL DECOMPOSITION OF THE UNFORCED STATE
RESPONSE

We will study the modal decomposition for the unforced
state response in two simple cases. First, we assume that
the eigenvalues of the matrix A are all real and distinct
(aperiodic modes). Secondly, we assume that the eigenvalues
of the matrix A are all complex conjugate and pairwise
distinct (pseudoperiodic modes). Finally, we will show through
an example the structure of the modes when at least one
eigenvalue of the matrix A has multiplicity greater than one.

A. Case of distinct eigenvalues
1) Aperiodic modes: In this section we assume that the

eigenvalues of the matrix A are all real and distinct (i.e.
with algebraic multiplicity 1) and denote these eigenvalues
by λ1, . . . , λn, i.e. the roots of the characteristic polynomial
detpA´λiIq of A are λ1, . . . , λn. Therefore, the characteristic
polynomial of A factors out as

detpA´ λiIq “
n
ź

i“1

pλ´ λiq (15)

Let zi be an eigenvector associated to the eigenvalue λi, i.e.
a non-zero vector such that

pA´ λiIqzi “ 0 (16)

Also

pA´ λiIq
jzi “ 0, j ě 1. (17)

Since λ1, . . . , λn are real and distinct, the eigenvectors
z1, . . . , zn associated to λ1, . . . , λn are real and linearly in-
dependent. It follows the existence of unique reals c1, . . . , cn
such that

x0 “
n
ÿ

i“1

cizi (18)

Since the matrices λiI and A´ λiI commute, on account of
(141) and (142) we have

epA´λiIqt`λiIt ” eλitepA´λiIqt (19)

On account of (17), the unforced state response is given by

xp0qpt, x0q “ eAtx0 “
n
ÿ

i“1

epA´λiIqt`λiItcizi

“

n
ÿ

i“1

epA´λiIqteλiItcizi “
n
ÿ

i“1

cie
λitepA´λiIqtzi

“

n
ÿ

i“1

cie
λitp

8
ÿ

j“0

tj

j!
pA´ λiIq

jqzi “
n
ÿ

i“1

cie
λitzi

We sum up our result as follows.
Theorem 3.1: Assume that A has all real eigenvalues with

algebraic multiplicity 1. The unforced state response can be
decomposed as follows: for each t ě 0

xp0qpt, x0q “
n
ÿ

i“1

cie
λitzi (20)

The i-th term of the sum on the left of (20) is called
aperiodic mode and (20) is the modal decomposition of the
unforced state response. The modal decomposition (20) can
be interpreted from a geometric point of view as follows. The
vector

¨

˚

˝

c1
...
cn

˛

‹

‚

is the coordinate vector of x0 in the axis frame tz1, . . . , znu
(see (18)) and

¨

˚

˝

c1e
λ1t

...
cne

λnt

˛

‹

‚
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is at each time t ě 0 the coordinate vector of xp0qpt, x0qpx0q
in the axis frame tz1, . . . , znu . Therefore, the i-th aperiodic
mode is the (time-dependent) coordinate of xp0qpt, x0qpx0q
in the direction of the eigenvector zi associated to the real
eigenvalue λi of A.

Notice that if tz11, . . . , z
1
nu are a different set of eigenvectors

associated to λ1, . . . , λn and
¨

˚

˝

c11
...
c1n

˛

‹

‚

is the coordinate vector of of x0 in the axis frame tz11, . . . , z
1
nu,

i.e.

x0 “
n
ÿ

i“1

c1iz
1
i (21)

then

xp0qpt, x0q “
n
ÿ

i“1

cie
λitzi “

n
ÿ

i“1

c1ie
λitz1i (22)

In other words, the modes do not depend on how we choose
the set of eigenvectors, i.e. coordinate-free. Indeed, any two
distinct eigenvectors zi, z

1
i associated to the same λi are

necessarily parallel, i.e. z1i “ αizi for some real αi, therefore
c1i “

ci
αi

and

n
ÿ

i“1

c1ie
λitz1i “

n
ÿ

i“1

c1iαie
λitzi “

n
ÿ

i“1

cie
λitzi (23)

As it is clear from (20), the unforced state response is a
superposition of modes. We want to answer the following
question: is it possible to reconstruct each mode separately,
given the unforced state response? In principle, this is possible
by choosing the initial state x0 appropriately. If we want to
reconstruct the i-th aperiodic mode, choose x0 in such a way
that for some nonzero real ci

x0 “ cizi (24)

i.e. x0 is along the direction of the i-th eigenvector and with
coordinate ci. With this choice of x0 the sum in (20) reduces
to one term

xp0qpt, x0q “ cie
λitzi (25)

i.e. its i-th mode. This kind of operation is known as mode
isolation and we say that the i-th aperiodic mode has been
isolated from the unforced state response.

An aperiodic mode behaves in time according to the value
of the corresponding eigenvalue. A classification of the modes
comes natural according to the value of the corresponding
eigenvalue.

Definition 3.1: An aperiodic mode is said to be convergent,
divergent or constant according if its associated eigenvalue
satisfies λ ă 0, λ ą 0 or λ “ 0, respectively.
Therefore, a convergent mode tends to zero as t Ñ `8, a
divergent mode tends to infinity as t Ñ `8 and a constant
modes is constant for all times.

We can associate to a convergent/divergent aperiodic mode
a time constant τ defined as

τ :“ ´
1

λ
(26)

Note that τ ą 0 if and only if λ ă 0. The inverse formula are
given

λ “ ´
1

τ
(27)

In other words, for convergent modes smaller is τ more slowly
the mode converges to zero as t Ñ `8. The time constant
is the time for which the mode amplitude reduces by a factor
e « 2.7. Moreover, in terms of time constants the characteristic
polynomial (15) can be recast as

detpA´ λIq “
n
ź

i“1

pλ´ λiq

“

n
ź

i“1

λi

n
ź

i“1

p1` τiλq “ K
n
ź

i“1

p1` τiλq (28)

where λi is an eigenvalue, τi :“ ´ 1
λi

and K :“
śn
i“1 λi.

We explain the theoretical setting with an example.
Exercize 3.1: Given

A “

¨

˝

1 0 1
´2 ´1 ´1
2 2 0

˛

‚ (29)

calculate the unforced state response ensuing from

x0 “

¨

˝

1
0
0

˛

‚

at t “ 0.
Let us calculate the eigenvalues of A. We have

detpλI ´Aq “ det

¨

˝

λ´ 1 0 ´1
2 λ` 1 1
´2 ´2 λ

˛

‚

“ λ3 ´ λ “ λpλ´ 1qpλ` 1q

Therefore, the eigenvalues of A are λ1 “ 1, λ2 “ ´1 and
λ3 “ 0 and we have one divergent aperiodic mode, one
convergent aperiodic mode and a costant mode.

Calculate an eigenvector z1 associated to λ1, i.e. a nonzero
z1 such that

pA´ λ1Iqz1 “

¨

˝

0 0 1
´2 ´2 ´1
2 2 ´1

˛

‚z1 “ 0 (30)

Note that the rank of

pA´ λ1Iq “

¨

˝

0 0 1
´2 ´2 ´1
2 2 ´1

˛

‚ (31)

is 2. Therefore, it is sufficient to solve
ˆ

0 0 1
´2 ´2 ´1

˙

z1 “ 0 (32)
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for z1, i.e. we discard the third row of pA´λ1q which linearly
depends from its first two rows. Choose

z1 “

¨

˝

1
´1
0

˛

‚ (33)

Calculate an eigenvector z2 associated to λ2, i.e. a nonzero z2
such that

pA´ λ2Iqz2 “

¨

˝

2 0 1
´2 0 ´1
2 2 1

˛

‚z2 “ 0 (34)

Choose

z2 “

¨

˝

1
0
´2

˛

‚ (35)

Finally, calculate an eigenvector z3 associated to λ3, i.e. a
nonzero z3 such that

pA´ λ3Iqz3 “

¨

˝

1 0 1
´2 ´1 ´1
2 2 0

˛

‚z3 “ 0 (36)

Choose

z3 “

¨

˝

´1
1
1

˛

‚ (37)

Next, find the coordinates of x0 in the axis framework
tz1, z2, z3u, i.e. find the unique reals c1, c2, c3 such that

x0 “

¨

˝

1
0
0

˛

‚“

3
ÿ

j“1

cizi (38)

This can be easily done as follows. Note that (38) can be
written as

x0 “ Zc (39)

where

Z :“
`

z1 z2 z3
˘

, c :“

¨

˝

c1
c2
c3

˛

‚

But Z is nonsingular by construction since tz1, z2, z3u is a
basis of R3. Therefore

c “ Z´1x0 (40)

Therefore,

c “ Z´1x0 “

¨

˝

2 1 1
1 1 0
2 2 1

˛

‚

¨

˝

1
0
0

˛

‚“

¨

˝

2
1
2

˛

‚ (41)

The unforced state response ensuing from x0 at t “ 0 is given
by

xp0qpt, x0q “ eAtx0 “
3
ÿ

j“1

eλitcizi

“ 2et

¨

˝

1
´1
0

˛

‚` e´t

¨

˝

1
0
´2

˛

‚` 2

¨

˝

´1
1
1

˛

‚

“

¨

˝

2et ` e´t ´ 2
´2et ` 2
´2e´t ` 2

˛

‚.Ÿ (42)

2) Pseudoperiodic modes: In this section we assume that
the eigenvalues of the matrix A are all complex conjugate
and distinct (i.e. with algebraic multiplicity 1) and denote
these eigenvalues by µ1, µ

˚
1 . . . , µn{2, µ

˚
n{2. The characteristic

polynomial of A factors out as

detpA´ λIq “

n{2
ź

i“1

pλ´ µiqpλ´ µ
˚
i q (43)

Let qi be an eigenvector associated to the eigenvalue µi, i.e.

pA´ µiIqqi “ 0 (44)

Denote by αi and ωi the real and, respectively, imaginary part
of µi, i.e.

µi :“ αi ` jωi

and by vi and wi the real and, respectively, imaginary part of
qi, i.e.

qi :“ vi ` jwi

By considering the real and imaginary part of pA ´ µiIqqi
separately, we obtain from (44)

pA´ αiIqvi ` ωiwi “ 0

pA´ αiIqwi ´ ωivi “ 0 (45)

By induction we can prove that for all j “ 0, 1, . . .

pA´ αiIq
2j`1vi “ ´p´1qjω2j`1

i wi

pA´ αiIq
2jvi “ p´1qjω2j

i vi

pA´ αiIq
2j`1wi “ p´1qjω2j`1

i wi

pA´ αiIq
2jwi “ p´1qjω2j

i vi (46)

Since µ1, . . . , µn are complex conjugate and distinct,
tv1, w1, . . . , vn{2, wn{2u is a set of real independent vec-
tors and a basis for Rn. Therefore, there exist unique reals
g1, h1, . . . , gn{2, hn{2 such that

x0 “

n{2
ÿ

i“1

pgivi ` hiwiq (47)

On account of (46) and since A´ αiI and αiI commute, for
each t ě 0 we have

xp0qpt, x0q “ eAtx0

“

n{2
ÿ

i“1

epA´αiIqt`αiItpgivi ` hiwiq

“

n{2
ÿ

i“1

epA´αiIqteαiItpgivi ` hiwiq

“

n{2
ÿ

i“1

eαitepA´αiIqtpgivi ` hiwiq

“

n{2
ÿ

i“1

eαitp
8
ÿ

j“0

tj

j!
pA´ αiIq

jqpgivi ` hiwiq (48)
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and after some computations

n{2
ÿ

i“1

eαitp
8
ÿ

j“0

tj

j!
pA´ αiIq

jqpgivi ` hiwiq

“

n{2
ÿ

i“1

eαitpvipgi cospωitq ` hi sinpωitqq

`wiphi cospωitq ´ gi sinpωitqqq

In order to write the last expression in a more picturesque
form, let us define mi as

mi :“
b

g2i ` h
2
i (49)

and φi such that

sinφi :“
gi
mi

, cosφi :“
hi
mi

(50)

Using the fact that for any pair of angles pψ, φq

sinpψ ` φq :“ sinpψq cospφq ` sinpφq cospψq,

cospψ ` φq “ cospψq cospφq ´ sinpψq sinpφq (51)

we obtain the final result.
Theorem 3.2: Assume that A has all complex conjugate

eigenvalues with algebraic multiplicity 1. The unforced state
response can be decomposed as follows: for each t ě 0

xp0qpt, x0q “

n{2
ÿ

i“1

mie
αitpvi sinpωit` φiq

`wi cospωit` φiqq (52)

The i-th term of the sum in the last expression of (65) is called
pseudoperiodic mode and (65) is the modal decomposition of
the unforced state response. The modal decomposition (65)
can be interpreted from a geometric point of view as follows:
if

¨

˚

˚

˚

˚

˚

˝

g1
h1
...

gn{2
hn{2

˛

‹

‹

‹

‹

‹

‚

are the coordinates of x0 in the axis frame
tv1, w1, . . . , vn{2, wn{2u, then

¨

˚

˚

˚

˚

˚

˝

m1e
α1t sinpω1t` φ1q

m1e
α1t cospω1t` φ1q

...
mn

2
e
αn

2
t
sinpωn

2
t` φn

2
q

mn
2
e
αn

2
t
cospωn

2
t` φn

2
qs

˛

‹

‹

‹

‹

‹

‚

are at each time t ě 0 the coordinates of xp0qpt, x0qpx0q
in the same axis frame tv1, w1, . . . , vn{2, wn{2u. Therefore,
an aperiodic mode is the (time-dependent) component of
xp0qpt, x0qpx0q in the plane spanned by the vectors tvi, wiu.

Note that if tv11, w
1
1, . . . , v

1
n{2, w

1
n{2u are a different set of

real independent vectors defining the eigenvectors q11, . . . q
1
n{2

associated to the eigenvalues µ1, . . . , µn{2 and the reals

g11, h
1
1, . . . , g

1
n{2, h

1
n{2 are the coordinates of x0 in the axis

frame tv11, w
1
1, . . . , v

1
n{2, w

1
n{2u and if

m1i :“
b

pg1iq
2 ` ph1iq

2, (53)

and φ1i is such that

sinφ1i :“
g1i
m1i

, cosφi :“
h1i
m1i

(54)

it is easy to see that

xp0qpt, x0q “

n{2
ÿ

i“1

mie
αitrvi sinpωit` φiq

`wi cospωit` φiqq

“

n{2
ÿ

i“1

m1ie
αitpv1i sinpωit` φ

1
iq ` w

1
i cospωit` φ

1
iqq (55)

In other words, the modes do not depend on how we choose
the eigenvector basis, i.e. coordinate-free. Indeed, q1i “ pαi `
jβiqqi for some reals αi, βi since q1i and qi are eigenvectors
associated to the same µi. Therefore

v1i ` jw
1
i “ qi “ pαi ` jβiqqi “ pαi ` jβiqpvi ` jwiq

“ αivi ´ βiwi ` jpαiwi ` βiviq (56)

so that
ˆ

v1i
w1i

˙

“

ˆ

αi ´βi
βi αi

˙ˆ

vi
wi

˙

It follows that
ˆ

g1i
h1i

˙

“

ˆ

αi ´βi
βi αi

˙´1ˆ
gi
hi

˙

“
1

α2
i ` β

2
i

ˆ

αi βi
´βi αi

˙ˆ

gi
hi

˙

and

m1i :“
b

pg1iq
2 ` ph1iq

2 “

b

g2i ` h
2
i “ mi (57)

and
ˆ

sinφ1i
cosφ1i

˙

:“

¨

˝

g1i
m1i
h1i
m1i

˛

‚“
1

mipα2
i ` β

2
i q

ˆ

αi βi
´βi αi

˙ˆ

gi
hi

˙

(58)

It follows that
`

v1i w1i
˘

ˆ

sinφ1i
cosφ1i

˙

“
1

mipα2
i ` β

2
i q

`

vi wi
˘

ˆ

αi ´βi
βi αi

˙ˆ

αi βi
´βi αi

˙ˆ

gi
hi

˙

“
1

mi

ˆ

gi
hi

˙

“
`

vi wi
˘

ˆ

sinφi
cosφi

˙

(59)

which implies (55).
As it is clear from (20), the unforced state response is a sum

of modes. Is it possible to reconstruct each mode separately
given the unforced state response? In principle, this is possible
by choosing the initial state x0 appropriately. If we want to
reconstruct the i-th pseudoperiodic mode, choose x0 in such
a way that for some (at least one nonzero) reals ci, di

x0 :“ givi ` hiwi (60)
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i.e. on the plane spanned by the vectors tvi, wiu with coor-
dinates pci, diq. Therefore, the sum in (65) boils down to one
term

xp0qpt, x0q “ mie
αitpvi sinpωit` φiq

`wi cospωit` φiqq (61)

i.e. its i-th mode. Also in this case we say that the i-th
pseudoperiodic mode has been isolated from the unforced state
response.

A pseudoperiodic mode behaves differently in time accord-
ing to the value of the real part of its corresponding eigenvalue.
A similar classification to aperiodic modes is possible for
pseudoperiodic modes.

Definition 3.2: A pseudoperiodic is said to be convergent,
divergent or periodic according if the real part of its associated
pair of complex conjugate eigenvalues satisfies α ă 0, α ą 0
or α “ 0, respectively.
Therefore, the magnitude of a convergent mode tends to
zero as t Ñ `8, in a divergent mode tends to infinity as
t Ñ `8 and in a periodic mode remain constant for all
times. Moreover, the oscillation frequency is proportional to
the imaginary part of its corresponding eigenvalue.

We can associate to a convergent/divergent pseudoperiodic
mode the natural frequency ωn and damping ζ defined as

ωn :“
a

α2 ` ω2, ζ :“ ´
α

ωn
(62)

Clearly |ζ| ď 1 and ωn ą 0 (the limit values ζ “ ˘1
correspond to a pair of coincident real eigenvalues). Note that
ζ P p0, 1q if and only if α ă 0. The inverse formulas are given

α “ ´ζωn, ω “ ωn
a

1´ ζ2 (63)

In other words, for convergent modes by decreasing ζ and
keeping ωn constant the oscillation frequency increases and
the convergence to zero is slowed down. On the other hand, by
increasing ωn and keeping ζ constant the convergence to zero
speeds up while the oscillation frequency decreases. More-
over, in terms of the parameters ωn and ζ the characteristic
polynomial (43) can be recast as

detpA´ λIq “

n{2
ź

i“1

pλ´ µiqpλ´ µ
˚
i q

“

n
2
ź

i“1

ω2
n,i

n
2
ź

i“1

p1` 2λ
ζi
ωn,i

`
λ2

ω2
n,i

q

“ K

n
2
ź

i“1

p1` 2λ
ζi
ωn,i

`
λ2

ω2
n,i

q (64)

where K :“
ś

n
2
i“1 ω

2
n,i.

B. Aperiodic and pseudoperiodic modes

By combining the result of the previous two sections we
obtain the modal decomposition of the unforced state response
in the case of distinct (either real or complex conjugate)
eigenvalues of A. Let λ1, . . . , λr (r ď n) be the distinct
real eigenvalues and µ1, µ

˚
1 , . . . , µn´r

2
, µ˚n´r

2

be the distinct

conjugate complex eigenvectors of A. Moreover, let z1, . . . , zr
be the eigenvectors associated to λ1, . . . , λr and q1, . . . , qn´r

2

the eigenvectors associated to µ1, . . . , µn´r
2

(assuming n´ r
even), with µi :“ αi` jωi and qi :“ vi` jwi. With the usual
notations we have

xp0qpt, x0q “
r
ÿ

i“1

cie
λitzi

`

n´r
2
ÿ

i“1

mie
αitpvi sinpωit` φiq ` wi cospωit` φiqq

(65)

Exercize 3.2: Given

A “

¨

˝

1 0 0
0 0 1
0 ´2 ´2

˛

‚ (66)

calculate the unforced state response ensuing from

x0 “

¨

˝

1
0
2

˛

‚.

at t “ 0.
Let us calculate the eigenvalues of A. We have

detpλI ´Aq “ det

¨

˝

λ´ 1 0 0
0 λ ´1
0 2 λ` 2

˛

‚

“ pλ´ 1qpλ2 ` 2λ` 2q

Therefore, the eigenvalues of A are λ1 “ 1 and

µ1 “ α1 ` jβ1 “ ´1` j

µ2 “ α2 ` jβ2 “ µ˚1 “ ´1´ j (67)

and we have one divergent aperiodic mode and one convergent
pseudoperiodic mode. Clearly, to represent µ1 as α1 ` jω1

we set α1 :“ ´1 and β1 :“ 1. Calculate an eigenvector z1
associated to λ1, i.e. a nonzero z1 such that

pA´ λ1Iqz1 “

¨

˝

0 0 0
0 ´1 1
0 ´2 ´3

˛

‚z1 “ 0 (68)

Choose

z1 “

¨

˝

1
0
0

˛

‚ (69)

Calculate an eigenvector q1 associated to µ1, i.e. a nonzero q1
such that

pA´ λ1Iqq1 “

¨

˝

2´ j 0 0
0 1´ j 1
0 ´2 ´1´ j

˛

‚q1 “ 0 (70)

Note that the rank of

pA´ λ1Iq “

¨

˝

0 0 0
0 ´1 1
0 ´2 ´3

˛

‚ (71)



7

is 2 (over the set of complex numbers C). Indeed, the third
row is equal to the second multiplied by ´1 ´ j. Therefore,
it is sufficient to solve

ˆ

2´ j 0 0
0 1´ j 1

˙

z2 “ 0 (72)

for q1, i.e. we discard the third row of pA´q1Iq which linearly
depends from the second row. Choose

q1 “

¨

˝

0
1

´1` j

˛

‚ (73)

The eigenvector q1 can be written as

q1 “ v1 ` jw1 “

¨

˝

0
1
´1

˛

‚` j

¨

˝

0
0
1

˛

‚ (74)

Finally, calculate an eigenvector q2 associated to µ2, i.e. a
nonzero q2 such that

pA´ λ2Iqq2 “

¨

˝

1 0 1
´2 ´1 ´1
2 2 0

˛

‚q2 “ 0 (75)

Since q2 “ q˚1 , this can be always done by choosing µ2 “ µ˚1 ,

q2 “ q˚1 “

¨

˝

0
1

´1´ j

˛

‚ (76)

Next, find the coordinates of x0 in the basis tz1, v1, w1u, i.e.
find the unique reals c1, g1, h1 such that

x0 “

¨

˝

1
0
2

˛

‚“ c1z1 ` g1v1 ` h1w1 (77)

This can be easily done as follows. Note that (77) can be
written as

x0 “ Zc (78)

where

Z “
`

z1 v1 w1

˘

, c “

¨

˝

c1
g1
h1

˛

‚

On account of the fact that Z is nonsingular by construction
since tz1, v1, w1u is a basis of R3, we readily have

c “ Z´1x0 (79)

Therefore,

c “ Z´1x0 “

¨

˝

1 0 0
0 1 0
0 1 1

˛

‚

¨

˝

1
0
2

˛

‚“

¨

˝

1
0
2

˛

‚ (80)

Next, define

m1 :“
b

g21 ` h
2
1 “ 2 (81)

and ϕ1 as the angle such that

sinϕ1 :“
g1
m1

“ 2, cosϕ1 :“
h1
m1

“ 1

Since tanϕ1 “
g1
h1
“ 0 we get ϕ1 “ arctan 0 “ 0 or ϕ1 “

arctan 0 ` π “ π according if g1 ě 0 or g1 ă 0 (arctan
denotes the principal arc tangent function and its argument
ranges in p´π

2 ,
π
2 s). In this case, since g1 “ 0 we have ϕ1 “ 0.

The unforced state response ensuing from x0 at t “ 0 is

xp0qpt, x0q “ eAtx0 “ eλ1tc1z1

`m1e
α1tpv1 sinpω1t` φ1q ` w1 cospω1t` φ1qq

“ et

¨

˝

1
0
0

˛

‚` 2e´tp

¨

˝

0
1
´1

˛

‚sinptq `

¨

˝

0
0
1

˛

‚cosptqq

“

¨

˝

et

2e´t sinptq
2e´tp´ sinptq ` cosptqq

˛

‚.Ÿ (82)

C. Eigenvalues with multiplicity greater than one: the case of
the pendulum

Consider the linearized simple pendulum around null an-
gular position and velocity (see (13), Module I) under the
condition that

k2

m2
“ 4

g

l
(83)

and calculate the unforced state response. In this case the two
eigenvalues of the matrix

A “

ˆ

0 1
´
g
l ´ k

m

˙

(84)

are both equal to λ :“ ´ k
2m . Notice that dim KerpA´λIq “ 1

since

A´ λI “

ˆ

k
2m 1
´
g
l ´ k

2m

˙

(85)

and det pA ´ λIq “ 0 on account of (83). We can construct
one chain of two generalized eigenvectors as follows. An
eigenvector zp1q of order one is obtained as usual from the
equation

pA´ λIqzp1q “ 0, (86)

for example

zp1q “

ˆ

1
´ k

2m

˙

(87)

An eigenvector zp2q of order two, independent from zp1q, is
obtained from the equation

pA´ λiIqz
p2q “ zp1q, (88)

for example

zp2q “

ˆ

1
1´ k

2m

˙

(89)

We recall that an eigenvector zpkq of order k ě 1 is a nonzero
vector such that

pA´ λiIq
k´1zpkq ‰ 0

pA´ λiIq
kzpkq “ 0.
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The set tzp1q, zp2qu form a basis of R2. If cp1q and cp2q are
reals such that

x0 “ cp1qzp1q ` cp2qzp2q, (90)

by similar calculations as for distinct eigenvalues the unforced
state response is

xp0qpt, x0q “ eAtx0

“ eλtrcp1qzp1q ` cp2qzp2q ` tcp2qzp1qs

“ e´
k

2m trpcp1q ` tcp2qq

ˆ

1
´ k

2m

˙

` cp2q
ˆ

1
1´ k

2m

˙

s

“ e´
k

2m trtcp2q
ˆ

1
´ k

2m

˙

`

ˆ

cp1q ` cp2q

´cp1q k
2m ` c

p2qr1´ k
2m s

˙

s

(91)

where the last expression represents the aperiodic (convergent)
natural mode. If for instance

x0 “

ˆ

1
1

˙

(92)

we readily get
ˆ

cp1q

cp2q

˙

“
`

zp1q zp2q
˘´1

x0 “

ˆ

1 1
´ k

2m 1´ k
2m

˙´1ˆ
1
1

˙

“

ˆ

1´ k
2m ´1
k
2m 1

˙ˆ

1
1

˙

“

ˆ

´ k
2m

1` k
2m

˙

(93)

In general, for each eigenvalue we obtain a certain number
of chains of generalized eigenvectors (with increasing order)
which altogether form a basis of Rn. The maximum length of
the chains is equal to the multiplicity of the eigenvalue in the
polynomial obtained as the m.c.m. of all the denominators of
the entries of the matrix

pλI ´Aq´1 (94)

which is called minimal polynomial of A. In the above
example we have

pλI ´Aq´1 “
1

pλ` k
2m q

2

ˆ

λ` k
m 1

´
g
l λ

˙

(95)

and the minimal polynomial is pλ` k
2m q

2. Therefore, we have
only one chain of two generalized eigenvectors, i.e. zp1q and
zp2q.

IV. MODAL DECOMPOSITION OF THE UNFORCED OUTPUT
RESPONSE

Using the modal decomposition of the unforced state re-
sponse and assuming for simplicity distinct eigenvalues, we
can decompose the unforced output response as follows

yp0qpt, x0q “ CeAtx0 “
r
ÿ

i“1

cie
λitCzi

`

n´r
2
ÿ

i“1

mie
αitpsinpωit` φiqCvi ` cospωit` φiqCwiq

By selecting in a suitable way the initial state x0 we can
reconstruct each mode separately from the observation of the
unforced output response.

Definition 4.1: A mode which can be isolated from the
unforced output response is said to be observable from the
outputs.
By inspection of the modal decomposition of the unforced out-
put response we obtain the following necessary and sufficient
condition for observability of a mode.

Proposition 4.1: The i-th aperiodic mode, i “ 1, . . . , r, is
observable from the outputs if and only if

Czi ‰ 0

while the i-th pseudoperiodic mode, i “ 1, . . . , pn ´ rq{2, is
observable from the outputs if and only if

C
`

vi wi
˘

‰
`

0 0
˘

.

Exercize 4.1: Let A be as in (66) and

C “
`

0 1 1
˘

. (96)

Calculate the unforced output response ensuing from

x0 “

¨

˝

1
0
2

˛

‚

at t “ 0. We have already calculated the unforced state
response ensuing from the intial state x0 at t “ 0

xp0qpt, x0q “ eAtx0 “ eλ1tc1z1

`m1e
α1tpv1 sinpω1t` φ1q ` w1 cospω1t` φ1qq

“ et

¨

˝

1
0
0

˛

‚` 2e´tp

¨

˝

0
1
´1

˛

‚sinptq `

¨

˝

0
0
1

˛

‚cosptqq

“

¨

˝

et

2e´t sinptq
2e´tp´ sinptq ` cosptqq

˛

‚

The unforced output response ensuing from x0 is

yp0qpt, x0q “ CeAtx0 “ eλ1tc1Cz1

`m1e
α1tpCv1 sinpω1t` φ1q ` Cw1 cospω1t` φ1qq

“ 2e´t cosptq

Since Cz1 “ 0 and C
`

v1 w1

˘

“
`

0 2
˘

only the pseudope-
riodic mode is observable from the outputs. Ÿ

V. MODAL DECOMPOSITION OF THE FORCED STATE AND
OUTPUT RESPONSE (OPTIONAL)

In this section we will study the modal properties of the
forced state response. For simplicity, we will study only the
case of distinct eigenvalues of A. Let λ1, . . . , λr (r ď n) be the
real eigenvalues and µ1, . . . , µn´r

2
(assuming n´r even), with

µi :“ αi ` jωi, be the complex conjugate eigenvalues. More-
over, let z1, . . . , zr the eigenvectors associated to λ1, . . . , λr
and q1, . . . , qn´r

2
the eigenvectors associated to µ1, . . . , µn´r

2
,

with qi :“ vi ` jwi. The vectors

tz1, . . . , zr, v1, w1, . . . , vn´r
2
, wn´r

2
u
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form a basis for Rn. Let
ci1, . . . , cir, gi1, hi1, . . . , gi,n´r2

, hi,n´r2
be the unique reals

such that

rBsj “
r
ÿ

i“1

ci,jzi `

n´r
2
ÿ

i“1

pgi,jvi ` hi,jwiq (97)

where rBsj is the j-th column of B. Also, define mi,j as

mi,j :“
b

g2i,j ` h
2
i,j (98)

and φi,j such that

sinφi,j :“
gi,j
mi,j

, cosφi,j :“
hi,j
mi,j

(99)

As for the unforced state response (with the roles of x0 and
Bj interchanged) we have

rHptqsj “ eAtrBsj “
r
ÿ

i“1

eλitci,jzi

`

n´r
2
ÿ

i“1

mi,je
αitpvi sinpωit` φi,jq ` wi cospωit` φi,jqq

In conclusion, we can decompose the forced state response as
follows

xpuqpt,uq “

ż t

0

eApt´τqBupτqdτ

“

m
ÿ

j“1

ż t

0

eApt´τqrBsjrupτqsjdτ

“

m
ÿ

j“1

ż t

0

r
ÿ

i“1

eλipt´τqci,jzirupτqsjdτ `

`

m
ÿ

j“1

ż t

0

n´r
2
ÿ

i“1

mi,je
αitpvi sinpωipt´ τq ` φi,jq

`wi cospωipt´ τq ` φi,jqqrupτqsjdτ

“

r
ÿ

i“1

zip
m
ÿ

j“1

ci,j

ż t

0

eλipt´τqrupτqsjdτq `

`

n´r
2
ÿ

i“1

tvip
m
ÿ

j“1

mi,j

ż t

0

eαipt´τq sinpωipt´ τq ` φi,jqrupτqsjdτq

`wip
m
ÿ

j“1

mi,j

ż t

0

eαipt´τq sinpωipt´ τq ` φi,jqrupτqsjdτqu

(100)

With an impulsive input

uptq “ δδδp0qptq

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0
...
0
1
0
...
0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Ð (j-th component) (101)

from (100) we have

xpuqpt,uq “ eAtrBsj “ rHptqsj “
r
ÿ

i“1

ci,je
λitzi

`

n´r
2
ÿ

i“1

mi,je
αitpvi sinpωit` φi,jq ` wi cospωit` φi,jqq (102)

Definition 5.1: A mode which can be isolated from the
forced state response with impulsive inputs is said to be ex-
citable with impulsive inputs.
By inspection of the modal decomposition of the forced state
response we obtain the following necessary and sufficient
condition for excitability of a mode.

Proposition 5.1: The i-th aperiodic mode, i “ 1, . . . , r, is
excitable with impulsive inputs if and only if

ci,j ‰ 0

for at least one j and the i-th aperiodic mode, i “ 1, . . . , pn ´
rq{2, is excitable with impulsive inputs if and only if

`

gi,j hi,j
˘

‰
`

0 0
˘

for at least one j.
As the unforced output response, we can decompose the forced
output response as

ypuqpt,uq “

ż t

0

pCeAtB `Dδδδp0qpt´ τqqupτqdτ

“

m
ÿ

j“1

ż t

0

pCeApt´τqrBsj ` δδδ
p0q
pt´ τqrDsjqrupτqsjdτ

“

r
ÿ

i“1

Czi

m
ÿ

j“1

ci,j

ż t

0

eλipt´τqrupτqsjdτ `

`

n´r
2
ÿ

i“1

Cvi

m
ÿ

j“1

mi,j

ż t

0

eαipt´τq sinpωipt´ τq ` φi,jqrupτqsjdτ

`Cwi

m
ÿ

j“1

mi,j

ż t

0

eαipt´τq cospωipt´ τq ` φi,jqrupτqsjdτ

`

m
ÿ

j“1

rDsjruptqsj (103)

From (103) with an impulsive input (101) we have

ypuqpt,uq “ CeAtrBsj ` rDsjδδδ
p0q
ptq “ rWptqsj

“

r
ÿ

i“1

pCziqci,je
λit `

n´r
2
ÿ

i“1

mi,je
αitppCviq sinpωit` φi,jq

`pCwiq cospωit` φi,jqq ` rDsjδδδ
p0q
ptq (104)

Definition 5.2: A mode which can be isolated both from
the forced state response with impulsive inputs and from the
unforced output response is said to be excitable with impulsive
inputs and observable from the outputs.
By inspection of the modal decomposition of the forced output
response we obtain the following necessary and sufficient
condition for excitability and observability of a mode.
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Proposition 5.2: The i-th aperiodic mode, i “ 1, . . . , r, is
excitable with impulsive inputs and observable from the outputs
if and only if

ci,j ‰ 0

for at least one j and
Czi ‰ 0

and the i-th pseudoperiodic mode, i “ 1, . . . , pn ´ rq{2, is
excitable with impulsive inputs and observable from the outputs
if and only if

mi,j ‰ 0

for at least one j and

C
`

vi wi
˘

‰ 0.

The condition ci,j ‰ 0 for at least one j means that at least one
column rBsj of B has a nonzero component in the direction
of zi.

Exercize 5.1: Consider the matrix A in (66) together with

B “

¨

˝

1
0
0

˛

‚ (105)

Discuss the excitability of the modes with impulsive inputs.
The forced state response to an impulsive input uptq “

δδδp0qptq is

xpuqpt,uq “ eAtB “

¨

˝

1
0
0

˛

‚c1e
t `

`

¨

˝

0
1
´1

˛

‚m1e
´t sinpt` φ1q `

¨

˝

0
0
1

˛

‚m1e
´t cospt` φ1q

with

m1 :“
b

g21 ` h
2
1

sinφ1 :“
g1
m1

, cosφ1 :“
h1
m1

(106)

and c1, g1, h1 such that

B “ c1

¨

˝

1
0
0

˛

‚` g1

¨

˝

0
1
´1

˛

‚` h1

¨

˝

0
0
1

˛

‚ (107)

By direct calculations c1 “ 1, g1 “ h1 “ 0 and φ1 “ 0 so
that

xpuqpt,uq “

¨

˝

1
0
0

˛

‚et (108)

Notice that B has a nonzero component only along the
direction of the eigenvector associated to the real eigenvalue
of A (i.e. c1 ‰ 0, g1 “ h1 “ 0). Therefore, only the aperiodic
mode is excitable with impulsive inputs, as it is also clear from
(108). Ÿ

Exercize 5.2: Consider the matrix A in (66) together with

B “

¨

˝

1
0
0

˛

‚, C “
`

0 1 1
˘

, D “ 0 (109)

Discuss the excitability and observability of the modes.
As we have already seen the forced state response input

uptq “ δδδp0qptq is

xpuqpt,uq “ Hptq “ eAtB “

¨

˝

1
0
0

˛

‚et

Therefore, the forced output response to an impulsive input
input uptq “ δδδp0qptq is

ypuqpt,uq “ Wptq “ CeAtB “ 0 (110)

Notice that B has a nonzero component only along the
direction of the eigenvector associated to the real eigenvalue
of A and Cz1 “ 0 and Cv1 “ 0 but Cw1 ‰ 0. Therefore,
the aperiodic mode is excitable with impulsive inputs and the
pseudoperiodic mode is observable from the output but none
of the modes is both excitable and observable, as it is also
clear from (110). Ÿ

A. An application: modal decomposition for the longitudinal
and lateral motion of the aircraft (OPTIONAL)

Consider the equations of the longitudinal motion of the
aircraft linearized around a given equilibrium flight condi-
tion(trim condition). By choosing vX (velocity along X-axis
in the body-axis system), vZ (velocity along Z-axis in the
body-axis system), ωY (angular velocity along Y -axis in the
body-axis system) and θ (pitch attitude) as state variables and
η (elevator angle) and τ (thrust) as control inputs we obtain
the following state space representation

9xptq “ Axptq `Buptq, (111)

where

x “

¨

˚

˚

˝

vX
vZ
ωY
θ

˛

‹

‹

‚

, u “

ˆ

η
τ

˙

,

A “

¨

˚

˚

˝

αvX αvZ αωY αθ
βvX βvZ βωY βθ
γvX γvZ γωY γθ

0 0 1 0

˛

‹

‹

‚

, B “

¨

˚

˚

˝

αη αpτq
βη βpτq
γη γpτq
0 0

˛

‹

‹

‚

(112)

The coefficients of A and B are the aerodynamic stability
derivatives and, respectively, control derivatives, calculated at
the trim condition and referred to the body-axis system of the
aircraft.

The eigenvalues are the roots of the characteristic polyno-
mial of A

pλI ´Aq “ pλ2 ` 2ζpωn,pλ` ωn,p
2q ˆ

ˆpλ2 ` 2ζsωn,sλ` ωn,s
2q

Usually, 0 ă ζi ă 1 and ωn,piq ą 0 for i “ s, p. There-
fore, the eigenvalues of A are two distinct pairs of complex
conjugate numbers with negative real part and we have two
convergent pseudoperiodic modes, known as short-period and,
respectively, phugoid, mode. In particular each pair is given
by

λi˘ “ p´ζi ˘ j
b

1´ ζ2i qωn,i, i “ s, p. (113)
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The short-period mode is a damped oscillation in pitch
θ about the Y -axis in the body-axis system. Whenever the
aircraft is disturbed from its pitch equilibrium state (trim
condition) the short-period mode is excited and shows itself
as a classical second-order oscillation. The natural frequency
of the mode is usually in the range 1 rad/sec to 10 rad/sec
and the oscillation tends to vanish (stable damping), although
lower than desired. Since the period of the mode is short, vX
remains approximately zero during a short-term perturbation.
Since the short-term behaviour is dominated by the short-
period mode, it is convenient to reduce the linearized equations
of the longitudinal motion of the aircraft by suppressing the
phugoid mode thereby providing a deeper insight into the
physical behaviour of the aircraft. The model reduction is
performed by assuming vX « 0, initial steady level flight and
referring the equations of motion to the wind axis (vXe “ V0,
the trim velocity along the X-axis coincident with the wind
axis, and θe “ αe “ 0, the trim pitch and angle of attack).
Since under this conditions βθ « 0 and γθ « 0, from the
equations of motion we obtain

9xs “ Asxsptq `Bsusptq, (114)

where

xs “

ˆ

vZ
ωY

˙

, us “

ˆ

η
τ

˙

,

As “

ˆ

βvZ βωY
γvZ γωY

˙

, Bs “

ˆ

βη βpτq
γη γpτq

˙

(115)

The eigenvalues are µ1 “ λ`,s and µ2 “ µ˚1 “ λ´,s, with

ωn,s “
a

γωY βvZ ´ γvZβωY ,

ζs “ ´
γωY ` βωY

2ωn,s
(116)

Therefore, we have one pseudoperiodic mode which is exactly
the short-period mode. The derivative βvZ is dependent on the
lift curve slope of the wing (i.e. the plot of the lift coefficient
versus the angle of attack), γωY is determined largely by the
viscous paddle-damping properties of the tailplane, γvZ is a
measure of the aerodynamic stiffness in pitch and is also
dominated by the aerodynamics of the tail. While βvZ and
γωY are both negative numbers, the sign of γvZ depends on the
position of the gravity center, becoming increasingly negative
as it moves forward in the airframe. Therefore, the gravity
center must be far enough forward in the airframe for the
short-period mode to be stable.

Let us write down the modal decomposition of the unforced
state response. An eigenvector q1 associated to µ1 “ α1`jω1,
with α1 “ ´ζsωn,s and ω1 “ ωn,s

a

1´ ζs
2, is

q1 “

˜

´
γωY ´α1´jω1

γvZ
1

¸

“

˜

´
γωY ´α1

γvZ
1

¸

` j

ˆ ω1

γvZ
0

˙

(117)

Set

v1 “

˜

´
γωY ´α1

γvZ
1

¸

, w1 “

ˆ ω1

γvZ
0

˙

(118)

The unforced state response is

xp0qs pt, x0q

“ m1e
´ζsωn,stp

˜

´
γωY ´α1

γvZ
1

¸

sinpω1t` φ1q

`

ˆ ω1

γvZ
0

˙

cospω1t` φ1qq (119)

where m1 and φ1 are defined in the usual way.
The phugoid mode is a lightly damped low-frequency

oscillation in speed vX which couples with pitch attitude θ
and height h. The natural frequency of the mode is usually
in the range 0.1 rad/sec to 1 rad/sec and the damping ζp is
typically 0.1 or less. A reduced-order model of the aircraft
retaining only the phugoid mode is obtained as follows. During
the perturbation the variables vZ and ωY respond in time-
scale associated with the short-period mode and therefore it is
reasonable that they are approximately constant in the longer
time scale associated with the phugoid mode. Moreover, we
assume initial steady level flight, αωY insignificantly small
and refer the equations of motion to the wind axis. We
obtain from the equations of motion the following state space
representation for the reduced-order model

9xpptq “ Apxptqp `Bpupptq, (120)

where

xp “

ˆ

vX
θ

˙

, up “ η,

Ap “

¨

˝

αvX ´ αvZ
γvXUe´γωY βvX
γvZUe´γωY βvZ

´g
γvX βvZ´γvZβvX
γvZUe´γωY βvZ

0

˛

‚,

Bs “

¨

˝

αη ´
γηUe´γωY βη
γvZUe´γωY βvZ

γηβvZ´γvZβη
γvZUe´γωY βvZ

˛

‚

The eigenvalues of Ap are λ˘,p and we have one pseudope-
riodic mode, the phugoid mode. We have

ωn,p “

d

g
γvXβvZ ´ γvZβvX
γvZUe ´ γωY βvZ

,

ζp “ ´
αvX ´ αvZ

γvXUe´γωY βvX
γvZUe´γωY βvZ

2ωp
(121)

For conventional aircrafts γvX Ñ 0, |γvXβvZ | ăă |γvZβvX |
and |γvZUe| ăă |γωY βvX | and therefore

ωn,p «

c

´gβvX
Ue

, ζp « ´
αvX
2ωp

(122)

The damping ζp is low since it depends directly on the drag
to lift ratio which is usually minimized in aircrafts.

A similar modal decomposition can be done for the lateral
motion of the aircraft. Consider the equations of the lateral
motion of the aircraft linearized around the condition of steady
rectilinear symmetric flight (trim condition). By choosing vY
(velocity along Y -axis in the body-axis system), ωX (angular
velocity along X-axis in the body-axis system), ωZ (angular
velocity along Z-axis in the body-axis system), φ and ψ (roll
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and yaw attitude) as state variables and ξ (aileron angle) and ζ
(rudder angle) as control inputs we obtain the following state
space representation

9xptq “ Axptq `Buptq, (123)

where

x “

¨

˚

˚

˚

˚

˝

vY
ωX
ωZ
φ
ψ

˛

‹

‹

‹

‹

‚

, u “

ˆ

ξ
ζ

˙

,

A “

¨

˚

˚

˚

˚

˝

yvY yωX yωZ yφ yψ
lvY lωX lωZ lφ lψ
n,vY n,ωX n,ωZ nφ nψ

0 1 0 0 0
0 0 1 0 0

˛

‹

‹

‹

‹

‚

, B “

¨

˚

˚

˚

˚

˝

yξ yζ
lξ lζ
nξ nζ
0 0
0 0

˛

‹

‹

‹

‹

‚

(124)

The coefficients of A and B are the aerodynamic stability
derivatives and, respectively, control derivatives, calculated at
the trim equilibrium and referred to the body-axis system of
the aircraft.

The eigenvalues are the roots of the characteristic polyno-
mial of A

detpλI ´Aq “ λpλ`
1

Ts
qpλ`

1

Tr
qpλ2 ` 2ζdωn,dλ` ωn,d

2q

(125)

Usually, 0 ă ζd ă 1 and ωn,d, Ts, Tr ą 0. Therefore, the
eigenvalues of A consists of a pair of complex conjugate num-
bers with negative real part and three reals. correspondigly, we
have one convergent pseudoperiodic mode, known as dutch-
roll mode, one constant aperiodic mode and two convergent
aperiodic modes, known, respectively, as roll-subsidence and
spiral mode.

APPENDIX

A. The step function and the Dirac impulse

Consider the Heaviside function (or unit step function)
defined as

δδδp´1q
ptq :“

#

1 for t ě 0

0 otherwise
(126)

The step function is used also as a truncation for t ă 0 of a
given function: for any real-valued function fptq

δδδp´1q
ptqfptq :“

#

fptq for t ě 0

0 otherwise
(127)

Consider the impulse function with duration T ą 0

fptq :“

# 1
T for 0 ď t ă T

0 otherwise

“
1

T
pδδδp´1q

ptq ´ δδδp´1q
pt´ T qq (128)

This impulse is called normalized since
ż `8

´8

fptqdt “

ż `8

0

fptqdt “ 1 (129)

If we choose T “ 1
n , n P Nzt0u, we obtain the family of

functions tfnptqu, t Ñ fnptq :“ npδδδp´1q
ptq ´ δδδp´1q

pt ´ 1
n qq.

Note that

lim
nÑ`8

fnptq “ δδδptqp0q :“

#

0 for t ‰ 0

`8 t “ 0
(130)

and δδδp0q is called the Dirac impulse function. A useful property
of the the Dirac impulse is:

ż `8

´8

δδδp0qpt´ τqfpτqdτ “

ż `8

´8

δδδp0qpτqfpt´ τqdτ “ fptq

for any function fptq and for each t ě 0.

B. Recalls on rank, image and kernel

The column rank of a matrix A with elements in R (resp. C)
is defined as the number of its linearly independent columns
over R (resp. C), while the row rank of a matrix A is defined
as the number of its linearly independent rows over R (resp.
C). Row rank and column rank are equal, therefore we simply
use the term rank of A over R (resp. C) and we will denote
it rankRtAu (resp. rankCtAu).

For any matrix A P Rnˆm define the set of all real
combinations of the columns of A:

SpanRtAu :“ tx P Rn : x “ Az, z P Rnu (131)

The set SpanRtAu is a vector subspace of Rn. Indeed, if
za, zb P SpanRtAu then aza ` bzb P SpanRtAu for any
a, b P R since

aza ` bzb “ aAza ` bRzb “ Apaza `Abzbq

for some za, zb P Rn. The dimension of SpanRtAu is equal
to rankRtAu. For example,

SpanRt

¨

˝

1 2
0 0
1 ´1

˛

‚u

:“ tx P R3 : x “

¨

˝

1 2
0 0
1 ´1

˛

‚z, z P R2u

“ tx P Rn : x “

¨

˝

z1 ` 2z2
0

z1 ´ z2

˛

‚, z1, z2 P Ru.

For any matrix A P Rnˆm define also the set of all vectors
x P Rm in the kernel of A

KerRtAu “ tx P Rn : Ax “ 0u (132)

The set KerRtAu is a vector subspace of Rm. Indeed, if
xa, xb P KerRtAu then axa ` bxb P KertAu for any a, b P R
since

Apaxa ` bxbq “ aAxa ` bAxb “ 0. (133)
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The dimension of KerRtAu is m´ rankRtAu. For example,

KerRt

¨

˝

1 2
0 0
1 2

˛

‚u :“ tx P R2 : 0 “

¨

˝

1 2
0 0
1 2

˛

‚xu

“ tx P R2 : 0 “

ˆ

x1 ` 2x2
x1 ` 2x2

˙

u

“ tx P R2 : x “

ˆ

1
´1

˙

z, z P Ru “ SpanRt

ˆ

1
´1

˙

u

C. Recalls on eigenvalues and eigenvectors

By detpAq we denote the determinant of any square matrix
A P Rn.

Definition A.1: For anyA P Rn, the eigenvalues ofA are the
roots of the characteristic polynomial ppλq :“ detpλI ´Aq.
The characteristic polynomial of A P Rn is a real polynomial
with degree n. Its roots may be either real or complex
conjugate and the multiplicity of each root is called algebraic
multiplicity. The set of eigenvalues of A is called the spectrum
of A and it is denoted by σpAq.

Definition A.2: A nonzero vector z P Cn such that

pλI ´Aqz “ 0 (134)

where λ is an eigenvalue of A, is called a (first order right)
eigenvector associated to λ.
Since rankCtpλI ´ Aqu ă n for each λ P σpAq, there always
exists at least one nonzero solution z P Cn of pλI´Aqz “ 0,
i.e. a (first order right) eigenvector associated to λ.

Proposition A.1: For each eigenvalue there exists at least
one (first order right) eigenvector.
When the eigenvalues have all multiplicity 1, we can obtain a
set of independent eigenvectors.

Proposition A.2: Assume that all the eigenvalues of A have
algebraic multiplicity 1. For each eigenvalue there exists only
one independent eigenvector and all these eigenvectors are
independent over C.
If the eigenvalues of A have algebraic multiplicity 1 there
exists a coordinate transformation for which A becomes block-
diagonal.

Proposition A.3: Assume that all the eigenvalues of A have
algebraic multiplicity 1. There exists a nonsingular T P Rn
such that

TAT´1 “ blockdiagtλ1, . . . , λr,Π1, . . . ,Πn´r
2
u (135)

where λi, i “ 1, . . . , r, are the real eigenvalues and

Πi “

ˆ

αi ωi
´ωi αi

˙

where µi :“ αi ` jωi, i “ 1, . . . , n´r2 , with µ˚i “ αi ´ jωi,
are the complex conjugate eigenvalues.
The transformation T is defined as follows:

T :“
`

z1 . . . zr v1 w1 . . . vs ws
˘´1

where zi is any eigenvector associated to λi and zi “ vi`jwi
is any eigenvector associated to µi.

We list some useful properties of the spectrum of a matrix
A P Rnˆn.

Proposition A.4:
i σpAq “ σpAJq,
(ii) A is invertible if and only if it has no null eigen-
values.

Proposition A.5: If

A “

ˆ

A11 A12

0 A22

˙

(136)

for some matrices A11 P Rrˆr, A12 P Rrˆpn´rq and A22 P

Rpn´rqˆpn´rq or

A “

ˆ

A11 0
A21 A22

˙

(137)

for some matrices R11 P Rrˆr, A12Rpn´rqˆr and R22 P

Rpn´rqˆpn´rq, we have

σpAq “ σpA11q Y σpA22q (138)

D. Recalls on matrix exponential
For any A P Rnˆn we define the matrix exponential eAt,

t ě 0, as the power series

eAt “
8
ÿ

k“0

pAtqk

k!
. (139)

with A0 :“ I .
Proposition A.6: The power series (139) converges for each

t ě 0.
Since the power series is convergent for each t ě 0, we can
define the derivative of the matrix exponential eAt simply by
derivating the power series (139) term by term. In particular,
by taking derivatives of each term of (139) we obtain for each
t ě 0

d

dt
eAt “

8
ÿ

k“1

pAtqk´1

pk ´ 1q!
“ A

8
ÿ

k“1

pAtqk´1

pk ´ 1q!
“ A

8
ÿ

h“0

pAtqh

h!

“ AeAt (140)

But also for each t ě 0

d

dt
eAt “

8
ÿ

k“1

pAtqk´1

pk ´ 1q!
“ p

8
ÿ

k“1

pAtqk´1

pk ´ 1q!
qA

“ p

8
ÿ

h“0

pAtqh

h!
qA “ eAtA

We list below some important properties of the matrix expo-
nential eAt.
‚ (Neutral element) e0 “ I
‚ (Commutativity) For each t ě 0 and X,Y P Rnˆn:

epX`Y qt “ eXteY t ô XY “ Y X (141)

‚ (Exponential of diagonal matrices) For any real λ P R

eλIt “ eλtI (142)

‚ (Exponential of Jordan matrices) For any real λ P R

etJ “ eλt

¨

˚

˚

˚

˚

˚

˝

1 t t2

2! ¨ ¨ ¨ 0
řr´1
k“0

tk

k!

0 1 t ¨ ¨ ¨ 0
řr´2
k“0

tk

k!
...

... ¨ ¨ ¨
...

...
0 0 0 ¨ ¨ ¨ 1 t
0 0 0 ¨ ¨ ¨ 0 1

˛

‹

‹

‹

‹

‹

‚

(143)
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where Jpr ˆ rq is a Jordan matrix. i.e.

J “

¨

˚

˚

˚

˝

λ 1 0 ¨ ¨ ¨ 0 0
...

... ¨ ¨ ¨
...

...
0 0 0 ¨ ¨ ¨ λ 1
0 0 0 ¨ ¨ ¨ 0 λ

˛

‹

‹

‹

‚

(144)

‚ (Exponential of equivalent matrices) If

Ã “ TAT´1 (145)

then

eÃt “ TetAT´1 (146)


