Notes on Linear Control Systems: Module 11

Stefano Battilotti

Abstract—State and output solutions of a linear differential
model: the matrix exponential. Natural modes and modal decom-
position. Structural properties of natural modes: observability
from the outputs and excitability with impulsive inputs.

I. SOLUTIONS OF LINEAR MODELS

From now on we will consider the class of differential
models

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t) (1)

~

where x(t) € R™ is the state vector, u(¢t) € R™ the input
vector and y(¢) € RP the output vector. In this chapter we
will characterize the solution x(t) := x(¢,zg,u) of (1) with
initial value xo and piecewise continuous input function u :
R> — R™. Using the matrix exponential (see appendix D),
we want to prove the following result.

Theorem /.1: The solution of x(t, zg,u) of (1) is continu-
ous and unique over R> and

t
x(t, xo,u) = ez +f AT Bu(r)ydr  (2)
0

Proof. By well-known facts from mathematical analysis the
solution of x(t,xp,u) of (1) is a function of time, defined
over R> and uniquely determined from the initial value x
and the input function u. For proving the claim, it is sufficient
to prove that (2) satisfies (1) for ¢ > 0. Therefore, on account
of (140) and by differentiating the left and right-hand parts of
)

d t
@X(t’ zo,u) = Ae Mz + Bu(t) + J- A=) Bu(r)dr
0

-
= Aezo + Bu(t) + AJ A7) Bu(r)dr

0

¢

= A[eAtmo + J
0

= Ax(t, zo,u) + Bu(t) 3)

eA=") Bu(r)dr] + Bu(t)

which is the first equation of (1). This proves that the solution
x(t, zp,u) of (1) is (2). <

Similarly, we can prove the following result on the output
y(t) :== y(t,zo,u) of (1). Let 6@ (t) denote the Dirac impulse
att = 0.
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Theorem [.2: The output function y(t,xg,u) of (1) is
continuous and unique over R> and

t
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0

“)
Proof. On account of (2) and from the second equation of (1)

y(t, zg,u) = Cx(¢, 0, u) + Du(t)
t

= C(eMzo + f eA=7) Bu(r)dr) + Dul(t)
0
t

= CeMay + f (CeAt=T) B + 6@ (t —T)D)u(r)dr.<
0

Note that both (2) and (4) consist of two summands: the
first one is a linear function of z(, the initial value of the
state, and the second one is a function of the input u. We will
denote

x(© (t,zp) := et (5)

the unforced (or free) state response, stressing the fact that it is
the solution (2) under null input. On the other hand, we will
denote

¢
xW(t,u) := J eA=7) Bu(r)dr (6)

0

the forced state response, stressing the fact that it is the state
response under null initial state. Therefore, for each ¢ > 0

x(t, z9,u) = xO (¢, z) + x (¢, u) (7

The solution of x(xg,u) of (1) can be obtained as the sum
of the solution of (1) with initial state xy and null input
(x©(t,20)) and the solution of (1) with null initial state zg
and input u (x(*)(¢,u) ). Also, we denote

y(© (t,zp) := Cetta (8

the unforced (or free) output response and

t
fwﬁuy=J«%M“ﬂB+$®@—ﬂDmﬁMT(%
0

the forced output response. For each ¢t > 0
y(t,zo,u) = yO(t, o) + y™(t,u)  (10)
The (n x n) matrix
B(1) = ™ (11)
is known as the state transition matrix while the (n xm) matrix

H(t) := e*'B = ®(t)B (12)



is known as the state impulsive response matrix, since the i-th
column [H(t)]; of H(¢) is obtained as state response of (1)
by applying the input

0
0
u(t) =86@() | 1| < (-th component) (13)
0
0
Indeed, by direct calculations
t
xW(t,u) = J A7) Bu(r)dr
0
¢
= f At=[B1,6 (r)dr
0
t
= f [eAt7) B8O (r)dr = [e2*B]; = [H(t)];.
0
On the other hand, the (p x p) matrix
W(t) := Ce*B + 6 (t)D (14)

is known as output impulsive response matrix, since its -
th column [W(¢)]; is obtained as output response of (1) by
applying the input (13). Indeed, by direct calculations

t
y®(t,u) = J (CeAt=B + 6O (t — r)D)u(r)dr
0

t
_ J [CeAt7 B 4 5O (1 — 7)D],6© ()dr
0

= [Ce**B + 6D t)D]; = [W(1)]:.

II. STATE AND OUTPUT RESPONSE: TIME DOMAIN
ANALYSIS

In this chapter we study the properties of the state and
output responses of a linear model. In particular, we will
see that the state and output responses are superposition of
modes (modal decomposition). These modes are characterized
by some specific time functions which uniquely characterize
the behaviour of the state and output responses versus time.

III. MODAL DECOMPOSITION OF THE UNFORCED STATE
RESPONSE

We will study the modal decomposition for the unforced
state response in two simple cases. First, we assume that
the eigenvalues of the matrix A are all real and distinct
(aperiodic modes). Secondly, we assume that the eigenvalues
of the matrix A are all complex conjugate and pairwise
distinct (pseudoperiodic modes). Finally, we will show through
an example the structure of the modes when at least one
eigenvalue of the matrix A has multiplicity greater than one.

A. Case of distinct eigenvalues

1) Aperiodic modes: In this section we assume that the
eigenvalues of the matrix A are all real and distinct (i.e.
with algebraic multiplicity 1) and denote these eigenvalues
by Ai,..., A, i.e. the roots of the characteristic polynomial
det(A—\;I) of Aare \y,...,\,. Therefore, the characteristic
polynomial of A factors out as

det(A — N\, 1) (15)

giG

Let z; be an eigenvector associated to the eigenvalue )\, i.e.
a non-zero vector such that

(A=X\1)z; =0 (16)

Also
(A=NI)Yz=0,j=1 17)
Since A1,...,\, are real and distinct, the eigenvectors

Z1,...,%n associated to Aq,...,\, are real and linearly in-

dependent. It follows the existence of unique reals cq,...,c,
such that
n
xo = ), % (18)
i=1

Since the matrices A\;I and A — \;I commute, on account of
(141) and (142) we have
e(A—)\iI)t"'/\ilt = e/\ite(A—)\iI)t (19)

On account of (17), the unforced state response is given by

n
xO (8, 20) = eAtay = 2 (A=NiDtF N Tt o

’Ms

eA-NDt Tt —Zce“e(“‘ L

i=1

-
3
—

) 0

cie/\it(z t,j (A—NI) Zn]

|
1 =07’

.
Il

We sum up our result as follows.

Theorem 3.7/: Assume that A has all real eigenvalues with
algebraic multiplicity 1. The unforced state response can be
decomposed as follows: for eacht > 0

ZCZ %

The i-th term of the sum on the left of (20) is called
aperiodic mode and (20) is the modal decomposition of the
unforced state response. The modal decomposition (20) can
be interpreted from a geometric point of view as follows. The
vector

xO (£, z0) (20)

C1

Cn

is the coordinate vector of xg in the axis frame {zq,...
(see (18)) and

s Zn}

crett

et



is at each time ¢ > 0 the coordinate vector of x(©) (¢, 2¢)(z)
in the axis frame {z1,...,2,} . Therefore, the i-th aperiodic
mode is the (time-dependent) coordinate of x(%)(t,z¢)(z¢)
in the direction of the eigenvector z; associated to the real
eigenvalue \; of A.

Notice that if {z], ..., z,} are a different set of eigenvectors

associated to A1,..., A, and
e
/
C”L
is the coordinate vector of of x in the axis frame {2}, ..., 2/},
ie.
n
To = Z izl 21
i=1
then
n n
t Z) Z Z c'e/\ tz' 22)

1=1

In other words, the modes do not depend on how we choose
the set of eigenvectors, i.e. coordinate-free. Indeed, any two
distinct eigenvectors z;,z, associated to the same )\; are
necessarily parallel, i.e. z; = a;z; for some real «;, therefore
¢; = £ and

a;
ZC, Nit ! ZCO@

As it is clear from (20), the unforced state response is a
superposition of modes. We want to answer the following
question: is it possible to reconstruct each mode separately,
given the unforced state response? In principle, this is possible
by choosing the initial state x( appropriately. If we want to
reconstruct the ¢-th aperiodic mode, choose z in such a way
that for some nonzero real c¢;

z= Y itz (23)

(24)

To = Ciz4

i.e. zg is along the direction of the ¢-th eigenvector and with
coordinate ¢;. With this choice of x( the sum in (20) reduces
to one term

x(© (t,zg) = cieMtz; (25)

i.e. its i-th mode. This kind of operation is known as mode
isolation and we say that the i-th aperiodic mode has been
isolated from the unforced state response.

An aperiodic mode behaves in time according to the value
of the corresponding eigenvalue. A classification of the modes
comes natural according to the value of the corresponding
eigenvalue.

Definition 3./: An aperiodic mode is said to be convergent,
divergent or constant according if its associated eigenvalue
satisfies A < 0, A > 0 or A = 0, respectively.

Therefore, a convergent mode tends to zero as ¢t — 40, a
divergent mode tends to infinity as ¢ — +00 and a constant
modes is constant for all times.

We can associate to a convergent/divergent aperiodic mode
a time constant T defined as

(26)

Note that 7 > 0 if and only if A < 0. The inverse formula are
given

27)

In other words, for convergent modes smaller is 7 more slowly
the mode converges to zero as ¢ — +co0. The time constant
is the time for which the mode amplitude reduces by a factor
e ~ 2.7. Moreover, in terms of time constants the characteristic
polynomial (15) can be recast as

n

= H(A - i)

i=1

det(A — AI)

:H)‘i

i=1 i

(1+7A) = K[ [ +7)
=1 i=1

(28)

where ); is an eigenvalue, 7; := —5 and K := " | \;
We explain the theoretical setting with an example.
Exercize 3.1: Given

(29)

calculate the unforced state response ensuing from

1

o

To =

o

att = 0.
Let us calculate the eigenvalues of A. We have

A—1 0 -1

det(A — A) = det 2 A+1 1

-2 -2 A
(A+1)

=X A=\ —

Therefore, the eigenvalues of A are A\; = 1, Ay = —1 and
A3 = 0 and we have one divergent aperiodic mode, one
convergent aperiodic mode and a costant mode.

Calculate an eigenvector z; associated to Ap, i.e. a nonzero
z1 such that

0 0 1
(A — )\1])2’1 = -2 -2 -1 zZ1 = 0 (30)
2 2 -1
Note that the rank of
0 0 1
(A=X\D)=|-2 -2 -1 31
2 2 -1
is 2. Therefore, it is sufficient to solve
0 0 1
(_2 _9 _1> z1=0 (32)



for z1, i.e. we discard the third row of (A — A1) which linearly
depends from its first two rows. Choose

1
z1 = -1
0

Calculate an eigenvector z, associated to As, i.e. a nonzero z,
such that

(33)

2 0 1
(A=Xol)zo=1-2 0 —1]z2=0 (34)
2 2 1
Choose
1
=0 (35)
-2

Finally, calculate an eigenvector z3 associated to A3, i.e. a
nonzero z3 such that

1 0 1
(A — )\3])2’3 = -2 -1 -1 zZ3 = 0 (36)
2 2 0
Choose
-1
zz=11 37
1

Next, find the coordinates of zp in the axis framework
{21, 22, 23}, i.e. find the unique reals ¢y, ¢a, c5 such that

1 3
= 2 CiZ;
0 Jj=1

This can be easily done as follows. Note that (38) can be
written as

(38)

To = Zc 39
where
¢l
A =(zl 29 23),0 = | e
C3

But Z is nonsingular by construction since {z1, 22, 23} is a
basis of R?. Therefore

c= 7"t (40)
Therefore,
2 1 1\ /1 2
c=Z1zo=11 1 0fl0]=1[1 (41)
2 2 1/ \o 2

The unforced state response ensuing from xg at ¢ = 0 is given
by

3
(O)(t Zo) = =My = Z eMtezy

1 1 -1
=2 -1]+e [ 0 |+2[ 1

0 —2 1

2¢t + et —2
= —2et+2 < (42)
—2et 42

2) Pseudoperiodic modes: In this section we assume that
the eigenvalues of the matrix A are all complex conjugate
and distinct (i.e. with algebraic multiplicity 1) and denote

these eigenvalues by pi1, uf .. ., fyy2, 1 Jo- The characteristic
polynomial of A factors out as
n/2
det(A— A1) = [ [N = pa) (A — ) (43)
i=1

Let g; be an eigenvector associated to the eigenvalue u;, i.e.

(A—pil)g; =0 44)

Denote by a; and w; the real and, respectively, imaginary part
of p;, i.e.

i 1= 0+ Jw;
and by v; and w; the real and, respectively, imaginary part of
Qi 1.€.

¢i i= Vi + Jw;

By considering the real and imaginary part of (A — p;1)g;
separately, we obtain from (44)

(A — 0&1'])1}1‘ +wjw; =0

(A—a;Nw; —wjv; =0 (45)
By induction we can prove that for all 57 = 0,1, ...
(A= D)oy = —(-1) Tl
(A = i) v; ( 1w,
(A )2]+1 (—I)Jw%“wi
(A= D) w; = (~1) w7, (46)

Since pq,...,H, are complex conjugate and distinct,
{vi,w1,..., V2, Wy} is a set of real independent vec-
tors and a basis for R™. Therefore, there exist unique reals

g1, N1, -5 Gnj2, My such that
n/2
2o = . (givi + hyw;) (47)
i=1

On account of (46) and since A — «; 1 and «;1 commute, for
each ¢t > 0 we have

xO (t, o) = eMag
n/2

— Z e(AfaiI)t+OtiIt(gi,Ui + hzwz)
i=1
n/2

— Z G(Afail)teaift(givi + hzwz)
=1
n/2

t (Afall)t(

e%ile givi + hw;)

I
]

-
Il

S
~
N =

o]

g tj j
e lt(Z;) ﬁ<A —a;iI))(givi + hiw;)
iz

(48)



and after some computations

o 1)7)(givi + hiw;)

=Y e (v;(g; cos(w;t) + h;sin(w;t))

w; (hy cos(w;t) — g sin(w;t)))

In order to write the last expression in a more picturesque
form, let us define m,; as

m; =/ g} + hi (49)
and ¢; such that
sin ¢; 1= &, coS ¢; 1= & (50)
m; m;
Using the fact that for any pair of angles (v, @)
sin(1) + ¢) := sin(1)) cos(¢) + sin(g) cos(),
cos(y) + ¢) = cos(v) cos(¢) — sin(z)) sin(¢) (51)

we obtain the final result.

Theorem 3.2: Assume that A has all complex conjugate
eigenvalues with algebraic multiplicity 1. The unforced state
response can be decomposed as follows: for eacht > 0

n/2
xO (¢, zo) = Z m;e® (v; sin(wit + ¢;)
i=1

+w; cos(w;t + ¢;)) (52)

The i-th term of the sum in the last expression of (65) is called
pseudoperiodic mode and (65) is the modal decomposition of
the unforced state response. The modal decomposition (65)
can be interpreted from a geometric point of view as follows:
if

g1

hy

9n/2

hn/2
are the coordinates of g in the axis frame
{Ul,UJ1, R Un/2awn/2}7 then

mie®tsin(wit + ¢1)
my1e®t cos(wit + ¢1)

m%ea%tt sin(wnt + ¢n)
maz % cos(w%t + (b%)]

are at each time ¢ > 0 the coordinates of x(©)(¢,2¢)(z)
in the same axis frame {vi,w1,...,V;, 2, Wy 2}. Therefore,
an aperiodic mode is the (time-dependent) component of
x() (¢, 24)(z0) in the plane spanned by the vectors {v;,w;}.

Note that if {v,w},..., v} 5, w), ,} are a different set of
real independent vectors defining the eigenvectors ¢, ...q’

qn/2
associated to the eigenvalues pi,..., M, and the reals

g1, hys gl /Q,h;l Jo are the coordinates of xq in the axis
frame {v’l,w’l,...,v;/Q, n/2} and if
m; = 4/(99)% + (h})?, (53)
and ¢, is such that
/ li
. g, h's
sin ¢} := ﬁ, oS ¢; 1= EL’ (54)
1 3

it is easy to see that
n/2

Zme

+w; cos(w;t + d%))
n/2
_ Z mie® ! (v]sin(wit + ¢f) + w) cos(wit + ¢L))  (55)

ta:o [v; sin(w;t + ¢;)

In other words, the modes do not depend on how we choose
the eigenvector basis, i.e. coordinate-free. Indeed, qg = (a; +
jBi)q; for some reals «;, 8; since ¢, and ¢; are eigenvectors
associated to the same p;. Therefore

(a; + jBi)(vi + jw;)
(56)

v+ jw; = ¢ = (i + jBi)ai =
— Biw; + jogw; + Bivy)

vi\ (o =B\ (v
wi)  \Bi o w;

= Q0

so that

It follows that

1 (Oti 52’) (gl)
a2+ B2\ B i) \hi

2 (1)2 = \[g2 + W2 =mi  (57)

and

and

g
sing;\ _ [w7 | _ 1 a;  Bi (g
(oot) = &)~ s (S @) () oo

It follows that

/ / Sin(bg

(vf wz) (cosqﬁé)
1 Q; _Bi (67 Bz [
ez ) (@i m)(—& m) (h)

1 i = i
() e (o) 59

which implies (55).

As it is clear from (20), the unforced state response is a sum
of modes. Is it possible to reconstruct each mode separately
given the unforced state response? In principle, this is possible
by choosing the initial state x appropriately. If we want to
reconstruct the i-th pseudoperiodic mode, choose zy in such
a way that for some (at least one nonzero) reals c¢;, d;

2o := g;v; + hyw; (60)



i.e. on the plane spanned by the vectors {v;,w;} with coor-
dinates (c;, d;). Therefore, the sum in (65) boils down to one
term

xO (¢, 2) = me® (v; sin(wit + ¢;)

+w; cos(wit + ¢;)) (61)

i.e. its ¢-th mode. Also in this case we say that the i-th
pseudoperiodic mode has been isolated from the unforced state
response.

A pseudoperiodic mode behaves differently in time accord-
ing to the value of the real part of its corresponding eigenvalue.
A similar classification to aperiodic modes is possible for
pseudoperiodic modes.

Definition 3.2: A pseudoperiodic is said to be convergent,

divergent or periodic according if the real part of its associated
pair of complex conjugate eigenvalues satisfies « < 0, « > 0
or o = 0, respectively.
Therefore, the magnitude of a convergent mode tends to
zero as t — 400, in a divergent mode tends to infinity as
t — 400 and in a periodic mode remain constant for all
times. Moreover, the oscillation frequency is proportional to
the imaginary part of its corresponding eigenvalue.

We can associate to a convergent/divergent pseudoperiodic
mode the natural frequency w,, and damping ¢ defined as

wp i =VaZ+w?, (= ——
Clearly |[¢|] < 1 and w, > 0 (the limit values {( = +1
correspond to a pair of coincident real eigenvalues). Note that
¢ €(0,1) if and only if @ < 0. The inverse formulas are given

wp/1—¢2

In other words, for convergent modes by decreasing { and
keeping w,, constant the oscillation frequency increases and
the convergence to zero is slowed down. On the other hand, by
increasing w,, and keeping ( constant the convergence to zero
speeds up while the oscillation frequency decreases. More-
over, in terms of the parameters w, and ( the characteristic
polynomial (43) can be recast as

(62)

= _Cwna W= (63)

n/2

= [T =) =)

i=1

det(A — AI)

w3

Gi >\2

2
n,i
Wn 4

(1+2A

::] il

w
>
=1 i

1

~.

w3

i A
- T

=K[]a+2x
Wn,i

=1

where K :=[]2, w2

) (64)

wn,i

B. Aperiodic and pseudoperiodic modes

By combining the result of the previous two sections we
obtain the modal decomposition of the unforced state response
in the case of distinct (either real or complex conjugate)
eigenvalues of A. Let Ay,..., A\, (r < n) be the distinct
real eigenvalues and py, puf,. .. ,u%,u% be the distinct

conjugate complex eigenvectors of A. Moreover, let zq, ..., 2,
be the eigenvectors associated to A\1,..., A and ¢, ..., Gn_r
the eigenvectors associated to f1,...,u n_r (assuming n — r
even), with u; := «; + jw; and ¢; := v; + jw,;. With the usual
notations we have

ch %

txo

n—r

+ Z mie®i (v sin(w;t + ¢;) + w; cos(wit + ¢;))
i=1

(65)
Exercize 3.2: Given
1 0 O
A=10 O 1 (66)
0 -2 -2
calculate the unforced state response ensuing from
1
o = 0
2
att = 0.
Let us calculate the eigenvalues of A. We have
A—1 0 0
det(A — A) = det 0 A -1
0 2 A+2
=A=1DA\+2)+2)
Therefore, the eigenvalues of A are A\; = 1 and
pr=o+jb=—-1+j
po=ag+jfy=pi =-1-3j (67)

and we have one divergent aperiodic mode and one convergent
pseudoperiodic mode. Clearly, to represent u; as oy + jwi

we set a; := —1 and B; := 1. Calculate an eigenvector z;
associated to A1, i.e. a nonzero z; such that
0 0 0
(A - )\1])2’1 = 0 -1 1 zZ1 = 0 (68)
0 -2 -3
Choose
1
z1=10 (69)
0

Calculate an eigenvector g; associated to p1, i.e. a nonzero q;
such that

2—3 0 0
(A—X\IDg = 0 1—j 1 g =0 (70)
0 -2 —-1-j
Note that the rank of
0 O 0
(A-MI)=(0 -1 1 (71)
0o —2 -3



is 2 (over the set of complex numbers C). Indeed, the third
row is equal to the second multiplied by —1 — j. Therefore,
it is sufficient to solve

2-5 0 0\ _
(0 1-j 1>Z2_0

for g1, i.e. we discard the third row of (A—gq; 1) which linearly
depends from the second row. Choose

(72)

0
@ = 1 (73)
-1+
The eigenvector ¢; can be written as
0 0
@ =vitjwur=|1[+7]0 (74)
-1 1

Finally, calculate an eigenvector gs associated to po, i.e. a
nonzero ¢o such that

1 0 1
-2 -1 —1|gp=0
2 2 0

(A= Xe)gs = (75)

Since g2 = ¢f, this can be always done by choosing o = pf,

0
@=q = 1
—1—j

(76)

Next, find the coordinates of z( in the basis {z1,v1, w1}, i.e.
find the unique reals ¢y, g1, h1 such that

1
o = 0
2

=cC1z1 + 9101 + hiwy a7

This can be easily done as follows. Note that (77) can be
written as

To = Zc (78)
where
C1
Z=(zn v w),c=|n
hy

On account of the fact that Z is nonsingular by construction
since {z1,v1, w1} is a basis of R3, we readily have

c= Z*1x0 (79)
Therefore,
1 0 0 1 1
c=Z1zg=10 1 0]{0]=1]0 (80)
0 1 1 2 2
Next, define
my i=/g? +h? =2 (81)

and ¢; as the angle such that

h
sin; 1= % =2, cosypy = m—l =1
1 1

Since tan p; = % = 0 we get p; = arctan0 = 0 or ¢ =

arctan0 + m = 7 according if g7 = 0 or g3 < 0 (arctan

denotes the principal arc tangent function and its argument

ranges in (— 35, 5]). In this case, since g; = 0 we have p; = 0.
The unforced state response ensuing from xg at ¢ = 0 is

Altclzl

+my1e®! (vy sin(wit + ¢1) + wy cos(wit + ¢1))

xO(t,20) = eMzg = e

1 0 0
=e' [0|+2e7 (| 1 |sin(t)+ |0 ]cos(t))
0 -1 1
ot
= 2¢~tsin(t) < (82)

2e~t(—sin(t) + cos(t))

C. Eigenvalues with multiplicity greater than one: the case of
the pendulum

Consider the linearized simple pendulum around null an-
gular position and velocity (see (13), Module I) under the
condition that

(83)

and calculate the unforced state response. In this case the two
eigenvalues of the matrix

0 1
l m

are both equal to \ := f%. Notice that dim Ker(A—\I) =1
since

(84)

(85)

and det (A — AI) = 0 on account of (83). We can construct
one chain of two generalized eigenvectors as follows. An
eigenvector z(1) of order one is obtained as usual from the
equation

(A—ADzM =0,

o-(3)
T 2m

An eigenvector 2(2) of order two, independent from 2 s
obtained from the equation

(86)

for example

87)

(A—N\I)z? = 2

1
(2)_< )
Z k
172m

We recall that an eigenvector z(*) of order k > 1 is a nonzero
vector such that

(88)

for example

(89)

(A= NP1 2
(A= NIk = o.



The set {z(1), 2(?)} form a basis of R2. If ¢(") and ¢ are

reals such that
To = WM 4 0(2)2(2)7 (90)

by similar calculations as for distinct eigenvalues the unforced
state response is

x(©) (t,xo) = etz

= MWz 4 252 4 12 ()]

1 1
= e 7t [(cD) 4 @) (k> +c® (1 B k)]
2m 2m

(1) (2)
=it (2) 1 ¢/ +c
= m t
e e (—;n>+<—c<l>2¢n+c<2>u—;:n1 |
on

where the last expression represents the aperiodic (convergent)
natural mode. If for instance

- 1
o~ 1
we readily get

(1) _ 1 1\ 'n

() =6 o= (U1 ) ()
11— —1\ /1 —

(e ) 0)-()

In general, for each eigenvalue we obtain a certain number
of chains of generalized eigenvectors (with increasing order)
which altogether form a basis of R”. The maximum length of
the chains is equal to the multiplicity of the eigenvalue in the
polynomial obtained as the m.c.m. of all the denominators of
the entries of the matrix

(A —A)~!

92)

(94)

which is called minimal polynomial of A. In the above

example we have
k
1 (A +£ 1)
Atga)\ —T A

and the minimal polynomial is (A+ %)2 Therefore, we have

only one chain of two generalized eigenvectors, i.e. z(!) and
(2
A

(M —A)"! = 95)

IV. MODAL DECOMPOSITION OF THE UNFORCED OUTPUT
RESPONSE

Using the modal decomposition of the unforced state re-
sponse and assuming for simplicity distinct eigenvalues, we
can decompose the unforced output response as follows

T
y(o)(t,xo) = Cettyy = Z c;eMtCz
i=1
n;'r
+ 2 me® (sin(w;t + ¢;)Cv; + cos(w;t + ¢;)Cw;)
i=1

By selecting in a suitable way the initial state zo we can
reconstruct each mode separately from the observation of the
unforced output response.

Definition 4./: A mode which can be isolated from the
unforced output response is said to be observable from the
outputs.

By inspection of the modal decomposition of the unforced out-
put response we obtain the following necessary and sufficient
condition for observability of a mode.

Proposition 4.1: The i-th aperiodic mode, i = 1,...,r, is
observable from the outputs if and only if

Cz; #0

while the i-th pseudoperiodic mode, i = 1,...,(n —r)/2, is
observable from the outputs if and only if

C’(vi wi) # (0 O).
Exercize 4.1: Let A be as in (66) and
C=(0 1 1). (96)

Calculate the unforced output response ensuing from

Zo

N O =

att 0. We have already calculated the unforced state
response ensuing from the intial state xp at t = 0

A

x(©) (t,z0) = ety = eMtegz

+mie® (v sin(wit + ¢1) + wy cos(wit + ¢1))

1 0 0
=e' [0|+2e7(| 1 |sin(t)+ |0 ]cos(t))
0 -1 1
ot
= 2e¢~ ! sin(t)

2¢7t(—sin(t) + cos(t))
The unforced output response ensuing from z is

y(© (t,x0) = CeMxy = eMte; Oz
+m1e®t(Cvy sin(wit + ¢1) + Cwy cos(wit + ¢1))
= 2¢ ' cos(t)

Since Cz; = 0and C (v1 wy) = (0 2) only the pseudope-

riodic mode is observable from the outputs. <

V. MODAL DECOMPOSITION OF THE FORCED STATE AND
OUTPUT RESPONSE (OPTIONAL)

In this section we will study the modal properties of the
forced state response. For simplicity, we will study only the
case of distinct eigenvalues of A. Let A1,..., A, (r < n) be the
real eigenvalues and 1, .. ., finor (assuming n—r even), with
i = oy + jw;, be the complex conjugate eigenvalues. More-
over, let z1, ...,z the eigenvectors associated to Aj,..., A,
and q1,...,qn—r the eigenvectors associated to t1,..., hn—r,
with g; := v; + jw;. The vectors :

{Zl,...,ZT7U1,U}17...,'Un;r,wn;r}



form a basis for R™, Let
Ci17~-~aciragi17hila---791'7%;]11"% be the unique reals
such that
r n—r
B = Z Ci % + 2 (gi,jvi + hi’jwi) ©7
i=1 i=1

where [B]; is the j-th column of B. Also, define m; ; as

My 1= A /gl] + h2 (98)
and ¢; ; such that
sing;j = L1 cos gy 1= (99)
B T ' g T
mij mi.j

As for the unforced state response (with the roles of zy and
B; interchanged) we have

r
[H(t)]; = e*[B]; = >, e jzi
i=1
+ Z m; ;e (v; sin(wit + ¢, ;) + w; cos(wit + @i 5))
i=1

In conclusion, we can decompose the forced state response as
follows

<@ (¢

A

t,u) :J Al=7) Bu(r)dr
[
9

N ey szilu(r)]dr +

1;[u(r)];dr

|| Mg i Mg

+ Z:lfo 22]1 mi,jeait(’ui sin(wi(t — 7-) + ¢i,j)
)+ ¢ij))[u(r)];dr
_ZZZECZJJ Ai(t— 7') ]dT)

gz t
+ Z{vl

+w; (

+w; cos(w; (t —

b

M3 n'MS

mi,j

S

1 0

J

With an impulsive input

<« (j-th component) (101)

e =) sin(w; (t — 7) + ¢ ;) [u(r)];dr) *

e D sin(w;(t = 7) + ¢ig)[u(r)lidr)} y™(tu)

from (100) we have

x")(t,u) = e [B]; =

r
t)]; = Z ci,je’\itzi
i=1

+ Z mwe

Definition 5./: A mode which can be isolated from the
forced state response with impulsive inputs is said to be ex-
citable with impulsive inputs.

By inspection of the modal decomposition of the forced state
response we obtain the following necessary and sufficient
condition for excitability of a mode.

b v; sin(wit + @i ;) + w; cos(wit + ¢ 5)) (102)

Proposition 5.7/: The i-th aperiodic mode, i = 1,...,r, is
excitable with impulsive inputs if and only if
ci; #0
for at least one j and the i-th aperiodic mode, i1 = 1,...,(n —

r)/2, is excitable with impulsive inputs if and only if
(i hij)# (0 0)

for at least one j.
As the unforced output response, we can decompose the forced
output response as

y®@(t,u) = f(ceAfB + D6t — r))u(r)dr
0

+89(t — 7)[D]y)[u(r)];dr

_Zf (Cert=7)[B

m t
=105 Y ey [ X pular +
i=1 j=1 0

+ Z C; i My j Jt

j=1 0

e sin(w; (t — 7) + ¢4 ;) [u(r)];dr
t

y J e =T cos(wi(t — 7) + ¢i ;) [u(r)];dr
0

(103)

From (103) with an impulsive input (101) we have

= CeM[B); + [D];69(t) = [W(1)];

(100) 2 Czi)ei jeit + 2 m; e ((Cv;) sin(wit + ¢; )
i=1 i=1

+(Cw;) cos(wit + ¢4.5)) + [D];6(¢) (104)

Definition 5.2: A mode which can be isolated both from
the forced state response with impulsive inputs and from the
unforced output response is said to be excitable with impulsive
inputs and observable from the outputs.

By inspection of the modal decomposition of the forced output
response we obtain the following necessary and sufficient
condition for excitability and observability of a mode.



Proposition 5.2: The i-th aperiodic mode, i = 1,...,7r, is
excitable with impulsive inputs and observable from the outputs
if and only if

ci; #0

for at least one j and
Cz #0

and the i-th pseudoperiodic mode, i = 1,...,(n —1)/2, is
excitable with impulsive inputs and observable from the outputs
if and only if

m;; # 0

for at least one j and

The condition ¢; ; # 0 for at least one j means that at least one
column [B]; of B has a nonzero component in the direction
of z;.
Exercize 5.1: Consider the matrix A in (66) together with
1
B=1{0
0

(105)

Discuss the excitability of the modes with impulsive inputs.
The forced state response to an impulsive input u(t) =
8O (t) is

1
xW(t,u) =eMB =0 |cet +
0
0 0
+ | 1 |mie tsin(t+¢1) + [ 0 |mie " cos(t + ¢1)
-1 1

with

my = /g3 + h?

h
sin ¢y := g—l, cos @1 = - (106)
my my
and c¢1, g1, h1 such that
1 0 0
B=c |0]|+aqn 1 |+h |0 (107)
0 -1 1
By direct calculations ¢; = 1, g1 = h; = 0 and ¢; = 0 so
that
1
xW(t,u)=[0]et (108)
0

Notice that B has a nonzero component only along the
direction of the eigenvector associated to the real eigenvalue
of A (i.e. c; # 0, g1 = hy = 0). Therefore, only the aperiodic
mode is excitable with impulsive inputs, as it is also clear from

(108). <
Exercize 5.2: Consider the matrix A in (66) together with
1
B=10],C=(0 1 1),D=0 (109
0

Discuss the excitability and observability of the modes.
As we have already seen the forced state response input

u(t) =69) is

1

0|e

0

Therefore, the forced output response to an impulsive input
input u(t) = 6 (¢) is

y @ (t,u) = W(t) = CeMB =0

xW(t,u) = H(t) = e B =

(110)

Notice that B has a nonzero component only along the
direction of the eigenvector associated to the real eigenvalue
of A and Cz; = 0 and Cv; = 0 but Cw; # 0. Therefore,
the aperiodic mode is excitable with impulsive inputs and the
pseudoperiodic mode is observable from the output but none
of the modes is both excitable and observable, as it is also
clear from (110). <

A. An application: modal decomposition for the longitudinal
and lateral motion of the aircraft (OPTIONAL)

Consider the equations of the longitudinal motion of the
aircraft linearized around a given equilibrium flight condi-
tion(trim condition). By choosing vx (velocity along X-axis
in the body-axis system), vz (velocity along Z-axis in the
body-axis system), wy (angular velocity along Y'-axis in the
body-axis system) and 6 (pitch attitude) as state variables and
n (elevator angle) and 7 (thrust) as control inputs we obtain
the following state space representation

x(t) = Ax(t) + Bu(t), (111)

where

Ux

x — vz L u= (ﬂ) 7
Wy T
0
oy o, oy Qp oy afr)

A= B’UX ﬁvz /Bwy /89 ,B= Bn ﬁ(T) (112)
Yox Yoz Ywy e Tn ’Y(T)
0 0 1 0 0 0

The coefficients of A and B are the aerodynamic stability
derivatives and, respectively, control derivatives, calculated at
the trim condition and referred to the body-axis system of the
aircraft.

The eigenvalues are the roots of the characteristic polyno-
mial of A

A —A) = (A +20Wnp\ + wnp?) ¥

X (/\2 + 2Cswn,s)\ + Wn,sg)

Usually, 0 < ¢ < 1 and w,, ;5 > 0 for i = s,p. There-
fore, the eigenvalues of A are two distinct pairs of complex
conjugate numbers with negative real part and we have two
convergent pseudoperiodic modes, known as short-period and,
respectively, phugoid, mode. In particular each pair is given
by

Ay =(=Gtj

1—CPwni, @ = s,p. (113)



The short-period mode is a damped oscillation in pitch
0 about the Y-axis in the body-axis system. Whenever the
aircraft is disturbed from its pitch equilibrium state (trim
condition) the short-period mode is excited and shows itself
as a classical second-order oscillation. The natural frequency
of the mode is usually in the range 1 rad/sec to 10 rad/sec
and the oscillation tends to vanish (stable damping), although
lower than desired. Since the period of the mode is short, vx
remains approximately zero during a short-term perturbation.
Since the short-term behaviour is dominated by the short-
period mode, it is convenient to reduce the linearized equations
of the longitudinal motion of the aircraft by suppressing the
phugoid mode thereby providing a deeper insight into the
physical behaviour of the aircraft. The model reduction is
performed by assuming vx = 0, initial steady level flight and
referring the equations of motion to the wind axis (vx. = Vo,
the trim velocity along the X-axis coincident with the wind
axis, and 0. = a, = 0, the trim pitch and angle of attack).
Since under this conditions By ~ 0 and vy ~ 0, from the
equations of motion we obtain

Xs = Asx5(t) + Bsus(t), (114)

where

a5

B(r)
o > (115)

ﬁw) B :<ﬁn
Yoy ) N\ (T)

The eigenvalues are p; = Ay s and po = pf = A_ 5, with

Wn,s = \/’waﬂ’l}z — Yoz By s
_ rywy + BWY
S WA
Wn,s

(116)

Therefore, we have one pseudoperiodic mode which is exactly
the short-period mode. The derivative 3,, is dependent on the
lift curve slope of the wing (i.e. the plot of the lift coefficient
versus the angle of attack), 7., is determined largely by the
viscous paddle-damping properties of the tailplane, v,, is a
measure of the aerodynamic stiffness in pitch and is also
dominated by the aerodynamics of the tail. While 3,, and
“Ywy are both negative numbers, the sign of y,, depends on the
position of the gravity center, becoming increasingly negative
as it moves forward in the airframe. Therefore, the gravity
center must be far enough forward in the airframe for the
short-period mode to be stable.

Let us write down the modal decomposition of the unforced
state response. An eigenvector ¢; associated to u; = ag +jws,

. 2 .
with o1 = —(swy,s and wy = wy, V1 — (7, s

_ Dwy —1—jwi _ Dwy —1 w1
() () (@) o
Set
_'wa*al w1
o () (5)

(118)

The unforced state response is

Xgo) (t7 xU)

ey —1
= mle*Cswn,st( ’ivz sin(wlt + ¢1)

w1
+ <76Z) cos(wit + ¢1)) (119)
where m; and ¢; are defined in the usual way.

The phugoid mode is a lightly damped low-frequency
oscillation in speed vy which couples with pitch attitude 6
and height h. The natural frequency of the mode is usually
in the range 0.1 rad/sec to 1 rad/sec and the damping ¢, is
typically 0.1 or less. A reduced-order model of the aircraft
retaining only the phugoid mode is obtained as follows. During
the perturbation the variables vz and wy respond in time-
scale associated with the short-period mode and therefore it is
reasonable that they are approximately constant in the longer
time scale associated with the phugoid mode. Moreover, we
assume initial steady level flight, «,,, insignificantly small
and refer the equations of motion to the wind axis. We
obtain from the equations of motion the following state space
representation for the reduced-order model

xp(t) = Apx(t)p + Bpuy(t),

v
XP_(5(>auP_na

e — o JexUemVoy Box

A = vx VZ vy, Ue =Yy Buy 9

P = Yox Boy =Yvy Bux 0
Yvy Ue_’)’wy ﬁuZ

(120)

where

)

Tn Ue_’wa Bn
B _ a»,] o Yvgy Ue_’wa /B'UZ
s 'YT/,BvZ*'YvZ,Bn
Yvg Ue_"/z,uy B'nz
The eigenvalues of A, are A+ , and we have one pseudope-
riodic mode, the phugoid mode. We have
)
Yvz Ue — Yy ﬂvz

Wnp = \/g
Yox Ue=Ywy Bux

(67 —
vx vz Yvg Ue_'wa B’UZ

2wy,

A/’Uxﬁ’vz - 'szﬁvx

Gp=— (121)
For conventional aircrafts v, — 0, [YoxBoz| << Yoz Bux]|
and |Yy, Ue| << |Ywy Bvyx | and therefore

~ _ngX
(.d;mp ~ U
e

The damping ¢, is low since it depends directly on the drag
to lift ratio which is usually minimized in aircrafts.

A similar modal decomposition can be done for the lateral
motion of the aircraft. Consider the equations of the lateral
motion of the aircraft linearized around the condition of steady
rectilinear symmetric flight (trim condition). By choosing vy
(velocity along Y -axis in the body-axis system), wx (angular
velocity along X-axis in the body-axis system), wz (angular
velocity along Z-axis in the body-axis system), ¢ and 1 (roll

LGy A (122)



and yaw attitude) as state variables and & (aileron angle) and ¢
(rudder angle) as control inputs we obtain the following state
space representation

x(t) = Ax(t) + Bu(t), (123)
where
Vy
wx
x=|wz|,u= (g) ,
¢
(0
Yoy  Yox Ywz Yo Yy Ye Y¢
loy loy lo, 1o Iy le ¢
A= noy nwx nwz ¢ Ny , B = ng N¢ (124)
0 1 0 0 0 0 0
0 0 1 0 0 0 0

The coefficients of A and B are the aerodynamic stability
derivatives and, respectively, control derivatives, calculated at
the trim equilibrium and referred to the body-axis system of
the aircraft.

The eigenvalues are the roots of the characteristic polyno-
mial of A

1 1

det(M — A) = A\(A + ?)(/\ + T)()‘Q + 2Cawn a + Wna?)
(125)

Usually, 0 < ¢4 < 1 and wy, 4,15, T > 0. Therefore, the

eigenvalues of A consists of a pair of complex conjugate num-

bers with negative real part and three reals. correspondigly, we

have one convergent pseudoperiodic mode, known as dutch-

roll mode, one constant aperiodic mode and two convergent

aperiodic modes, known, respectively, as roll-subsidence and
spiral mode.

APPENDIX
A. The step function and the Dirac impulse

Consider the Heaviside function (or unit step function)
defined as

1 fort >0

Y1) = {
0

The step function is used also as a truncation for £ < 0 of a
given function: for any real-valued function f(t)

£(t)

(126)
otherwise

fort >0

sCVDE() = { (127)

0 otherwise

Consider the impulse function with duration 7" > 0

T for0<t<T
f(t) := {

0 otherwise
1 51 (-1)
T(J (t)—48 (t—T)) (128)

This impulse is called normalized since

f M £(t)dt = f m f(t)dt = 1

—0 0

(129)

If we choose T = 1, n € N\{0}, we obtain the family of
functions {f, (1)}, t — £,(t) := n(@V () — 8V — 1)),
Note that

fort #0

0
lim f,(t) = 8(t)® := { (130)

note +o0 t=0

and 8 is called the Dirac impulse function. A useful property
of the the Dirac impulse is:

+00 +o0
| sOu=ntear— | 80w - rar s

—w0 —0

for any function f(¢) and for each ¢ > 0.

B. Recalls on rank, image and kernel

The column rank of a matrix A with elements in R (resp. C)
is defined as the number of its linearly independent columns
over R (resp. C), while the row rank of a matrix A is defined
as the number of its linearly independent rows over R (resp.
C). Row rank and column rank are equal, therefore we simply
use the term rank of A over R (resp. C) and we will denote
it rankg{A} (resp. rankc{A}).

For any matrix A € R"*™ define the set of all real
combinations of the columns of A:

Spang{A} :={zxeR" :x = Az,ze R"} (131)

The set Spang{A} is a vector subspace of R”. Indeed, if
Zq, 2y € Spang{A} then az, + bz, € Spang{A} for any
a,b e R since

azq + bzp = aAz, + bRz, = A(az, + Abzyp)

for some z,, 2z, € R™. The dimension of Spang{A} is equal
to rankg{A}. For example,

1 2
Spang{[0 0 |}
1 -1
1 2
={zeR¥:2=(0 0 |z zeR?}
1 -1
21+ 229
={zeR": 2= 0 , 21,22 € R}.
21 — 22

For any matrix A € R™*"™ define also the set of all vectors
x € R™ in the kernel of A

Kerg{A} = {x e R" : Az = 0} (132)
The set Kerg{A} is a vector subspace of R™. Indeed, if
Za, Ty € Kerg{A} then azx, + bxy € Ker{A} for any a,be R
since

Alaxg + bxyp) = aAx, + bAx, = 0. (133)



The dimension of Kerg{A} is m — rankg{A}. For example,

1 2 1 2

Kerg{[0 0|}:={zeR*:0={0 0]z}
1 2 1 2

_ 9. [T1+ 222

={zeR '0<x1+2x2>}

—(weR?:iz= (_11> 2, 2eR} = SpanR{<_11>}

C. Recalls on eigenvalues and eigenvectors

By det(A) we denote the determinant of any square matrix
AeR™

Definition A./: Forany A € R", the eigenvalues of A are the
roots of the characteristic polynomial p(\) := det(\ — A).
The characteristic polynomial of A € R" is a real polynomial
with degree n. Its roots may be either real or complex
conjugate and the multiplicity of each root is called algebraic
multiplicity. The set of eigenvalues of A is called the spectrum
of A and it is denoted by o(A).

Definition A.2: A nonzero vector z € C™ such that

(M —A)z =0 (134)

where X is an eigenvalue of A, is called a (first order right)
eigenvector associated to \.

Since rankc{(A] — A)} < n for each A € o(A), there always
exists at least one nonzero solution z € C" of (A — A)z =0,
i.e. a (first order right) eigenvector associated to .

Proposition A./: For each eigenvalue there exists at least
one (first order right) eigenvector.

When the eigenvalues have all multiplicity 1, we can obtain a
set of independent eigenvectors.

Proposition A.2: Assume that all the eigenvalues of A have
algebraic multiplicity 1. For each eigenvalue there exists only
one independent eigenvector and all these eigenvectors are
independent over C.

If the eigenvalues of A have algebraic multiplicity 1 there
exists a coordinate transformation for which A becomes block-
diagonal.

Proposition A.3: Assume that all the eigenvalues of A have
algebraic multiplicity 1. There exists a nonsingular T' € R"
such that

TAT ! = blockdiag{)\l,...,/\T,Hl,...,H%} (135)

where \;,© = 1, ..., r, are the real eigenvalues and
(5 2)
Wi
where ji; 1= o; + jwi, 1 = 1,..., %57, with puf = a; — jw;,
are the complex conjugate eigenvalues.
The transformation 7' is defined as follows:
T:i=(x ... 2z v w Vg ws)fl

where z; is any eigenvector associated to \; and z; = v; + jw;
is any eigenvector associated to pi;.

We list some useful properties of the spectrum of a matrix
AeR™x™,

Proposition A.4:
io(A) =o(AT),
(ii) A is invertible if and only if it has no null eigen-
values.

Proposition A.5: If

(A A
A= < 0 A
for some matrices A1; € R™", Aj5 € R™("=7) and Ayy €
]R(nfr)x(nfr) or

A11 0
A=
<A21 A22)
for some matrices Ryy € R™", A;sR(M=7)X" and Ryy €
R=m)x(n=7) e have

o(A) = o(A11) U o(A)

(136)

(137)

(138)

D. Recalls on matrix exponential

For any A € R"*" we define the matrix exponential e*t,
t > 0, as the power series

© k
At _ \0 (A
et =3 o (139)
k=0
with A% :=TI.
Proposition A.6: The power series (139) converges for each
t=0.

Since the power series is convergent for each ¢t > 0, we can
define the derivative of the matrix exponential e4? simply by
derivating the power series (139) term by term. In particular,
by taking derivatives of each term of (139) we obtain for each
t=0

d _a _ < (A o (A o (A"
LY ._Az(k—n!_A;O B
= Ae?t

(140)
But also for each ¢t > 0
d 4 < (AT
i =X (k—1)! = (2

k=1 k=1
0 h
:(Z (/Z') )A:eAtA
h=0
We list below some important properties of the matrix expo-
nential e“?.
« (Neutral element) e® = |
o (Commutativity) For each t > 0 and X,Y € R™"*":

k=1

(At)k71
(k—1)! )4

XAV = XYt o XY =YX (141)
 (Exponential of diagonal matrices) For any real A e R
Mt = M (142)
« (Exponential of Jordan matrices) For any real A € R
1 ¢ t;' ) Z;%} ?:
RYBRY (:) b 0 o (143)
6 0 0 1 t
0 0 O 0 1



where J(r x r) is a Jordan matrix. i.e.

A1 0 -~ 00
J=1: + - : :

oo o0 - X1

0 0 O 0 A

« (Exponential of equivalent matrices) If
A=TAT™!
then

eAt _ TetAT—l

(144)

(145)

(146)



