Notes on Linear Control Systems: Module I

Stefano Battilotti

Abstract—Nonlinear differential models. Linearization of non-
linear models. State and output solutions of a linear differential
model: the matrix exponential. Natural modes and modal decom-
position. Structural properties of natural modes: observability
from the outputs and excitability with impulsive inputs.

I. INTRODUCTION: THE MATHEMATICAL MODEL

A system is the agglomerate of a certain number of inter-
connected elements, described by some variables which may
vary during time. Some of these variables influence other ones.
For this reason it is convenient to distinguish

e input (or independent) variables
e output (or dependent) variables

The input variables can be considered as causes and the
output variables as effects. A system in which we specify the
set of input and output variables is said oriented. For example
the level of a fluid in a tank is an output variable and the
incoming flow rate, regulated by a valve, is an input variable.
By varying the incoming flow rate (cause) we vary the level of
the tank (effect). On the other hand, if one or more customers
are connected to the tank, the level of the tank may vary also
as a consequence of the outside requests of fluid. The outside
request of fluid is an input variable (cause) but it has a different
nature from the incoming flow rate since the first may have
an unpredictable variation during time. On this account, the
input variables can be distinguished into

e controllable inputs (if it is possible to control or
influence it)

¢ uncontrollable inputs (if it is not possible to control
or influence it)

The uncontrollable inputs are also called disturbances. The
requests of fluid in the tank from customers are a typical
example of disturbance. The controllable inputs are usually
transmitted to the system through actuators (for example the
electric or pneumatic valve in the tank).

There are some outputs which we want to assume a desired
behavior. To continue with the example of the tank, it may be
requested that the level of the fluid in a tank remains constant
in time. We say that these variables are controlled outputs.

On the other hand, if the task is to cause the controlled
variables assume desired behaviors, it is important that some
information (outputs) of the system be available in such a way
to conceive a strategy (control) for achieving this task. In order
that the level of the fluid in a tank remains constant in time,
it can be useful to have information about the level itself. If
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the level of the tank is at some time below/beyond the desired
constant value, it is necessary then to increase/decrease the
incoming flow rate by regulating the opening of the valve. For
this reasons, besides controlled outputs, we need to distinguish
measured outputs. There may be some controlled outputs
which are not measured: for example, we may want to control
the velocity of a moving point by measuring its position.
The measured outputs are usually obtained from the system
through sensors (for example electric or digital devices which
measure the level of the fluid in the tank). In summary, we
distinguish the outputs into

e controlled outputs

e measured outputs

In general the set of the outputs (effects) consists of those
variables which completely describe or characterize the be-
havior of the system as a consequence of the behavior of the
inputs (causes). This set of variables is also known as state of
the system.

A system can be represented as an agglomerate of blocks
while the relations between its variables can be represented as
the interconnections among these blocks.

A mathematical model is the description of a system through
equations which determine the outputs as a function of the in-
puts. A good mathematical model is the compromise between
the accurate mathematical description of the principles which
characterize the system and the necessary approximations for
which the model is “tractable” from the point of view of the
available analysis techniques and computational methods.

A model may be of several types and different types of
models can describe the same system. A static model can be
adopted if the variation of the inputs is sufficiently slow with
respect to the reaction times of the system or a sufficiently
long time is elapsed so that the output variables have reached
a steady-state condition. For static models the outputs are
usually some functions of the inputs. The static models give
no information on the behavior of the system during the period
before reaching some steady-state conditions. In these cases it
is better to adopt dynamical models, consisting of a certain
number differential equations which establish the relations
between the input and output variables. The system is assumed
to be in some initial condition, in the sense that the variables
have some initial values which do not change if no input (or
no variation of the input) is applied to the system. When the
inputs change, the output variables behaves according to the
input change but also to the initial conditions of the system. If
the (differential) equations describing the model are nonlinear
(resp. linear), the model is said to be nonlinear (resp. linear).

Once a mathematical model is available, it is possible
to study the mathematical properties of the model and the
possibility of achieving a desired behavior of the controlled
outputs by suitable input strategies or behaviors. The analysis



and design methodologies for such strategies is the aim of
these notes. We will consider only models for which the
measured outputs coincide with the controlled outputs and we
will study design methodologies which are applicable only to
models with one input and one output.

II. FROM NONLINEAR TO LINEAR MODELS
Consider the following nonlinear model
x(t) = f(x(t),u(t))
y(t) = h(x(t), u(t)) e))

where t > 0, x(t) is the state vector, u(t) the input vector
and y(t) the output vector. We say that a solution of (1) is a
triple (x*(¢), u*(¢),y(¢t)*) such that for t > 0

X(t)* = fO<* (1), u™ (1))
y(£)* = h(x*(t), u*(t)) )
Let X x U x Y be the set of solutions (x(t),u(t),y(t))

of (1). It is possible to study the solutions (x(¢),u(t),y(t))
of (1) with good approximation around some given
(x*(t),u*(t),y(t)*) € X x U x Y through the linearization
of (1) around (x*(t),u*(¢),y(¢t)*). The analysis and control
of the linearization of (1) is a powerful tool for studying
and controlling (1) whenever its solutions (x(t),u(t),y(t))
remain close to (x*(t),u*(t),y(¢)*). The linearized model
is obtained by linearizing the functions f and h around
(x*(t),u*(t),y(t)*). The triple (x*(t),u*(t),y(t)*) is se-
lected according to physical intuition or practical issues. For
example, in the mathematical model of a spacecraft which is
designed to track a certain orbit around the earth with constant
angular velocity, for a local analysis of its motion along the
orbit it is reasonable to linearize the model around a constant
value of the angular velocity and a control input which forces
the spacecraft to move exactly with constant angular velocity.

We can define a linearization of (1) around a given
(x*(t),u*(t),y(t)*) e X xU x Y as follows. By considering
the Taylor expansions of f and h around (x*(t), u*(¢),y(¢)*)
we get

fx(t),u®) = fF@),u*(?))

0
+al | () = (3 (1), (1)) (X(8) — X (1))

+R(x(t) — x*(t),u(t) — u*(¢),t)
h(x*(t),u*(t))

oh
+£|(J;,u):(x*(t),u*(t))(x(t) —x*(t))

oh .
30 @w=0et @,ux 0 () —u* (1)

+8(x(t) —x*(t),u(t) —u*(t),?)
where R(-,-,t) and S(:,-,t) are higher order terms, i.e. such
that for each ¢ > 0

|IR(x,u, )|

[I? + ul?

IS(x,u, 1)

—0, -
[x[* + ul?

x,u—0 x,u—0

Set
z(t) = x(t) — x*(¢),
vi(t) == u(t) —u*(t),
wi(t) i= y(t) — h(x*(t), u* (1)), @)
and
of
A(t) := %kz,u):(x*(t),u*(t)),
of
B(t) := 5 lu)=6es (005 (1)
oh
C(t) := a?'(m,u):(x*(t),u*(t)ﬁ
coh
D(t) := %'(r,u):(x*(t),u*(t)) 4)

On account of the above definitions and approximating f and
h by taking only constant and first order terms in their Taylor
expansions, from (1) we obtain

a(t) = A(t)z(t) + B(t)v(t)
w(t) = C(t)z(t) + D(t)v(t) )

The linearized model (5) has state z(t), i.e. the displacement
of the state x(t) from x*(¢), input v(¢), i.e. the displace-
ment of the input u(¢) from u*(¢) and output y(¢), i.e. the
displacement of y(t) from h(x*(¢),u*(¢)). It is important to
notice that, on account of fact that we are approximating f
and h up to the first order terms in the Taylor expansion
around (x*(¢t),u*(t)), (z(¢),v(t)) is a valid approximation
of (x(t) —x*(t),u(t) —u*(t)) to the extent ||x(¢) —x*(¢)|| +
[u(t) — u*(¢)| remains sufficiently small.

A. A robotic platform

The model of a robotic platform is

x1(t) = v(t) cosx3(t)
Xo(t) = v(t) sinxs(t)
x3(t) = w(t) (6)

where x; and xo are the coordinates of the contact point P
of the wheel on the ground, x3 is the angle formed by the
wheel with the x;-axis, w is the angular velocity of the robot
around the vertical axis (z-axis) and v is the linear velocity of
P (equal to the product of the wheel radius with its angular
velocity). The input variables are v and w and we set u =
(v w)T. A reasonable choice of the solution (x*(t), u*(t))
is motivated by figuring out the robotic platform starting form
the origin of the plane (x1,x3), moving forward with constant
velocity v* of the wheels and rotating around its z-axis with
constant velocity w*. Correspondingly, we select

u*(t) := (v* o.)*)T. (7)

From (6) we get also x*(¢) which corresponds to apply an
input u(t) = u*(¢):

f}—: sin(w*t)

75—: cos(w*t) ®)
w*t

x*(t) =



The matrices of the linearized model around (x*(t),u*(¢))
are

0 0 —v,sin(w*t) cos(w*t) 0
At):=[0 0 wv*cos(w*t) |, B(t):= | sin(w*t) 0
0 0 0 0 1

The choice of the solution (x*(t),u*(¢)) around which we
linearize is important for obtaining tractable linear models in
the sense of being amenable to being controlled. By linearizing

around
(i) - () .

which is another solution of (6) (i.e. null linear and angular
velocities, platform still at the origin), we would have obtained

00 0 10
Aty ;=0 0 0],B@):=(0 0| (10
00 0 0 1

This linearized model has the drawback that we are not able
to control the direction x5 in the plane.

B. The simple pendulum

Consider a simple pendulum with a massless, inextensible
and always taut rod. Assume also that motion occurs only in
two dimensions, i.e. the bob at the end of the rod does not
trace an ellipse but an arc. Let 6 be the angular position of
the rod (positive counterclockwise). The differential equation
which represents the motion of a simple pendulum is
k (1)
m

where g is the gravity constant, m is the mass of the pendulum
(concentrated in the bob) and k is the constant friction
coefficient of the mean. By taking 6 and 6 as state variables
x; and, respectively, xo we obtain from (11)

5(1 (t) = Xg(t)
o (t) = _% sin xy (t) — %Xz(t)

6(t) + %ma(t) +0(t) =0

12)

The state space model is nonlinear for the presence of sin x;
and we have

f(z) = (—? sinx; — 7’:;3:2) ’
We look for constant solutions x*(¢) = x* of (12), which are
easily obtained from the equations:

x5 =0

(13)

g . k
—Zsinzf — —25 =0
m

l
Therefore, we have two constant solutions which are z* =
(0,0)" and z* = (7,0) . We have

of 0 1

ﬁ(x) B <—"llcosx1 —7’fl> (14
and the linearized model around x*(t) = (0,0) " is

z1(t) = 22(t)

. k

2a(t) = =321 (t) — —2a(t) (1)

where 7 (t) := x1(¢) and z2(t) := x2(t). On the other hand,

the linearized model around x*(¢) = (7,0)7 is
z1(t) = z(t)
22(t) = J21(t) — —2a(t) (16)

where 71 (t) := x1(t) — 7 and z5(¢) := x2(t).

C. The tank example

Consider a cylindrical tank designed to contain a certain
quantity of fluid (with density p) and to serve a local users’
network. The horizontal section of the tank is .S and the level
of the fluid in the tank is h. The tank has an input fluid rate
q;, regulated by an input valve, and an output fluid rate g,,
determined uniquely by the users’ network and unknown. The
level h of the tank is also measured by suitable sensor devices.
Since

0Sh(t) = qi(t) — go(t) (17)
the mathematical model of the tank is easily obtained as
. 1
x(t) = Jg(ut) = (), y(t) = x(®), (18)

where the state is x = h, the control input is u = g, the
regulated (and measured) output is y = h and d = ¢, is a
disturbance acting on the tank system.



