Control Systems
 03/07/2018

Exercise 1 Denoting $L(s)=G(s) P(s)$, in the Laplace domain the input-output evolutions are described by

$$
y(s)=W(s) v(s)
$$

with $W(s)=\frac{L(s)}{1+L(s)}$.
(i)-(iii) By inspecting the Bode plots of

$$
\begin{equation*}
P(s)=\frac{s+1}{s^{3}} \tag{1}
\end{equation*}
$$

(Figure 1), as $\omega \geq 5 \mathrm{rad} / \mathrm{s}$, one has that $|P(j \omega)|_{d B} \leq-27.79$ as $\omega \geq 5 \mathrm{rad} / \mathrm{s}$ and $\angle P\left(j \omega \in\left[-180^{\circ},-225^{\circ}\right]\right.$. Accordingly, one has that for $\omega \geq 5 \mathrm{rad} / \mathrm{s}$, the controller $G(s)$ needs to be designed to increase the phase with limited magnitude effort bounded by $|G(j \omega)|_{d B} \leq 36$. By rewriting $G(s)=k G_{a}(j \omega)$ with

Figure 1: Bode plots of (1)

$$
G_{a}(s)=\frac{1+\tau_{a} s}{1+\frac{\tau_{a}}{m_{a}} s}
$$

one hence gets that

$$
|k|_{d B}+\left|G_{a}(j \omega)\right|_{d B} \leq 36 \Longrightarrow|k|_{d B} \leq 36-\max \left\{\left|G_{a}(j \omega)\right|_{d B}\right\}
$$

By setting $m_{a}=16$ one has $\max \left\{\left|G_{a}(j \omega)\right|_{d B}\right\} \approx 24$ with $\max \left\{\angle G_{a}(j \omega)\right\} \approx 62^{\circ}$ corresponding to $\omega_{n}=4 \mathrm{rad} / \mathrm{sec}$. Accordingly, to maximize the phase margin, one has to set ω_{t}^{*} as the desired cross-over frequency in such a way that

$$
\begin{aligned}
& |k|_{d B}+\left|G_{a}\left(j \omega_{t}^{*}\right)\right|_{d B}+\left|P\left(j \omega_{t}^{*}\right)\right|_{d B}=0 \\
& \Longrightarrow|k|_{d B}=-\left|G_{a}\left(j \omega_{t}^{*}\right)\right|_{d B}-\left|P\left(j \omega_{t}^{*}\right)\right|_{d B} \leq 36-\max \left\{\left|G_{a}(j \omega)\right|_{d B}\right\} \\
& \Longrightarrow\left|P\left(j \omega_{t}^{*}\right)\right|_{d B} \geq \max \left\{\left|G_{a}(j \omega)\right|_{d B}\right\}-\left|G_{a}\left(j \omega_{t}^{*}\right)\right|_{d B}-36 .
\end{aligned}
$$

Also, because for $\omega \geq 5 \mathrm{rad} / \mathrm{s}|P(j \omega)|_{d B} \leq-27.79$ then the above bound restitutes $\max \left\{\left|G_{a}(j \omega)\right|_{d B}\right\}-\left|G_{a}\left(j \omega_{t}^{*}\right)\right|_{d B}-36 \leq-27.79 \Longrightarrow \max \left\{\left|G_{a}(j \omega)\right|_{d B}\right\}-\left|G_{a}\left(j \omega_{t}^{*}\right)\right|_{d B} \leq 8.21$.

A suitable choice might hence be given by setting $m_{a}=6$ acting at $\omega_{n}=5 \mathrm{rad} / \mathrm{s}$ so that

Figure 2: Bode plots of (2)
$\left|G_{a}\left(j \omega_{t}^{*}\right)\right|_{d B} \approx 11.86$ and $\angle G_{a}\left(j \omega_{t}^{*}\right) \approx 39^{\circ}$. Accordingly, the desired cross-over frequency is selected in such a way that $|k|_{d B} \leq 20$ is enough for assigning it so getting

$$
\left|P\left(j \omega_{t}^{*}\right)\right|_{d B} \geq-31.86
$$

that is ok for $\omega_{t}^{*} \approx 6.2 \mathrm{rad} / \mathrm{s}$ so needing $|k|_{d B}=20$ and thus $k=10$.

Figure 3: Nyquist plot of (2)
(iii) The Nyquist plot of the open loop system

$$
\begin{equation*}
L(s)=k G_{a}(s) P(s)=10 \frac{1+0.7939 s}{1+0.1323 s} \frac{s+1}{s^{3}} \tag{2}
\end{equation*}
$$

are reported in Figure 3. The number of counter-clockwise encirclements of $-1+j 0$ on behalf of the extended Nyquist plot of $L(j \omega)$ is $0(1-1)$ as the number the open loop poles of $\mathrm{L}(\mathrm{s})$ with positive real part. Thus, the system is asymptotically stable in closed loop.

Exercise 2 The transfer functions of the dynamical systems involved in the interconnection are given by

$$
\begin{array}{ll}
y_{1}(s)=P(s) u_{1}(s), & P(s)=\frac{1}{s(s-2)} \\
y_{2}(s)=H(s) d(s), & H(s)=\frac{1}{s+3} .
\end{array}
$$

Accordingly, the output evolutions in the Laplace domain are described by

$$
y(s)=W(s) v(s)+W_{d}(s) d(s), \quad W(s)=\frac{L(s)}{1+L(s)}, \quad W_{d}(s)=\frac{H(s)}{1+L(s)}
$$

with $L(s)=G(s) P(s)$. For ensuring zero steady state output response to a constant dis-
turbance $d(t)$, one needs $W_{d}(0)=0$. As the plant $P(s)$ possesses an open loop pole at $s=0$, no further action is needed so that (after making the system asymptotically stable) the specification is already satisfied by the plant.

For making the system asymptotically stable, we need to design $G(s)$ so to assign all poles of $W(s)$ with negative real part. As $P(s)$ has relative degree $r=n-m$ but positive center of the asymptotes, a static controller $G(s)=k$ with $k \in \mathbb{R}$ is not enough. Thus, we set

$$
G(s)=k \frac{s+z}{s+p}
$$

and set $z, p \in \mathbb{R}$ in such a way that the new center of the asymptote is negative; namely,

$$
s_{0}^{\prime}=\frac{-p+2+z}{2}<0 .
$$

Thus, let us set $p=26$ and $z=4$ so getting $s_{0}^{\prime}=-10$. Accordingly, $k \in \mathbb{R}$ can be now fixed by invoking the Routh criterion and compute the Routh table of the closed-loop pole polynomial

$$
p(s, k)=s(s+26)(s-2)+k(s+4)=s^{3}+24 s^{2}+(k-52) s+4 k
$$

so getting

r^{3}	1	$k-52$
r^{2}	6	k
r^{1}	$k-312 / 5$	
r^{0}	k	

so getting that the closed-loop system is asymptotically stable for $k>\frac{312}{5}$.
The root locus of $G(s) P(s)$ is equivalent to the one of $L(s)=\frac{1}{k} G(s) P(s)=\frac{s+4}{s(s-2)(s+26)}$ (that is when discarding the gain). The center of the asymptotes has been already computed and is $s_{0}^{\prime}=-10$. Moreover, the locus possesses one singularity of multiplicity $\mu=2$ given by the solution to the equations

$$
\begin{aligned}
p(s, k) & =s^{3}+24 s^{2}+(k-52) s+4 k=0 \\
\frac{\partial p(s, k)}{\partial s} & =3 s^{2}+48 s+k-52
\end{aligned}
$$

and provided by the couple $\left(s^{*}, k^{*}\right) \approx(0.9175,5.4366)$. Moreover, the locus is intersecting the imaginary axis in correspondance of $(s, k) \in \mathbb{C} \times \mathbb{R}$ making the Routh table not regular. In this case, the locus is intersecting the imaginary axis at $s_{1}^{*}=-24$ and $s_{2}^{*}=0$ corresponding to, respectively, $k_{1}^{*}=\frac{312}{5}$ and $k_{2}^{*}=0$. The locus is reported in Figure 4.
Exercise 3 As the transfer function $P(s)$ describes the input-output behavior, for computing the state response a state-space realization is needed. To this end, we consider the controllable state-space realtization of $P(s)=\frac{s+2}{s^{3}-2 s^{2}-3 s}$ being provided by

$$
\begin{aligned}
& \quad \dot{x}=A x+B u \\
& y=C x
\end{aligned}
$$

Figure 4: Root Locus of $L(s)=\frac{s+4}{s(s-2)(s+26)}$.
with

$$
A=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 3 & 2
\end{array}\right), \quad B=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \quad C=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right) .
$$

As in this case poles and eigenvalues coincide, the system possesses three aperiodic modes corresponding to $\lambda_{1}=0, \lambda_{2}=-1$ and $\lambda_{3}=3$. Thus, the state evolution ensuing from $x_{0}=\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)^{\top}$ is provided as a linear combination of the aperiodic modes as

$$
\begin{equation*}
x(t)=e^{A t} x_{0}=c_{1} z_{1}+c_{2} e^{-t} z_{2}+c_{3} e^{3 t} z_{3} \tag{3}
\end{equation*}
$$

with

$$
z_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad z_{2}=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right), \quad z_{3}=\left(\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right)
$$

being the eigenvectors corresponding to the eigenvalues and

$$
\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{lll}
z_{1} & z_{2} & z_{3}
\end{array}\right)^{-1} x_{0}=\left(\begin{array}{ccc}
1 & \frac{2}{3} & -\frac{1}{3} \\
0 & -\frac{3}{4} & \frac{1}{4} \\
0 & \frac{3}{4} & \frac{3}{4}
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

so getting $c_{1}=\frac{5}{3}, c_{2}=-\frac{3}{4}$ and $c_{3}=\frac{3}{4}$. To this end, each aperiodic natural modes evolves over an invariant subspace spanned by the corresponding eigenvectors, it is enough to set
$x_{0} \in \operatorname{span}\left\{z_{2}\right\}$ so directly implying $c_{1}=c_{3}=0$.
From (3), it is clear that for making $x(t) \rightarrow 0$ as $t \rightarrow \infty$, the initial condition needs to be set so to annihilate all non-convergent modes, that is so to get $c_{1}=c_{3}=0$.

For computing the output response to $u(t)=c_{+}$with $c \in \mathbb{R}$ being constant it is enough to compute

$$
y(t)=c \mathcal{L}^{-1}\left(\frac{P(s)}{s}\right)[t] .
$$

In particular, one gets

$$
\frac{P(s)}{s}=\frac{s+2}{s^{2}(s+1)(s-3)}=\frac{R_{11}}{s}+\frac{R_{12}}{s^{2}}+\frac{R_{2}}{s+1}+\frac{R_{3}}{s-3}
$$

with

$$
R_{11}=\frac{1}{9}, \quad R_{12}=-\frac{2}{3}, \quad R_{2}=-\frac{1}{4}, \quad R_{3}=\frac{5}{36}
$$

so that the output response for $x_{0}=0$ is given by

$$
y(t)=\frac{c}{9}{ }_{+}-\frac{2 c}{3} t_{+}-\frac{c}{4} e_{+}^{-t}+\frac{5 c}{36} e_{+}^{3 t} .
$$

