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Exercise 1 Denoting L(s) = G(s)P (s), in the Laplace domain the input-output evolutions are
described by

y(s) = W (s)v(s)

with W (s) = L(s)
1+L(s) .

(i)-(iii) By inspecting the Bode plots of

P (s) =
s+ 1

s3
(1)

(Figure 1), as ω ≥ 5 rad/s, one has that |P (jω)|dB ≤ −27.79 as ω ≥ 5 rad/s and
∠P (jω ∈ [−180o,−225o]. Accordingly, one has that for ω ≥ 5 rad/s, the controller G(s)
needs to be designed to increase the phase with limited magnitude effort bounded by
|G(jω)|dB ≤ 36. By rewriting G(s) = kGa(jω) with

Figure 1: Bode plots of (1)

Ga(s) =
1 + τas

1 + τa
ma
s

one hence gets that

|k|dB + |Ga(jω)|dB ≤ 36 =⇒ |k|dB ≤ 36−max{|Ga(jω)|dB}.
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By setting ma = 16 one has max{|Ga(jω)|dB} ≈ 24 with max{∠Ga(jω)} ≈ 62o corre-
sponding to ωn = 4 rad/sec. Accordingly, to maximize the phase margin, one has to set
ω∗t as the desired cross-over frequency in such a way that

|k|dB + |Ga(jω∗t )|dB + |P (jω∗t )|dB = 0

=⇒ |k|dB = −|Ga(jω∗t )|dB − |P (jω∗t )|dB ≤ 36−max{|Ga(jω)|dB}
=⇒ |P (jω∗t )|dB ≥ max{|Ga(jω)|dB} − |Ga(jω∗t )|dB − 36.

Also, because for ω ≥ 5 rad/s |P (jω)|dB ≤ −27.79 then the above bound restitutes

max{|Ga(jω)|dB} − |Ga(jω∗t )|dB − 36 ≤ −27.79 =⇒ max{|Ga(jω)|dB} − |Ga(jω∗t )|dB ≤ 8.21.

A suitable choice might hence be given by setting ma = 6 acting at ωn = 5 rad/s so that

Figure 2: Bode plots of (2)

|Ga(jω∗t )|dB ≈ 11.86 and ∠Ga(jω∗t ) ≈ 39o. Accordingly, the desired cross-over frequency
is selected in such a way that |k|dB ≤ 20 is enough for assigning it so getting

|P (jω∗t )|dB ≥ −31.86

that is ok for ω∗t ≈ 6.2 rad/s so needing |k|dB = 20 and thus k = 10.
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Figure 3: Nyquist plot of (2)

(iii) The Nyquist plot of the open loop system

L(s) = kGa(s)P (s) = 10
1 + 0.7939s

1 + 0.1323s

s+ 1

s3
(2)

are reported in Figure 3. The number of counter-clockwise encirclements of −1 + j0 on
behalf of the extended Nyquist plot of L(jω) is 0 (1 − 1) as the number the open loop
poles of L(s) with positive real part. Thus, the system is asymptotically stable in closed
loop.

Exercise 2 The transfer functions of the dynamical systems involved in the interconnection are
given by

y1(s) =P (s)u1(s), P (s). =
1

s(s− 2)

y2(s) =H(s)d(s), H(s) =
1

s+ 3
.

Accordingly, the output evolutions in the Laplace domain are described by

y(s) = W (s)v(s) +Wd(s)d(s), W (s) =
L(s)

1 + L(s)
, Wd(s) =

H(s)

1 + L(s)

with L(s) = G(s)P (s). For ensuring zero steady state output response to a constant dis-
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turbance d(t), one needs Wd(0) = 0. As the plant P (s) possesses an open loop pole at
s = 0, no further action is needed so that (after making the system asymptotically stable)
the specification is already satisfied by the plant.

For making the system asymptotically stable, we need to design G(s) so to assign all poles of
W (s) with negative real part. As P (s) has relative degree r = n −m but positive center of
the asymptotes, a static controller G(s) = k with k ∈ R is not enough. Thus, we set

G(s) = k
s+ z

s+ p

and set z, p ∈ R in such a way that the new center of the asymptote is negative; namely,

s′0 =
−p+ 2 + z

2
< 0.

Thus, let us set p = 26 and z = 4 so getting s′0 = −10. Accordingly, k ∈ R can be now
fixed by invoking the Routh criterion and compute the Routh table of the closed-loop pole
polynomial

p(s, k) = s(s+ 26)(s− 2) + k(s+ 4) = s3 + 24s2 + (k − 52)s+ 4k

so getting

r3 1 k − 52
r2 6 k
r1 k − 312/5
r0 k

so getting that the closed-loop system is asymptotically stable for k > 312
5 .

The root locus of G(s)P (s) is equivalent to the one of L(s) = 1
kG(s)P (s) = s+4

s(s−2)(s+26) (that

is when discarding the gain). The center of the asymptotes has been already computed and
is s′0 = −10. Moreover, the locus possesses one singularity of multiplicity µ = 2 given by the
solution to the equations

p(s, k) =s3 + 24s2 + (k − 52)s+ 4k = 0

∂p(s, k)

∂s
=3s2 + 48s+ k − 52

and provided by the couple (s∗, k∗) ≈ (0.9175, 5.4366). Moreover, the locus is intersecting the
imaginary axis in correspondance of (s, k) ∈ C × R making the Routh table not regular. In
this case, the locus is intersecting the imaginary axis at s∗1 = −24 and s∗2 = 0 corresponding
to, respectively, k∗1 = 312

5 and k∗2 = 0. The locus is reported in Figure 4.

Exercise 3 As the transfer function P (s) describes the input-output behavior, for computing the
state response a state-space realization is needed. To this end, we consider the controllable
state-space realtization of P (s) = s+2

s3−2s2−3s being provided by

ẋ =Ax+Bu

y = Cx
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Figure 4: Root Locus of L(s) = s+4
s(s−2)(s+26) .

with

A =

0 1 0
0 0 1
0 3 2

 , B =

0
0
1

 , C =
(
1 0 0

)
.

As in this case poles and eigenvalues coincide, the system possesses three aperiodic modes
corresponding to λ1 = 0, λ2 = −1 and λ3 = 3. Thus, the state evolution ensuing from
x0 = (1 1 0)> is provided as a linear combination of the aperiodic modes as

x(t) = eAtx0 = c1z1 + c2e
−tz2 + c3e

3tz3 (3)

with

z1 =

1
0
0

 , z2 =

 1
−1
1

 , z3 =

1
9
1
3
1


being the eigenvectors corresponding to the eigenvalues andc1c2

c3

 =
(
z1 z2 z3

)−1
x0 =

 1 2
3 −1

3
0 −3

4
1
4

0 3
4

3
4

1
1
0


so getting c1 = 5

3 , c2 = −3
4 and c3 = 3

4 . To this end, each aperiodic natural modes evolves
over an invariant subspace spanned by the corresponding eigenvectors, it is enough to set
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x0 ∈ span{z2} so directly implying c1 = c3 = 0.

From (3), it is clear that for making x(t)→ 0 as t→∞, the initial condition needs to be set
so to annihilate all non-convergent modes, that is so to get c1 = c3 = 0.

For computing the output response to u(t) = c+ with c ∈ R being constant it is enough to
compute

y(t) = cL−1
(P (s)

s

)
[t].

In particular, one gets

P (s)

s
=

s+ 2

s2(s+ 1)(s− 3)
=
R11

s
+
R12

s2
+

R2

s+ 1
+

R3

s− 3

with

R11 =
1

9
, R12 = −2

3
, R2 = −1

4
, R3 =

5

36

so that the output response for x0 = 0 is given by

y(t) =
c

9+
− 2c

3
t+ −

c

4
e−t+ +

5c

36
e3t+ .


