Control Systems
 23/3/2019

Exercise 1 Bode plots of $P(s)$ are drawn in Fig. 1. For (i) we must have $G(s)=G_{1}(s) G_{2}(s)$ with $G_{1}(s)=K_{G, 1}$ and $G_{2}(0)=1$ such that the steady state error e_{0} to inputs $v(t)=\delta_{1}(t)$ satisfies

$$
\left.\left|e_{0}\right|=\left|W_{e}(0)\right|=\frac{1}{1+P(0) K_{G, 1}}|\leq 1 \Rightarrow| K_{G, 1} \right\rvert\, \geq 2
$$

Set $K_{G, 1}=2$. For maximizing the phase margin since $G(s)$ must be one-dimensional and since the phase of $G_{1}(s) P(s)$ is -180° for all ω (see Bode plot of $G_{1}(s) P(s)$ in Fig. 2), we use an anticipative action $R_{a}(s)$ with $m_{a}=16$ at $\omega_{t}^{*}=4 \mathrm{rad} / \mathrm{sec}$ and $\omega_{N}=4 \mathrm{rad} / \mathrm{sec}$ (maximum phase increase $=\approx 62^{\circ}$ with magnitude increase $\approx 12 d B$. Notice that in this way we maximize the phase margin, having at hand only a one-dimensional $G(s)$, with a certain crossover frequency ω_{t}^{*}. Notice that $\omega_{t}^{*}=4 \mathrm{rad} / \mathrm{sec}$ has been chosen on account of the fact that the magnitude of $\left|G_{1} P\left(j \omega_{t}^{*}\right)\right|_{d B} \leq-12 d B$ which is the magnitude increase given by the anticipative action at ω_{N} but $\left|G_{1} P\left(j \omega_{t}^{*}\right)\right|_{d B} \geq-24 d B$ where 24 dB is the maximum magnitude increase which can be given by a single anticipative action ($m_{a}=16$). We get $\tau_{a}=1$ and

$$
G_{2}(s)=K_{G, 2} R_{a}(s)=K_{G, 2} \frac{1+s}{1+\frac{s}{16}}
$$

where $K_{G, 2}$ is to be selected. In order to place the crossover frequency exactly at $\omega_{t}^{*}=5$ $\mathrm{rad} / \mathrm{sec}$, notice that $\left|G_{1} P\left(j \omega_{t}^{*}\right)\right|_{d B} \approx-18 d B$ and $\left|G_{1} R_{a} P\left(j \omega_{t}^{*}\right)\right|_{d B} \approx-5 d B(R-a$ provides a magnitude increase $\approx 12 d B)$. Therefore, we choose $K_{G, 2}=6 d B \approx 2$ and finally the controller $G(s)$ is

$$
G(s)=4 \frac{1+s}{1+\frac{s}{16}}
$$

The Bode plots of $G(s) P(s)$ and its Nyquist plot are drawn in Fig. 3 and 4. The Nyquist plot shows that the closed-loop system is asymptotically stable (we have 1 counterclockwise tour around the point $-1+0 j$ and the number of poles with positive real part of $G(s) P(s)$ is 1).
Exercise 2 We have for the output w with inputs d and m in Laplace domain

$$
w(s)=\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{cc}
s & 0 \\
0 & s+2
\end{array}\right)^{-1}\binom{1}{0} m(s)+\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{cc}
s & 0 \\
0 & s+2
\end{array}\right)^{-1}\binom{0}{1} d(s)=\frac{1}{s} m(s)
$$

For the output $y(s)$ we have with inputs v and d

$$
y(s)=\frac{G(s) P_{2}(s) \frac{w(s)}{m(s)}}{1+G(s) P_{2}(s) \frac{w(s)}{m(s)}} v(s)=\frac{G(s) F(s)}{1+G(s) F(s)} v(s)
$$

where $F(s)=\frac{s-1}{s(s+1)}$. Therefore, y is not influenced by d and (ii) is trivially satisfied. Next, design $G(s)$ so that to satisfy (i). It is possible to satisfy (i) and (iii) at the same time.

Figure 1: Bode plots of $P(s)$

Figure 2: Bode plots of $G_{1}(s) P(s)$

Consider $G(s)$ of the form

$$
G(s)=K \frac{s+z}{s+p}
$$

By comparison, requiring that the closed-loop poles are all in -2 ,

$$
\begin{array}{r}
(s+2)^{3}=s^{3}+6 s^{2}+12 s+8=N U M(1+G(s) F(s))=(s+p)\left(s^{2}+s\right)+K\left[s^{2}+(z-1) s-z\right] \\
=s^{3}+(p+1+K) s^{2}+(K(z-1)+p) s-z K
\end{array}
$$

we get $z K=-8, p+1+K=6, z-1+p=12 \Rightarrow z=4+\sqrt{8}, p=5+8 /(4+\sqrt{8})$ and $K=-8 /(4+\sqrt{8})$.
The root locus of $G(s) F(s)$ is drawn is Figs. 5 and 6.

Figure 3: Bode plots of $G(s) P(s)$

Figure 4: Nyquist plot of $G(s) P(s)$

Exercise 3. We have for the transfer functions P_{1} and P_{2} :

$$
\begin{aligned}
P_{1}(s)=\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{cc}
s & 10 \\
-1 & s+11
\end{array}\right)^{-1}\binom{2}{1}= & \frac{s+2}{s^{2}+11 s+10} \\
& P_{2}(s)=\frac{1}{s+2}
\end{aligned}
$$

Moreover, the output $Y(s)$ in Laplace domain is

$$
\begin{equation*}
Y(s)=\frac{\left(1+K(s) G(s) P_{1}(s)\right) P_{2}(s)}{1+L(s)} d(s)+\frac{L(s)}{1+L(s)} v(s) \tag{1}
\end{equation*}
$$

where $L(s)=G(s) P_{1}(s) P_{2}(s)$. The point is to design $G(s)$ and $K(s)$ as required with the constraint that they must be realizable (number of poles greater or equal to the number of zeroes).
(i) Design $G(s)$ first. The closed-loop input-output transfer function is $W(s)=\frac{L)(s)}{1+L(s)}$ (see

Figure 5: Positive root locus of $G(s) F(s)$

Figure 6: Negative root locus of $G(s) F(s)$
(1)). We choose for $W(s)$ a form

$$
W(s)=\frac{2}{(s+1-j)(s+1+j)}=\frac{2}{s^{2}+2 s+2}
$$

(two closed-loop poles at $-1 \pm j$). Since

$$
G(s) P_{1}(s) P_{2}(s)=L(s)=\frac{W(s)}{1-W(s)}=\frac{2}{s^{2}+2 s}:=F(s)
$$

then

$$
G(s)=\frac{F(s)}{P_{1}(s) P_{2}(s)}=2 \frac{s^{2}+11 s+10}{s^{2}+2 s}
$$

(ii) The closed-loop disturbance-output transfer function is $W_{d}(s)=\frac{\left(1+K(s) G(s) P_{1}(s)\right) P P_{2}(s)}{1+L(s)}$ (see (1)). We design $K(s)$ in such a way that

$$
\begin{equation*}
\left|W_{d}(j \omega)\right| \leq 0.1, \forall \omega \in[0,10] \mathrm{rad} / \mathrm{sec} . \tag{2}
\end{equation*}
$$

Since

$$
K(s)=\frac{(1+L(s)) W_{d}(s)-P_{2}(s)}{L(s)}=\frac{1}{2}\left[\left(s^{2}+2 s+2\right) W_{d}(s)-s\right]
$$

choose

$$
W_{d}(s)=\frac{1}{s+10}
$$

Clearly, $W_{d}(s)$ satisfies (2) since

$$
\left|W_{d}(j \omega)\right|=\frac{1}{\sqrt{100+\omega^{2}}} \leq 0.1
$$

for all $\omega \in[0,10] \mathrm{rad} / \mathrm{sec}$ and, moreover,

$$
K(s)=\frac{1}{2}\left[\frac{2-8 s}{s+10}\right]
$$

