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Exercise 1 Denoting L(s) = G(s)P (s) and

P (s) = (1 + P1(s))P2(s) =
s− 2

s(s+ 2)

in the Laplace domain the input-output evolutions are described by

y(s) = W (s)v(s) +Wd(s)d(s)

with W (s) = L(s)
1+L(s) and Wd(s) = P2(s)

1+L(s) .

First, let us note that the invariant spectrum with respect to controllability is provided by
IC = {−1} ⊂ C− so that the system is still stabilizable.

At this point, let us set G(s) = G2(s)G1(s) where G1(s) and G2(s) are designed so to fulfil,
respectively, the steady-state and transient specifications.

(i) By the structure of the system, one has that an integrator is already acting before the
entering point of the disturbance so that yss(t) = 0 under constant disturbances d(t).
Setting G1(s) = κ1 and for the time-being G2(s) = 1, one gets that |ess(t)| ≤M = 0.1 if

∣∣We(s)

s

∣∣
s=0
≤ 0.1

with We(s) = 1
1+L(s) which is satisfied setting |κ1| ≥ 10. Moreover, by investigating the

Figure 1: Root locus of P (s) = s−2
s(s+2)
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root locus associated to P (s) (Figure 1), one immediately verifies that a negative gain
is necessary for asymptotically stabilizing the closed-loop system. As a consequence, we
set κ1 = −10 and G2(s) = κ2Ḡ2(s)with κ2 > 1 and denote

P̄ (s) = −P (s) = −10
s− 2

s(s+ 2)
(1)

Figure 2: Bode plots of (1) and (2)

(ii) By inspecting (Figure 2) the Bode plots of (1), one has that at ω = 0.5 rad/s

|P (0.5j)|dB ≈ 26.02dB and ∠P̄ (0.5j) + 180◦ ≈ 61.93◦

with hence decreasing values as ω > 0.5 rad/s. Accordingly, as κ2 ≥ 1 for fulfilling
specification (i), we set Ḡ2(s) so to decrease the cross-over frequency at ω?t ≈ 0.5 + ε
rad/s (with ε > 0 small) while ensuring that

∠P̄ (0.5j) + ∠Ḡ2(0.5j) + 180◦ = ∠Ḡ2(0.5j) + 61.93◦ ≥ 45◦ =⇒ ∠Ḡ2(0.5j) ≥ −16.93◦.

To this end, we set κ2 = 1 and thus

Ḡ2(s) =
1 + τ

m1
s

1 + τs

1 + τ
m2
s

1 + τs
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Figure 3: Nyquist plot of (2)

with m1 = 10 and m2 = 2 and τ = ωN
ω?
t

with ωN = 100 so to get

∠Ḡ2(0.5j) ≈ −5.83◦, |Ḡ2(0.5j)|dB ≈ −26dB.

Accordingly, the overall controller is given by

G(s) = −10
2000s2 + 120s+ 1

40000s2 + 400s+ 1
.

(i) The Nyquist plot of the open loop system

L(s) = G(s)P (s) = −10
2000s2 + 120s+ 1

40000s2 + 400s+ 1

s− 2

s(s+ 2)
(2)

is reported in Figure 3. The number of counter-clockwise encirclements of −1 + j0 on
behalf of the extended Nyquist plot of L(jω) is 0 as the number the open loop poles of
L(s) with positive real part. Thus, the system is asymptotically stable in closed loop.

Exercise 2 It is a matter of computation to verify that the system (A,B,C) is not controllable.
As a matter of fact, the invariant spectrum with respect to controllability is given by IC =
{−1} ⊂ C− so that the system is stabilizable under feedback.
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At this point, we compute the transfer function associated to (A,B,C) as given by

P (s) =
1

s+ 2

so getting

y(s) = W (s)v(s) +Wd(s)d(s)

with W (s) = L(s)
1+L(s) , Wd(s) = 1

1+L(s) and L(s) = G(s)P (s).

(i) For fulfilling specification (i) it is necessary to embed a copy of the signals to reject in the
open loop transfer function L(s) so guaranteeing that the corresponding steady-state
responses are zero. As a consequence, we set

G(s) =
1

s(s2 + 1)
Gr(s).

(ii) As the dimension of the feedback is lower bounded by specification (i) we set Gr(s) =
as2 + bs + c so to increase the relative degree (i.e., the pole-zero excess) of the corre-
sponding open loop transfer function L(s) to r = 2 so getting

L(s) =
as2 + bs+ c

s(s2 + 1)(s+ 2)
.

Also, under a suitable choice of a, b, c ∈ R the center of the asymptotes of L(s) (denoted
by s0 ∈ R) can be constrained to be s0 < −0.3. By computing the pole polynomial

associated to the input-output transfer function W (s) = L(s)
1+L(s) one gets

p(s; a, b, c) = s4 + 2s3 + (1 + a)s2 + (2 + b)s+ c

so getting that the poles of the closed-loop system can be all assigned at a proper
−p < −0.3 that is the following set admits a solution

p(s; a, b, c) = (s+ p)4

p > 0.3.

In particular, one gets

p4 = c 4p3 = 2 + b, 6p2 = 1 + a, 4p = 2

and thus the solution

p =
1

2
, a =

1

2
, b = −3

2
, c =

1

6
.

Accordingly, the overall feedback is given by

G(s) =
1

16

8s2 − 24s+ 1

s(s2 + 1)

assigning for poles in p = −1
2 . Accordingly, the root locus of
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Figure 4: Root Locus of KL(s) with L(s) in (3).

KL(s) = G(s)P (s) =
K

16

(s− 2.9577)(s− 0.0423)

s(s2 + 1)(s+ 2)
. (3)

possesses relative degree r = 2 and center of asymptotes s0 ≈ 2.5. By construction of
G(s), it possesses one singularity of order µ = 4 at (s?1,K

?
1 ) = (−1

2 , 1). In addition,

considering the pole-polynomial of the closed-loop transfer function W̃ (s) = KL(s)
1+KL(s)

provided by

p̃(s,K) = s4 + 2 s3 +

(
K

2
+ 1

)
s2 +

(
2− 3K

2

)
s+

K

16

one gets that other two singularities of order µ = 2 arise corresponding to (s?2,K
?
2 ) =

(0.208, 2.10) and (s?3,K
?
3 ) = (4.79,−179.04). The point in which the locus crosses the

imaginary axis correspond to K ∈ R making the Routh table non-regular that is
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r4 1 1 + K
2

K
16

r3 2 2− 3
2K

r2 5K K
4

r1 19− 15K

r0 K
4

so getting K ∈ {0, 19
15}. Also, it is immediate to verify that the closed-loop system is

asymptotically stable as K ∈ (0, 19
15). The locus is reported in Figure 4.

Exercise 3 The eigenvalues of the systems are given by λ1 = −3 and λ2 = 2 with

u1 =

(
5
−1

)
, u1 =

(
0
1

)
being the corresponding eigenvectors. Thus, the system possesses two aperiodical modes
describing the corresponding free evolution

x(t) = eAtx0 = c1e
−3tu1 + c2e

2tu2

with c1, c2 ∈ R provided by (
c1

c2

)
= U−1x0, U =

(
5 0
−1 1

)
.

By noticing that x(tf ) ∈ span{u2} one concludes that necessarily x0 ∈ span{u2} so that

c1 = 0 and thus x0 =
(
0 x2

0

)>
and x2

0 = e−4 as the solution to

x(tf ) = UeΛtU−1x0, eΛt =

(
e−3t 0

0 e2t

)
for t = tf = 2 and x(tf ) = (0 1)>. As t → ∞, the corresponding solutions from x0 = e−4u2

diverge that is ‖x(t)‖ → ∞.

On the other side, solutions converge to the origin if and only if x0 ∈ span{u1} so to guarantee
c2 = 0.


