Control Systems
 16/09/2019

Exercise 1 Denoting $L(s)=G(s) P(s)$ and

$$
P(s)=\left(1+P_{1}(s)\right) P_{2}(s)=\frac{s-2}{s(s+2)}
$$

in the Laplace domain the input-output evolutions are described by

$$
y(s)=W(s) v(s)+W_{d}(s) d(s)
$$

with $W(s)=\frac{L(s)}{1+L(s)}$ and $W_{d}(s)=\frac{P_{2}(s)}{1+L(s)}$.
First, let us note that the invariant spectrum with respect to controllability is provided by $\mathcal{I}_{C}=\{-1\} \subset \mathcal{C}^{-}$so that the system is still stabilizable.
At this point, let us set $G(s)=G_{2}(s) G_{1}(s)$ where $G_{1}(s)$ and $G_{2}(s)$ are designed so to fulfil, respectively, the steady-state and transient specifications.
(i) By the structure of the system, one has that an integrator is already acting before the entering point of the disturbance so that $y_{s s}(t)=0$ under constant disturbances $d(t)$. Setting $G_{1}(s)=\kappa_{1}$ and for the time-being $G_{2}(s)=1$, one gets that $\left|e_{s s}(t)\right| \leq M=0.1$ if

$$
\left|\frac{W_{e}(s)}{s}\right|_{s=0} \leq 0.1
$$

with $W_{e}(s)=\frac{1}{1+L(s)}$ which is satisfied setting $\left|\kappa_{1}\right| \geq 10$. Moreover, by investigating the

Figure 1: Root locus of $P(s)=\frac{s-2}{s(s+2)}$
root locus associated to $P(s)$ (Figure 1), one immediately verifies that a negative gain is necessary for asymptotically stabilizing the closed-loop system. As a consequence, we set $\kappa_{1}=-10$ and $G_{2}(s)=\kappa_{2} \bar{G}_{2}(s)$ with $\kappa_{2}>1$ and denote

$$
\begin{equation*}
\bar{P}(s)=-P(s)=-10 \frac{s-2}{s(s+2)} \tag{1}
\end{equation*}
$$

Figure 2: Bode plots of (1) and (2)
(ii) By inspecting (Figure 2) the Bode plots of (1), one has that at $\omega=0.5 \mathrm{rad} / \mathrm{s}$

$$
|P(0.5 j)|_{d B} \approx 26.02 d B \quad \text { and } \quad \angle \bar{P}(0.5 j)+180^{\circ} \approx 61.93^{\circ}
$$

with hence decreasing values as $\omega>0.5 \mathrm{rad} / \mathrm{s}$. Accordingly, as $\kappa_{2} \geq 1$ for fulfilling specification (i), we set $\bar{G}_{2}(s)$ so to decrease the cross-over frequency at $\omega_{t}^{\star} \approx 0.5+\varepsilon$ $\mathrm{rad} / \mathrm{s}$ (with $\varepsilon>0$ small) while ensuring that
$\angle \bar{P}(0.5 j)+\angle \bar{G}_{2}(0.5 j)+180^{\circ}=\angle \bar{G}_{2}(0.5 j)+61.93^{\circ} \geq 45^{\circ} \quad \Longrightarrow \angle \bar{G}_{2}(0.5 j) \geq-16.93^{\circ}$.
To this end, we set $\kappa_{2}=1$ and thus

$$
\bar{G}_{2}(s)=\frac{1+\frac{\tau}{m_{1}} s}{1+\tau s} \frac{1+\frac{\tau}{m_{2}} s}{1+\tau s}
$$

Figure 3: Nyquist plot of (2)
with $m_{1}=10$ and $m_{2}=2$ and $\tau=\frac{\omega_{N}}{\omega_{t}^{N}}$ with $\omega_{N}=100$ so to get

$$
\angle \bar{G}_{2}(0.5 j) \approx-5.83^{\circ}, \quad\left|\bar{G}_{2}(0.5 j)\right|_{d B} \approx-26 d B .
$$

Accordingly, the overall controller is given by

$$
G(s)=-10 \frac{2000 s^{2}+120 s+1}{40000 s^{2}+400 s+1} .
$$

(i) The Nyquist plot of the open loop system

$$
\begin{equation*}
L(s)=G(s) P(s)=-10 \frac{2000 s^{2}+120 s+1}{40000 s^{2}+400 s+1} \frac{s-2}{s(s+2)} \tag{2}
\end{equation*}
$$

is reported in Figure 3. The number of counter-clockwise encirclements of $-1+j 0$ on behalf of the extended Nyquist plot of $L(j \omega)$ is 0 as the number the open loop poles of $\mathrm{L}(\mathrm{s})$ with positive real part. Thus, the system is asymptotically stable in closed loop.

Exercise 2 It is a matter of computation to verify that the system (A, B, C) is not controllable. As a matter of fact, the invariant spectrum with respect to controllability is given by $\mathcal{I}_{C}=$ $\{-1\} \subset \mathbb{C}^{-}$so that the system is stabilizable under feedback.

At this point, we compute the transfer function associated to (A, B, C) as given by

$$
P(s)=\frac{1}{s+2}
$$

so getting

$$
y(s)=W(s) v(s)+W_{d}(s) d(s)
$$

with $W(s)=\frac{L(s)}{1+L(s)}, W_{d}(s)=\frac{1}{1+L(s)}$ and $L(s)=G(s) P(s)$.
(i) For fulfilling specification (i) it is necessary to embed a copy of the signals to reject in the open loop transfer function $L(s)$ so guaranteeing that the corresponding steady-state responses are zero. As a consequence, we set

$$
G(s)=\frac{1}{s\left(s^{2}+1\right)} G_{r}(s) .
$$

(ii) As the dimension of the feedback is lower bounded by specification (i) we set $G_{r}(s)=$ $a s^{2}+b s+c$ so to increase the relative degree (i.e., the pole-zero excess) of the corresponding open loop transfer function $L(s)$ to $r=2$ so getting

$$
L(s)=\frac{a s^{2}+b s+c}{s\left(s^{2}+1\right)(s+2)}
$$

Also, under a suitable choice of $a, b, c \in \mathbb{R}$ the center of the asymptotes of $L(s)$ (denoted by $s_{0} \in \mathbb{R}$) can be constrained to be $s_{0}<-0.3$. By computing the pole polynomial associated to the input-output transfer function $W(s)=\frac{L(s)}{1+L(s)}$ one gets

$$
\mathbf{p}(s ; a, b, c)=s^{4}+2 s^{3}+(1+a) s^{2}+(2+b) s+c
$$

so getting that the poles of the closed-loop system can be all assigned at a proper $-p<-0.3$ that is the following set admits a solution

$$
\begin{aligned}
& \mathbf{p}(s ; a, b, c)=(s+p)^{4} \\
& p>0.3
\end{aligned}
$$

In particular, one gets

$$
p^{4}=c \quad 4 p^{3}=2+b, \quad 6 p^{2}=1+a, \quad 4 p=2
$$

and thus the solution

$$
p=\frac{1}{2}, a=\frac{1}{2}, \quad b=-\frac{3}{2}, \quad c=\frac{1}{6} .
$$

Accordingly, the overall feedback is given by

$$
G(s)=\frac{1}{16} \frac{8 s^{2}-24 s+1}{s\left(s^{2}+1\right)}
$$

assigning for poles in $p=-\frac{1}{2}$. Accordingly, the root locus of

Figure 4: Root Locus of $K L(s)$ with $L(s)$ in (3).

$$
\begin{equation*}
K L(s)=G(s) P(s)=\frac{K}{16} \frac{(s-2.9577)(s-0.0423)}{s\left(s^{2}+1\right)(s+2)} . \tag{3}
\end{equation*}
$$

possesses relative degree $r=2$ and center of asymptotes $s_{0} \approx 2.5$. By construction of $G(s)$, it possesses one singularity of order $\mu=4$ at $\left(s_{1}^{\star}, K_{1}^{\star}\right)=\left(-\frac{1}{2}, 1\right)$. In addition, considering the pole-polynomial of the closed-loop transfer function $\tilde{W}(s)=\frac{K L(s)}{1+K L(s)}$ provided by

$$
\tilde{p}(s, K)=s^{4}+2 s^{3}+\left(\frac{K}{2}+1\right) s^{2}+\left(2-\frac{3 K}{2}\right) s+\frac{K}{16}
$$

one gets that other two singularities of order $\mu=2$ arise corresponding to $\left(s_{2}^{\star}, K_{2}^{\star}\right)=$ $(0.208,2.10)$ and $\left(s_{3}^{\star}, K_{3}^{\star}\right)=(4.79,-179.04)$. The point in which the locus crosses the imaginary axis correspond to $K \in \mathbb{R}$ making the Routh table non-regular that is

r^{4}	1	$1+\frac{K}{2}$	$\frac{K}{16}$
r^{3}	2	$2-\frac{3}{2} K$	
r^{2}	$5 K$	$\frac{K}{4}$	
r^{1}	$19-15 K$		
r^{0}	$\frac{K}{4}$		

so getting $K \in\left\{0, \frac{19}{15}\right\}$. Also, it is immediate to verify that the closed-loop system is asymptotically stable as $K \in\left(0, \frac{19}{15}\right)$. The locus is reported in Figure 4.
Exercise 3 The eigenvalues of the systems are given by $\lambda_{1}=-3$ and $\lambda_{2}=2$ with

$$
u_{1}=\binom{5}{-1}, \quad u_{1}=\binom{0}{1}
$$

being the corresponding eigenvectors. Thus, the system possesses two aperiodical modes describing the corresponding free evolution

$$
x(t)=e^{A t} x_{0}=c_{1} e^{-3 t} u_{1}+c_{2} e^{2 t} u_{2}
$$

with $c_{1}, c_{2} \in \mathbb{R}$ provided by

$$
\binom{c_{1}}{c_{2}}=U^{-1} x_{0}, \quad U=\left(\begin{array}{cc}
5 & 0 \\
-1 & 1
\end{array}\right) .
$$

By noticing that $x\left(t_{f}\right) \in \operatorname{span}\left\{u_{2}\right\}$ one concludes that necessarily $x_{0} \in \operatorname{span}\left\{u_{2}\right\}$ so that $c_{1}=0$ and thus $x_{0}=\left(\begin{array}{ll}0 & x_{0}^{2}\end{array}\right)^{\top}$ and $x_{0}^{2}=e^{-4}$ as the solution to

$$
x\left(t_{f}\right)=U e^{\Lambda t} U^{-1} x_{0}, \quad e^{\Lambda t}=\left(\begin{array}{cc}
e^{-3 t} & 0 \\
0 & e^{2 t}
\end{array}\right)
$$

for $t=t_{f}=2$ and $x\left(t_{f}\right)=(01)^{\top}$. As $t \rightarrow \infty$, the corresponding solutions from $x_{0}=e^{-4} u_{2}$ diverge that is $\|x(t)\| \rightarrow \infty$.
On the other side, solutions converge to the origin if and only if $x_{0} \in \operatorname{span}\left\{u_{1}\right\}$ so to guarantee $c_{2}=0$.

