CONTROL SYSTEMS - 9/9/2021

[time 2 hours and 30 minutes; no textbooks; no programmable calculators]

Ex. # 1) Given the process $\mathbf{P}(s) = \frac{-5}{s(1+s)}$, design a minimal dimensional controller $\mathbf{G}(s)$ such that

(i) the feedback system $\mathbf{W}(s) = \frac{\mathbf{PG}(s)}{1+\mathbf{PG}(s)}$ is asymptotically stable (check with Nyquist criterion) with steady-state error $|\mathbf{e}_{ss}(t)| \leq 0.02$ to ramp inputs $\mathbf{v}(t) = t$,

(ii) $20log_{10}|\mathbf{G}(j\omega)| \leq 36dB$ for all $\omega > 0$,

(iii) the open-loop system **PG** has crossover frequency $\omega_t \ge 8$ rad/sec and phase margin $m_{\phi} \ge 50^{\circ}$.

For the feedback system $\mathbf{W}(s)$ calculate the steady-state error to an input $\mathbf{v}(t) = \sin t$.

Ex. # 2) Given the process P described by:

$$\begin{aligned} \dot{\mathbf{x}}_1 &= \mathbf{x}_2 \\ \dot{\mathbf{x}}_2 &= -4.5\mathbf{x}_1 - 4.5\mathbf{x}_2 + \mathbf{u} \\ \mathbf{y} &= 1.5\mathbf{x}_1 + \mathbf{x}_2 \end{aligned} \tag{1}$$

design a controller $\mathbf{G}(s)$ such that the feedback system $\mathbf{W}(s) = \frac{\mathbf{PG}(s)}{1 + \mathbf{PG}(s)}$

- has eigenvalues with real part less or equal than -1;

- has zero steady-state response to additive in the output disturbances $\mathbf{d}(t)=1.$

Draw the root locus of $\mathbf{PG}(s)$ (use Routh criterion).

Ex. # 3) Determine the reachable states (with control **u**) from a generic initial state \mathbf{x}_0 for

$$\dot{\mathbf{x}}_1 = \mathbf{u} + \mathbf{x}_1$$

$$\dot{\mathbf{x}}_2 = 0, \tag{2}$$

and if possible a control law $\mathbf{u}(t)$ which steers the system' state from the initial state $\mathbf{x}_0 = (0, 1)^{\top}$ into $\mathbf{x}_f = (1, 1)^{\top}$. Also, determine the indistinguishable states from the output $\mathbf{y} = \mathbf{x}_2$. If $\mathbf{y} = (\mathbf{x}_1, \mathbf{x}_2)^{\top}$ how the set of indistinguishable states from the output \mathbf{y} becomes?