CONTROL SYSTEMS - 11/1/2021

[time 2 hours and 30 minutes; no textbooks; no programmable calculators]

with controlled process $P(s) = \frac{-3}{s(s+1)}$. Design a controller G(s) such that

(i) the closed-loop system is asymptotically stable (use Nyquist criterion) with steady state error response $|\mathbf{e}_{ss}(t)| \leq 0.02$ to ramp inputs $\mathbf{v}(t) = t$,

(ii) the open loop system PG(s) has phase margin $m_f^* \ge 50^\circ$ and crossover frequency $\omega_t^* = 10 \text{ rad/sec}$,

(iii) $|G(j\omega)|_{dB} < 36$ dB for all $\omega > 0$.

with $\mathbf{P}(s) = \frac{s^2 + b}{(s+2)^2(s+1)}$ and parameter $b \in \mathbb{R}$. Determine the value of b > 0 and an interval of frequencies a > 0 (in rad/sec) for which it is possible to design a 2-dimensional controller G(s) such that the closed-loop system is asymptotically stable with

(i) steady state error response $e_{ss}(t) \equiv 0$ to constant inputs $\mathbf{v}(t)$,

(i) steady state output response $\mathbf{y}_{ss}(t) \equiv 0$ to disturbances $\mathbf{d}_2(t) = M \sin(at + t)$

 $N), M, N \in \mathbb{R} \text{ and } a > 0,$

(ii) steady state output response $\mathbf{y}_{ss}(t) \equiv 0$ to disturbances $\mathbf{d}_1(t) = M \sin(2t + t)$ $N), M, N \in \mathbb{R}.$

Draw the root locus of PG(s) using the Routh table for a study of the crossing points of the imaginaty axis.

Ex. # 3) Consider the system

with $\mathbf{F}(s) = \frac{s+1}{s+2}$, $\mathbf{G}(s) = \frac{1}{s+1}$. (i) Determine a state space representation (or realization) of the above interconnected system.

(ii) Compute the forced output response y to the input $\mathbf{r}(t) = \sin(2t-3)\delta^{(-1)}(t)$.

(ii) Compute the steady state output response \mathbf{y}_{ss} to the input $\mathbf{r}(t)$.