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Abstract

An analysis of underactuated manipulators from both the
dynamic and control points of view is presented. While
the unactuated joints dynamic equation is recognized to
be a nonholonomic constraint in the general case, neces-
sary and sufficient conditions are given to identify special
cases in which such a constraint is integrable. In contrast
to most examples in the literature, the unactuated joints
dynamics are an instance of second-order nonholonomic
constraint. It is shown that smooth feedback stabilization
to a single equilibrium point is not possible, and a feedback
scheme providing stabilization to a manifold of equilibrium
positions is proposed.

1. Introduction

The control of nonholonomic mechanical systems, i.e. sys-
tems with non-integrable differential constraints on gen-
eralized coordinates, has attracted growing attention in
recent years. Even if the existence of non-integrable con-
straints in a system is strictly a mechanical property, the
control problem for nonholonomic systems exhibits dis-
tinctive features. In fact, many nonholonomic systems nat-
urally fit into the category of underactuated mechanisms,
defined as systems in which the dimension of the configura-
tion space exceeds that of the control input space. Exam-
ples of nonholonomic underactuated systems are wheeled
mobile robots [1–3], legged robots in flight phase [4], space
robots without jets or momentum wheels [5].

The difficulty of the control problem for underactuated
mechanisms is obviously due the reduced dimension of the
input space. A main question is whether the controllability
of the system is affected by this feature, i.e. if it is still pos-
sible to reach any configuration by properly steering the
input. Even when controllability is guaranteed, the control
problem for underactuated systems is generally harder. A
general theorem [6] can be often applied to these systems in
order to infer a negative result, namely that smooth feed-
back stabilization to an equilibrium point is not possible.
In this case non-smooth stabilization must be pursued, or
different control objectives must be addressed.

In this paper, we tackle the problem of controlling an
underactuated robot manipulator, i.e. a manipulator in
which some joints are not equipped with actuators. The
basic feature which may allow to control the whole mech-
anism through a limited number of actuators is obviously
the coupling between links of the kinematic chain; such
coupling is however highly nonlinear. The motivation for
studying such a structure is multiple. First, underactu-
ated manipulators may prove useful in particular instances

in which it is important to reduce weight, cost or energy
consumption, while still mantaining an adequate degree of
dexterity; for example, one might think of space applica-
tions or some low-cost process automation.

Moreover, underactuated robot manipulators are a par-
ticularly challenging example of underactuated systems,
because the associated control problem has a number of
additional difficulties. In fact, it is possible to show that
existing conditions do not provide any conclusion about
system controllability. Besides, not only the system is not
smoothly feedback-stabilizable, but further the presence
of a drift term in the state-space model makes very diffi-
cult to devise intuitive open-loop strategies, as possible in
simpler cases.

The final motivation stands in the fact that underactuated
robots are an example of a mechanical system with second-
order nonholonomic constraints. In particular, the dy-
namic equation of the unactuated joints is a second-order
constraint on generalized coordinates which is in general
non-integrable. This is in contrast with the vast majority
of literature on nonholonomic systems, where only first-
order (kinematic) constraints have been presented.

Underactuated robots have previously appeared in [7], [8].
However, in both cases there was a particular feature of
the system which simplified the control problem. In [7],
the unactuated joints were equipped with a braking mech-
anism, so that it was possible to eliminate the coupling
between the links when desired; by appropriately combin-
ing brake on/brake off phases, control of the whole manip-
ulator was achieved. In [8], the inclusion of gravity made
the system linearization around equilibrium points con-
trollable (and hence smoothly stabilizable); on the other
hand, it also reduced the set of equilibrium points. For
these reasons, the presence of a gravitational torque will
be considered in establishing conditions for the integrabil-
ity of the unactuated joints dynamics, but will be removed
when addressing the control problem.

In the next section, the problem is stated and condi-
tions for the integrability of the unactuated joints dynamic
equation are given; in Section 3 some examples are pre-
sented to clarify these results. The general control prob-
lem for underactuated manipulators is discussed in Section
5. In Section 6 a control scheme achieving stabilization to
a manifold of equilibrium points is presented, and Section
7 offers some conclusive remarks.

2. Integrability conditions

The dynamic model of a robot manipulator with n joints
(which is a reasonably general model of mechanical sys-



tems) is expressed as

H(q)q̈ + c(q, q̇) + e(q) = u, (2.1)

where q is the vector of joint variables (generalized coordi-
nates). H(q) is the n×n inertia matrix, c(q, q̇)=C(q, q̇)q̇
is the vector of Coriolis and centripetal torques, e(q)
are the gravitational terms, and u is the vector of input
torques. If only m joints are equipped with actuators,
vector q can be partitioned without loss of generality as
(qa qu), where qa ∈ IRm represents the actuated joints,
while qu ∈ IR(n−m) represents the unactuated ones. The
dynamic model (2.1) is then written as

[
Ha

Hu

] [
q̈a

q̈u

]
+

[
ca
cu

]
+

[
ea
eu

]
=

[
ua

0

]
, (2.2)

and in particular the dynamic equation relative to the un-
actuated joints is

Hu(q)q̈ + cu(q, q̇) + eu(q) = 0. (2.3)

No input term explicitly appears in the (n − m) equa-
tions (2.3), which may thus be interpreted as an (n−m)-
dimensional constraint involving generalized coordinates
as well as their first and second-order time derivatives. It
is important to determine if this constraint is integrable,
for in this case it can be used to reduce the system dimen-
sion by eliminating some generalized coordinates.

As a preliminary step, we check if equation (2.3) may be
integrated to the form g(q, q̇, t) = 0. In the following,
this property will be referred to as partial integrability.
If partial integrability holds, possible further integrability
to a constraint of the form f(q, t) = 0 must be investi-
gated. If such a constraint exists, constraint (2.3) will
be said to possess the complete integrability property or,
according to the standard mechanics terminology, to be
holonomic. In fact, although almost all examples of non-
holonomic constraints presented in the literature are kine-
matic, also differential constraints of higher order can be
considered nonholonomic in principle [9].

A common approach in the most recent literature concen-
ing nonholonomic systems is to infer the nonholonomic na-
ture of the constraints from the accessibility of the system
[1,2,10]. However, this procedure cannot be applied to un-
deractuated manipulators. In fact, in this case the existing
sufficient conditions for accessibility (i.e. that the Lie Al-
gebra of system vector fields generates an n-dimensional
distribution) are not satisfied, while the necessary ones
are [11]. It is still possible to use Frobenius Theorem [12]
to discuss the integrability (both partial and complete) of
constraint (2.3). A difficulty derives from the fact that the
latter is a second-order constraint, so that some transfor-
mation is needed to put it in a first-order form, to which
Frobenius Theorem can be directly applied [11]. We will
establish integrability conditions by following here a dif-
ferent approach, taking advantage of the special pattern
of constraint (2.3), which in turns depends on the robot
dynamic model structure.

2.1 Conditions for partial integrability

Consider the generic (n−m)-dimensional constraint of the
first order (i.e. involving q and q̇), expressed as

g(q, q̇, t) = 0, g ∈ IRn−m. (2.4)

Note that the explicit presence of the time variable t is
considered in (2.4), because this enlarges the class of in-
tegrable unactuated joint dynamics, as will be shown in
the following. According to the previously introduced ter-
minology, constraint (2.3) is partially integrable if can be
integrated to (2.4). Differentiating (2.4) w.r.t. t yields

∂g

∂q
q̇ +

∂g

∂q̇
q̈ +

∂g

∂t
= 0. (2.5)

For (2.3) to be partially integrable, it must be structurally
equivalent to (2.5). We determine the integrability condi-
tions comparing the two equations.

First, it appears that ∂g/∂t must be constant, since t does
not appear explicitly in equation (2.3). Thus, we may
restrict our attention to constraints of the form

g(q, q̇, t) = g1(q, q̇) + k1t = 0, (2.6)

where k1 ∈ IRn−m is an arbitrary constant vector. Differ-
entiating (2.6) we have

∂g1

∂q
q̇ +

∂g1

∂q̇
q̈ + k1 = 0. (2.7)

We obtain necessary conditions by considering special
cases. Setting q̇ = 0 in (2.3) and (2.7)

(2.3) ⇒ Huq̈ + eu = 0, (2.7) ⇒ ∂g1

∂q̇
q̈ + k1 = 0.

For these two equations to provide the same feasible ac-
celerations, the following must hold [11]

Hu =
∂g1

∂q̇
and eu = k1. (2.8)

Being Hu a function of q only, joint velocities q̇ appear
linearly in (2.6), which must have the form

g(q, q̇, t) = g2(q) + Hu(q)q̇ + eut = 0. (2.9)

Again, differentiating (2.9) we obtain

∂g2

∂q
q̇ + Ḣuq̇ + Huq̈ + eu = 0. (2.10)

The explicit expression of cu in (2.3) is

cu = Ḣuq̇ − 1

2

( ∂

∂qu
(q̇THq̇)

)T
, (2.11)

so that, comparing (2.3) with (2.10)

∂g2

∂q
q̇ +

1

2

( ∂

∂qu
(q̇THq̇)

)T
= 0. (2.12)



It is possible to show [11] that (2.12) is equivalent to

( ∂

∂qu
(q̇THq̇)

)T
= 0 and

∂g2

∂q
= 0, (2.13)

i.e. the kinetic energy must not depend on the unactuated
joint variables. Since H is symmetric this implies

∂H

∂qu,i
= O, i = m + 1, . . . , n, (2.14)

with O being the n×n null matrix.

By equation (2.13), g2 reduces to a constant term k2.
Thus, if (2.3) is partially integrable, its integral form is

g(q, q̇, t) = Hu(q)q̇ + eut + k2 = 0, (2.15)

in which k2 is a constant to be determined from the initial
conditions of motion.

Equations (2.8) and (2.14) have been found to be neces-
sary conditions for the partial integrability of (2.3). The
following result shows that together they constitute also a
sufficient condition.

Proposition 2.1

Constraint (2.3) is partially integrable if and only if:

(i) the gravitational torque eu is constant;

(ii) the unactuated joint variables qu do not appear in the
manipulator inertia matrix.

If it exists, its partial integral form is given by (2.15).

Proof. The necessity has been proven above. To show the
sufficiency, assume that (i) and (ii) hold. Equation (2.3)
reduces to (see also (2.11))

Huq̈ + Ḣuq̇ + eu = 0, (2.16)

which is integrable to (2.15).

2.2 Physical interpretation of Proposition 2.1

Conditions (i) and (ii) of Proposition 2.1 have an immedi-
ate physical interpretation. Letting U be the gravitational
potential energy, it is eu = ∂U/∂qu. Condition (i) is sat-
isfied when U = U(qa)+kT

1 qu, with k1 being a constant
vector (and k1 = eu). For example, this holds for a free
joint sliding along a vertical axis. Clearly, condition (i)
is also satisfied in the particular case eu = 0, i.e. when
the unactuated part of the robotic structure is contained
in the horizontal plane or there is no gravitational field.
Note that this case is particularly important, for example
in space applications.

As for condition (ii), assume first that eu = 0. Then
(2.14) is equivalent to the classical definition of cyclic co-
ordinates, i.e. generalized coordinates which do not enter
into the Lagrangian function L [13]. It is known that the
generalized momentum pi = ∂L/∂q̇i of a cyclic coordinate
qi is conserved. In our case

pu,i =
∂L

∂q̇u,i
= hT

u,iq̇ = constant (2.17)

where hu,i is the i-th column of the inertia submatrix
Hu (compare with (2.15)). Hence, if eu = 0, constraint
(2.3) can be partially integrated if and only if the unac-
tuated joints coordinates are cyclic, and the integral form
of the constraint expresses the corresponding generalized
momentum conservation.

In the case eu=k1 %=0, it is U =U(qa)+kT
1 qu and the un-

actuated joints coordinates are not cyclic. The Lagrangian
is

L = T − U =
1

2
q̇THq̇ − U(qa) − kT

1 qu, (2.18)

Use of (2.14) in the Lagrange’s equation ṗi = ∂L/∂qi gives

pu,i = −k1,it + pu,i(0), (2.19)

where pu,i(0) is the generalized momentum at t=0. In the
case eu %= 0, if the unactuated joints dynamics admit an
integral form, this represents the linear decrease in time of
the corresponding generalized momentum.

2.3 Conditions for complete integrability

So far, conditions have been given for the partial integra-
bility of constraint (2.3). If they are satisfied, (2.3) can be
integrated as (2.15). To decide whether the latter can be
further integrated, consider the equation

Hu(q)q̇ = 0. (2.20)

For any q, (2.20) determines an m-dimensional linear sub-
space ∆(q), that is the null-space of matrix Hu. The map-
ping ∆ : q &→ ∆(q) is the m-distribution associated with
the constraint (2.20). Frobenius Theorem [12] states that
(2.20) is integrable if and only if ∆ is involutive. If so,
equation (2.15) is also integrable as

f(q, t) = f1(q) +
eu
2
t2 + k2t + k3 = 0, (2.21)

with ∂f1/∂q = Hu, and k2, k3 are constant vectors de-
pending on initial conditions. Summarizing

Proposition 2.2

Constraint (2.3) is completely integrable (holonomic) if
and only if:

(i) is partially integrable;

(ii) the distribution ∆ defined by (2.20) is involutive.

In this case, the integral form of (2.3) is given by (2.21).

Note that if n = 2 a constraint like (2.20) is always inte-
grable, since ∆ is 1-dimensional and thus involutive. This
conclusion is consistent with the classical result in mechan-
ics [13] stating that a 2-dof system with a cyclic coordinate
is always integrable. In fact, the cyclicity of a joint coor-
dinate implies that conditions (i) and (ii) of Proposition
2.1 are satisfied for that joint.

Proposition 2.2 places severe limitations on the class of
underactuated robots for which constraint (2.3) is inte-
grable, by requesting a special mechanical structure. As a
result, the unactuated joint dynamics are a second-order
nonholonomic constraint in the general case.



3. Examples

Consider a two-link robot with rotational joints in a hori-
zontal plane, so that e = 0 in the dynamic equation
[
a1+2a2 cos q2 a3+a2 cos q2

a3+a2 cos q2 a3

]
q̈ + a2 sin q2

[
−2q̇1q̇2−q̇2

2

q̇2
1

]
=u,

(3.1)
where

a1 = m1l
2
c1 + J1 + J2 + m2(l

2
1 + l2c2),

a2 = m2l1lc2,

a3 = m2l
2
c2 + J2.

(3.2)

In (3.2), mi, li, and Ji are respectively the length, mass
and inertia moment (w.r.t. its center of mass) of the i−th
link, while lci is the distance between the i−th joint axis
and the center of mass of the i−th link.

Example 3.1 Suppose that the first joint is not actuated
while the second is, so that u = (0 u2)T . Since q1 does
not enter in the manipulator inertia matrix (i.e. is a cyclic
coordinate), condition (ii) of Proposition 2.1 is satisfied,
and the first equation of (3.1)

(a1+2a2cosq2)q̈1 +(a3+a2cosq2)q̈2−a2q̇2(2q̇1 + q̇2)sinq2 =0
(3.3)

can be partially integrated according to (2.15) as

(a1 + 2a2 cos q2)q̇1 + (a3 + a2 cos q2)q̇2 + k2 = 0 (3.4)

as may be easily verified. Since n = 2, we expect that
(3.4) is itself integrable. In the following, the special case
k2 = 0 will be considered for simplicity. For example, this
is true when both initial joint velocities are zero. In this
case (3.4) is integrable by separation as

q1 = (
a1

2
− a3) arctan

(√a2
1 − 4a2

2

a1 + 2a2
tan

q2
2

)
+ k3. (3.5)

Equation (3.5) shows that, for given initial conditions,
there is a one-to-one mapping between q1 and q2 (a cyclic
motion in q2 yields a cyclic one in q1). If k2 %=0, the inte-
gral form of (3.5) can be found by exploiting the sufficiency
proof of Frobenius Theorem [12].

Example 3.2 Now assume that the second joint is not ac-
tuated, while the first is. Condition (2.14) is violated,
since q2 appears in the manipulator inertia matrix. The
unactuated joints dynamic equation is not even partially
integrable, and hence it is nonholonomic.

Example 3.3 Again, assume that the second joint is not
actuated, but suppose that lc2 = 0, i.e. the center of mass
of the second link is located on the second joint axis (for
example, this may be obtained by using counterweights).
The inertia matrix in (3.1) is then constant, so that con-
dition (2.14) is satisfied, and the second equation in (3.1)
can be integrated twice to

q1(t) + q2(t) + c1t + c2 = 0. (3.6)

Equation (3.6) can be expressed in a more meaningful form
by introducing the absolute joint coordinates θ1 = q1, θ2 =

q1 + q2, i.e. by defining joint variables w.r.t. the x axis. In
fact, (3.6) becomes

θ2(t) − θ̇2(0) t− θ2(0) = 0, (3.7)

expressing the fact that the evolution of θ2 is not affected
by the input, and depends only on the initial conditions.
Constraint (3.7) may be used to eliminate the variable θ2

(or q2) from the problem.

4. The control problem

We begin this section obtaining the state-space model of
the underactuated robot. Henceforth, it will be assumed
that eu =0 in (2.3) (see the remark in Section 1). Define
the state vector x∈IR2n as xT =(qq̇)T =(x1x2)T . Letting
H−1 = N, and partitioning N as (Na Nu) in accordance
to the partition of H, (2.1) gives

[
ẋ1

ẋ2

]
=

[
x2

−N(x1)c(x)

]
+

[
On×m

Na(x1)

]
ua, (4.1)

in which On×m is the n×m null matrix. Differently from
most nonholonomic systems in the literature, a nonzero
drift term is present in (4.1), due to the problem formula-
tion at a dynamical level.

All equilibrium positions for the system are zero-velocity
points. As a preliminary step in the analysis of the control
problem for underactuated manipulators, the linearization
of system (4.1) around an equilibrium point xe is com-
puted as

ż = Az + Bv, (4.2)

where z = x − xe, and

A =

[
On×n I
On×n On×n

]
, B =

[
On×m

Na(xe)

]
.

The controllability matrix has always rank equal to 2m.
Thus, the linearization of (4.1) around any equilibrium
point has 2(n − m) uncontrollable modes, while all the
eigenvalues of A are zero. Stated otherwise, we are in the
presence of a typical critical problem of asymptotic stabi-
lization. Therefore, the system cannot be asymptotically
stabilized by a linear state feedback. It must be empha-
sized that the inclusion of gravity terms in the dynamic
equation (2.3) would simplify the control problem, making
the linearization around any equilibrium point controllable
(see [8]); in this case even a linear controller will eventually
stabilize the system.

System (4.1) might be asymptotically stabilizable by
means of a nonlinear feedback. Brockett has established a
necessary condition [6] for the existence of smooth sta-
bilizing feedback laws for the generic nonlinear system
ẋ = f(x,u), with x ∈ IRn, f(xe,0) = 0, and f(·, ·)
continuously differentiable in a neighborhood of the equi-
librium: the mapping γ : IRn × IRm → IRn defined by
γ : (x,u) &→ f(x,u) should be onto an open set contain-
ing the origin O. For the system (4.1), this condition is
satisfied if and only if the system

ε =

[
ε1
ε2

]
=

[
x2

−Nc

]
+

[
On×n

Na

]
ua (4.3)



is solvable for any ε ‘near’ 0. Now, let ε= (0 ε2)T . Then
it must be x2 =0, which implies also Nc=0, so that sys-
tem (4.3) reduces to ε2 = Naua with ε2 ∈ IRn, ua ∈ IRm,
Na : n×m. This is an overdetermined system, and in gen-
eral admits no solution. Therefore, smooth stabilization to
a single equilibrium point is not possible in the underactu-
ated manipulator case.

The objective of asymptotic stabilization might still be
achievable by nonsmooth feedback. However, results in the
field of nonsmooth stabilization are quite recent, and sys-
tematic procedures to build nonsmooth stabilizing control
laws exist only in special cases (e.g. for two-dimensional
systems [14]). It is worth mentioning that the non-
existence of smooth stabilizing feedbacks is a common
characteristic in many nonholonomic systems. This is for
example the case of carts and space robots, in which sta-
bilization has been obtained by nonsmooth strategies: e.g.
the Lie Bracket motions of [15], or the bidirectional ap-
proach of [5]. On the other hand, different control objec-
tives may be pursued, such as stabilization to manifolds of
equilibrium points (as opposed to a single equilibrium po-
sition) or to trajectories (as long as they do not converge
to a point: see for example [3]).

In the remainder, we will tackle system stabilization to
a manifold of equilibria. In [16], Bloch and McClamroch
have established conditions for the existence of solutions
to this problem in the case of systems with first order non-
holonomic constraints. Their approach is based on the use
of a coordinate transformation in which the nonholonomic
constraints have a trivial specification. A direct extension
of this procedure to the case of systems with second-order
nonholonomic constraints (like underactuated manipula-
tors) does not seem to be possible.

5. Stabilization to equilibrium manifolds

In this section the two-link planar manipulator of Example
3.2 (i.e. with the second joint unactuated and lc2 %=0) will
be considered for simplicity, but the following discussion
can be extended to more general robotic structures [11].
The dynamic equations are

(a1+2a2cosq2)q̈1+(a3+a2 cos q2)q̈2−4a2q̇1q̇2 sinq2 =u1

(a3 + a2 cos q2)q̈1 + a3q̈2 − a2 sin q2q̇
2
1 = 0.

(5.1)
A reasonable control objective is to bring the first joint to a
given position q1d with zero velocity, requesting the second
joint to be at rest at the end of the movement; that is, the
final position of the second joint is not specified. This may
be interpreted as controlling the first link while ‘rejecting’
the mechanical disturbance introduced by the unactuated
one. The equilibrium manifold to which the system should
be stabilized is M = {(q, q̇) : q1 = q1d, q̇1 = 0, q̇2 = 0}.
We use the following stability definition [16]: a smooth
manifold M of equilibrium points is locally stable if for
any neighborhood U⊃M there is a neighborhood V , with
U⊃V ⊃M , such that if x(0)∈V , also x(t)∈U for all t. If
x(t)→M as t→∞, M is asymptotically stable.

In the following it will be shown that a simple PD con-
troller on the first link position achieves the desired stabi-

lization property. Let q̃1 = q1 − q1d, and choose the input
function u1 as

u1 = −kP q̃1 − kD q̇1, (5.2)

where kP and kD are positive real numbers. The effective-
ness of (5.2) will be shown in two steps.

Proposition 5.1

With the choice of input (5.2), the equilibrium manifold
M = {(q, q̇) : q1 = q1d, q̇1 = 0, q̇2 = 0} is locally stable.
Also, q̃1, q̇1 and q̇2 are bounded, and q̇1 → 0 as t → ∞.

Proof. Define the Lyapunov-like function

V =
1

2
(kP q̃

2
1 + q̇THq̇) ≥ 0. (5.3)

Using equation (2.1), the derivative of V along the closed-
loop system trajectories is obtained as

V̇ = kP q̃1q̇1 + q̇T (u − Cq̇) +
1

2
q̇T Ḣq̇, (5.4)

in which u = (u1 0)T , and u1 is given by (5.2). It is always
possible to choose matrix C so that matrix Ḣ − 2C is
antisymmetric. Thus

V̇ = −kD q̇2
1 ≤ 0, and V̇ = 0 ⇔ q̇1 = 0. (5.5)

This implies the stability of M . Also, (5.5) shows that q̃1,
q̇1 and q̇2 are bounded. To prove that q̇1 → 0 as t → ∞,
we make use of Barbalat’s Lemma [17]: since V is lower
bounded and V̇ is negative semidefinite, the uniform conti-
nuity of V̇ would yield V̇ → 0 as t → ∞. A sufficient con-
dition for the uniform continuity of V̇ is that V̈ is bounded.
From (5.5) and (4.1)

V̈ =
2kD q̇1
Λ

(
a2a3q̇2 sin q2(2q̇1 + q̇2)

−a2q̇
2
1 sin q2(a3 + a2 cos q2) − a3(kD q̇1 + kP q̃1)

)
,
(5.6)

where Λ is the nonzero determinant of the inertia matrix.
V̈ is bounded, since Λ > 0, q̃1, q̇1 and q̇2 are bounded, and
terms involving q2 are trigonometric. Uniform continuity
of V̇ follows, and V̇ → 0 as t → ∞. Finally, (5.5) shows
that q̇1 → 0 as t → ∞.

Note that function (5.3) is not a proper Lyapunov func-
tion, being only semipositive definite in the state space.
In particular, V = 0 holds on the whole equilibrium
manifold M. Therefore, given a positive real α, the set
Ωα = {x : V (x) ≤ α} is not bounded. This in turn im-
plies that system trajectories are not bounded, and invari-
ant set theorems cannot be invoked to prove convergence
to the maximal invariant set contained in M. Convergence
to the desired equilibrium manifold (and hence asymptotic
stability) is guaranteed by

Proposition 5.2

Along the trajectories of the closed-loop system, q̃1 → 0
and q̇1, q̇2 → 0 as t → ∞.



Proof. By Proposition 5.1, q̇1 → 0. As a preliminary
step, it will be shown that also q̈1 → 0. Again, Barbalat’s
Lemma is used to draw this conclusion. Since q̇1 converges
to a finite limit value as t → ∞, uniform continuity of
q̈1 would imply that q̈1 → 0. The time derivative of q̈1
is shown to be bounded by using similar considerations
to those in the proof of Proposition 5.1. Consequently,
q̈1 → 0 as t → ∞. Thus, as t → ∞, equations (5.1) yield
also q̈2 → 0 and

k2q̇
2
2 sin q2 + kpq̃1 → 0. (5.7)

By differentiating (5.7) twice w.r.t. time it follows that
q̇2 → 0, so that q̃1 → 0.

Propositions 5.1 and 5.2 imply asymptotic stability of the
equilibrium manifold M . However, the developed stability
analysis offers no estimate of the convergence rate.

6. Conclusions

An analysis of underactuated manipulators from both the
dynamic and control point of view has been presented.
The nonholonomic nature of the constraint expressing the
unactuated joints dynamics has been recognized in the
general case, and conditions have been derived to iden-
tify special cases in which such constraint is integrable.
Smooth feedback stabilization to a single equilibrium point
is not possible, and a feedback scheme achieving stabiliza-
tion to a manifold of equilibrium positions has been pre-
sented. Future work will address more demanding control
objectives, giving up the requirement of smoothness for
the feedback law.

Acknowledgements

This research was partially carried out during the first
author’s stay from September 1990 till March 1991 as a
visiting scholar at the Center for Robotic Systems and
Manufacturing, University of California at Santa Barbara,
whose support is gratefully acknowledged.

References

[1] J.P. Laumond, “Controllability of a multibody mobile
robot”, in Proc. 5th International Conference on Advanced
Robotics (ICAR ’91) (Pisa, Italy), pp. 1033–1038, 1991.

[2] J. Barraquand and J.-C. Latombe, “On nonholonomic mo-
bile robots and optimal maneuvering”, in Proc. 1989 IEEE
International Symposium on Intelligent Control (Albany,
NY), pp. 340–347, 1990.

[3] C. Samson and K. Ait-Abderrahim, “Mobile robot control.
Part 1: feedback control of a nonholonomic wheeled cart
in cartesian space”, Rapport de Recherche n. 1288, INRIA,
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