
4. Elementary Theory of Nonlinear Feedback 
for Single-Input Single-Output Systems 

4.1 Local Coordinates Transformations 

Beginning with this Chapter, we will study - in order of increasing complexify. 
- a series of problems concerned with the synthesis of feedback control laws 
for nonlinear systems of the form (1.2). We will discuss first the case of 
single-input single-output systems, whose simple structure lends itself to a 
rather elementary analysis, and then - in the next Chapter - a special dass 
of multivariable systems, in which a Straightforward extension of most of the 
theory developed for single-input single-output systems is possible. Finally-
in the last four Chapters - we will present a set of more powernd tools for the 
analysis and the design of more general classes of nonlinear control systems. 

The purpose of this introductory section is to show how single-input 
single-output nonlinear systems can be locally given, by means of a suit-
able change of coordinates in the state space, a "normal form" of special 
interest, on which several important properties can be elucidated. 

The point of departure of the whole analysis is the notion of relative 
degree of the system, which is formally described in the following way. The 
single-input single-output nonlinear system 

:i: f(x) + g(x)u 
y = h(x) 

(4.1) 

is said to have relative degree r at a point X 0 if 
(i) L9 L,h(x) = 0 for all x in a neighborhood of x 0 and all k < r- 1 

(ii) L9L't1 h(x0 ) ::j; 0 . 
Note that there may be points where a relative degree cannot be defined. 

This occurs, in fact, when the first function of the sequence 

L9 h(x), L9 LJh(x), ... , L9 Ljh(x), ... 

which is not identically zero (in a neighborhood of X 0 ) has a zero exactly at 
the point x = X 0 • However, the set of points where a relative degree can be 
defined is clearly an open and dense subset of the set U where the system 
(4.1) is defined. 
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Example 4.1.1. Consider the equations describing a controlled Van der Pol 
oscillator in state space form 

x = f(x) + g(x)u = ( 2 ,.(1 x:;) 2 ) + ( 01) u. w." - J.LX1 X2 - W X1 

Suppose the output function is chosen as 

y = h(x) = x1. 

In this case we have 

and 

ßh ( X2 ) LJh(x) = 73 f(x) = ( 1 0) 2 ,.(1 2) 2 = X2 . 
uX w." - J.LX1 X2 - W Xt 

Moreoyer 

L 9L1h(x) = g(x) = ( 0 1) ( = 1 

and thus we see that the system in question has relative degree 2 at any point 
xo. 

However, if the output function is, for instance 

y = h(x) = sinx2 

then L9 h(x) = cosx2. The system has relative degree 1 at any point X 0 , 

provided that (x0 )2 =/: (2k + 1)1r /2. If the point x 0 is such that this condition 
is violated, no relative degree can be defined. <l 

Remark 4.1.2. In order to compare the notion thus introduced with a familiar 
concept, Iet us calculate the relative degree of a linear system 

x = Ax+Bu 

y = Cx. 

In this case, since f(x) = Ax, g(x) = B, h(x) = Cx, it easily seen that 

LJh(x) = CAkx 

and therefore 
L 9LJh(x) = CAk B . 

Thus, the integer r is characterized by the conditions 

CAkB = 0 
CAr-l B =/: 0. 

forallk<r-1 
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It is well-known that the integer satisfying these conditions is exactly equal 
to the difference between the degree of the denominator polynomial and the 
degree of the numerator polynomial of the transfer function 

H(s) = C(sl- A)-1 B 

of the system. <1 

We illustrate now a simple interpretation of the notion of relative degree, 
which is not restricted to the assumption of linearity considered in the pre-
vious Remark. Assurne the system at some time t 0 is in the state x(t 0 ) = X 0 

and suppose we wish to calculate the value of the output y(t) and of its 
derivatives with respect to time y(k)(t), for k = 1, 2, ... , at t = t 0 • We obtain 

h(xW)) = h(x0 ) 

ßh dx ßh 
ßx dt = ßx (f(x(t)) + g(x(t))u(t)) 

Lth(x(t)) + L9 h(x(t))u(t). 

If the relative degree r is larger than 1, for all t suchthat x(t) is near x 0 , i.e. 
for all t near t 0 , we have L 9 h(x(t)) = 0 and therefore 

This yields 

y(2l(t) = 8Lth dx 
ßx dt 

8Lth 
a;-U(x(t)) + g(x(t))u(t)) 

L}h(x(t)) + LgLth(x(t))u(t). 

Again, if the relative degree is larger than 2, for all t near t0 we have 
L9Lth(x(t)) = 0 and 

y(2l(t) = L}h(x(t)). 

Continuing in this way, we get 

L}h(x(t)) for all k < r and all t near t 0 

L'jh(x0 ) + L 9L/-1h(x0 )uW). 

Thus, the relative degree r is exactly equal to the number of times one has 
to differentiate the output y(t) at timet= t0 in order to have the value uW) 
of the input explicitly appearing. 

Note also that if 

for all x in a neighborhood of x 0 and all k 2: 0 

(in which case no relative degree can be defined at any pointaraund x 0 ) then 
the output of the system is not affected by the input, for all t near t0 • As 
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a matter of fact, if this is the case, the previous calculations show that the 
Taylor series expansion of y(t) at the point t == t0 has the form 

i.e. that y(t) is a function depending only on the initial state and not on the 
input. 

These calculations suggest that the functions h(x), Lfh(x), ... ,L'j-1h(x) 
must have a special importance. As a matter of fact, it is possible to show 
that they can be used in order to define, at least partially, a local coordinates 
transformation around X 0 (recall that x0 is a point where L9 L'j-1h(x0 ) =1- 0). 
This fact is based on the following property. 

Lemma 4.1.1. The row vectors 

are linearly independent. 

In order to prove this Lemma, we illustrate first another property, which 
will also be used several other times in the sequel. 

Lemma 4.1.2. Let fjJ be a real-valued function and J, g vector fields, all de-
fined in an open set U of !Rn. Then, for any choice of s, k, r 0, 

As a · consequence, the two sets of conditions 

(i) L9 rp(x) == L9 LJ4J(x) == ... == == 0 for all x EU (4.3) 

(ii) L 9 rp(x) == Lad19 rp(x) == · · · == == 0 for all x EU (4.4) 

are equivalent. 

Proof. The proof of (4.2) is easily obtained by induction on r, in view of the 
fact that 

(dLif/J(x), g(x)} == {dLif/J(x), [/, g(x)]} 
== LJ(dLif/J(x), g(x))- (dLi+ 1rp(x), g(x)) . 

The equivalence of (4.3) and (4.4) is a Straightforward consequence of (4.2). 
<3 

We can proceed now with the proof of Lemma 4.1.1. 
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Proof. Observe that by definition of relative degree, using ( 4.2) we obtain for 
all i, j such that i + j :::; r - 2 

(dL}h(x), ad}g(x)} = 0 for all x around X 0 

and 
(dL}h(x 0 ), ad}g(x0 )} = ( -lr-1-i L9 L'j-1 h(x0 ) =1- 0 

for all i, j suchthat i + j = r- 1. 
The above conditions, all tagether, show that the matrix 

( ) (g(xo) adtg(xo) .. . ad'j-1g(xo)) = 
dLr-1h(x0 ) 

( 
0 .. . (dh(x 0 ), ad'j-1 g(x0 ))) 

0 ... * 
. ... * 

(dL'j- 1 h(x0 ), g(x0 )) * * 

(4.5) 

has rank r and, thus, that the row vectors dh(x0 ), dLth(x0 ), ••• , dL'j-1 h(x0 ) 

are linearly independent. <1 

Lemma 4.1.1 shows that necessarily r :::; n and that the r functions 
h(x), Lth(x), ... , L'j-1h(x) qualify as a partial set of new coordinate func-
tions araund the point X 0 (recall Proposition 1.2.3). As we shall see in a 
moment, the choice of these new coordinates entails a particularly simple 
structure for the equations describing the system. However, before doing this, 
it is convenient to summarize the results discussed so far in a formal state-
ment, that also illustrates a way in which the set of new coordinates can be 
completed in case the relative degree r is strictly less than n. 

Proposition 4.1.3. Suppose the system has relative degree r at x 0 • Then 
r:::; n. Set 

(h(x) = h(x) 

4J2(x) = Lth(x) 

4Jr(x) = L'j-1h(x). 

If r is strictly less than n, it is always possible to find n- r more functions 
4Jr+1 (x), ... , 4Jn(x) such that the mapping 

(
4J1(x)) = ... 
4Jn(x) 

has a jacobian matrix which is nonsingular at X 0 and therefore qualifies as 
a local coordinates transformation in a neighborhood of X 0 • The value at X 0 
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of these additional functions can be fixed arbitrarily. Moreover, it is always 
possible to choose cf>r+l ( x), ... , cf>n ( x) in such a way that 

for all r + 1 :5 i :5 n and all x around X 0 • 

Proof. By definition of relative degree, the vector g(x0 ) is nonzero, and, thus, 
the distribution G = span{g} is nonsingular around X 0 • Being I-dimensional, 
this distribution is also involutive. Therefore, by Frobenius' Theorem, we 
deduce the existence of n-1 real-valued functions, A1 (x), ... , An-l (x), defined 
in a neighborhood of X 0 , such that 

span{dAl, ... ,dAn-d = Gl.. 

It is easy to show that 

dim(Gl. + span{ dh, dLfh, ... , dL'j- 1 h}) = n 

at X 0 • For, suppose this is false. Then 

G(x0 ) n (span{dh,dLth, . .. ,dL'j-1h})l.(x0 ) -::p {0} 

i. e. the vector g(x0 ) annihilates all the covectors in 

span{dh, dLth, ... ,dL'j-1h}(x0 ) • 

(4.6) 

(4.7) 

But this is a contradiction, because by definition (dL'j- 1 h(x0 ), g(x0 )} is 
nonzero. 

From (4.6), (4.7) and from the fact that span{dh,dLfh, ... ,dL'j-1h} has 
dimension r, by Lemma 4.1.1, we conclude that in the set {A1, ... , An-d it is 
possible to find n- r functions, without loss of generality A1, ... , An-r, with 
the property that the n differentials dh,dLth, ... ,dL'j-1h,dAl, ... ,dAn-r, 
are linearly independent at x0 • Since by construction the functions A1, ... , 
An-r are such that 

for all x near X 0 and all 1 :5 i :5 n - r 

this establishes the required result. Note that any other set of functions of the 
form AHx) = Ai(x) +Ci, where Ci is a constant, satisfies the same conditions, 
thus showing that the value of these functions at the point X 0 can be chosen 
arbitrarily. q 

The description of the system in the new coordinates Zi = cf>i ( x), 1 :5 i :5 
n, is found very easily. Looking at the calculations already carried out at the 
beginning, we obtain for z1, ... , Zr 

dzr-1 
dt 

ßc/>1 dx 8h dx = 8x dt = ax dt = Lth(x(t)) = cf>2(x(t)) = Z2(t) 

{} ß(Lr-2 h) = cf>r-l dx = I dx = Lr1- 1h(x(t)) = cf>r(x(t)) = Zr(t). 
8x dt 8x dt 
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For Zr we obtain 

= L/h(x(t)) + L9L/-1h(x(t))u(t). 

On the right-hand side of this equation we must now replace x(t) with its 
expression as a function of z(t), i.e. x(t) = p-1(z(t)). Thus, setting 

a(z) = L9L/-1h(4i-1(z)) 
b(z) = L/h(4i-1(z)) 

the equation in question can be rewritten as 

= b(z(t)) + a(z(t))u(t). 

Note that at the point Z0 = 4i(x0 ), a(z0 ) =/= 0 by definition. Thus, the 
coefficient a( z) is nonzero for all z in a neighborhood of z0 • 

As far as the other new coordinates are concerned, we cannot expect any 
special structure for the corresponding equations, if nothing eise has been 
specified. However, if 4>r+I ( x), ... , 4>n ( x) have been chosen in such a way 
that L9 4>i(x) = 0, then 

dz· 84>· = (f(x(t))+g(x(t))u(t)) = Lf4>i(x(t))+L9 4>i(x(t))u(t) = L 14>i(x(t)). 

Setting 
for all r + 1 ::=; i ::=; n 

the latter can be rewritten as 

Thus, in summary, the state-space description of the system in the new 
coordinates will be as follows 

z1 Z2 
z2 Z3 

Zr-1 = Zr 
Zr b(z) + a(z)u 

(4.8) 

Zr+l = qr+I(z) 

Zn qn(z) . 

In addition to these equations one has to specify how the output of the 
system is related to the new state variables. But, being y = h(x), it is imme-
diately seen that 
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Y = Z1 · (4.9) 

The structure of these equations is best illustrated in the block diagram 
depicted in Fig. 4.1. The equations thus defined are said tobe in normal form. 
We will find them useful in understanding how certain control problems can 
be solved. 

u 
b(z) + a(z)u 

Z1 = Y 

Fig. 4.1. 

Remark 4.1.3. Note that sometimes it is not easy to construct n-r functions 
rPr+l (x), ... , rPn(x) suchthat L9 r/Ji(x) = 0, because this, as shown in the proof 
of Proposition 4.1.3, amounts to solve a system of n- r partial differential 
equations. Usually, it is much simpler to find nmctions rPr+1 (x), ... , rPn(x) 
with the only property that the jacobian matrix of 4i(x) is nonsingular at x0 , 

and this is sufficient to define a Coordinates transformation. Using a trans-
formation constructed in this way, one gets the same structure for the first r 
equations, i. e. 

z1 = Z2 
z2 = Z3 

Zr-1 = Zr 
Zr = b(z) + a(z)u 

but it is not possible to obtain anything special for the last n - r ones, that 
therefore will appear in a form like 

Zr+l = qr+l(z) + Pr+l(z)u 

Zn = qn(z) + Pn(z)u 

with the input u explicitly present. <1 
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Example 4.1...1. Consider the system 

For this system we have 

8h = (0 0 1), L9 h(x) = 0, LJh(x) = x2 

= (0 1 0)' L9 L1h(x) = 1 . 

In order to find the normal form, we set 

z1 = (h(x) = h(x) = X3 
Z2 = <P2(x) = LJh(x) = x2 

and we seek for a function </J3 ( x) such that 

8<P3 8<P3 8<P3 -8 g(x) = -8 exp(x2) + -8 = 0. 
X Xl X2 

It is easily seen that the function 

satisfies this condition. This and the previous two functions define a trans-
formation z = whose jacobian matrix 

-= 0 1 0 (0 0 1) 
8x 1 - exp(x2) 0 

is nonsingular for all x. Theinversetransformation is given by 

x1 = -1 + Z3 + exp(z2) 

X2 = Z2 

X3 = Zl · 

Note also that = 0. In the new coordinates the system is described by 

Zl = Z2 
i2 = ( -1 + Z3 + exp(z2))z2 + u 
Z3 = (1- Z3 - exp(z2))(1 + z2 exp(z2)) . 

These equations are globally valid because the transformation we considered 
was a global coordinates transformation. <1 
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Example 4.1.5. Consider the system 

(
XtX2 ( 0 ) 

x1 + 2 + 2x3 u 
-X3 1 

X2 0 

y = h(x) = X4. 

For this system we have 

ah = (0 0 0 1), L 9h(x) = 0, 

( 2xt 1 0 0), 

Note that L9 Lth(x) :f. 0 if x3 :f. -1. This means that weshall be able to find 

a normal form only locally, away from any point such that x3 = -1. 

In order to find this normal form, we have to set first of all 

Zt = cPt(X) = h(x) = X4 

Z2 c/J2(x) = Lth(x) = X2 

and then find cP3(x), cP4(x) which complete the transformation and aresuch 

that L9cjJ3(x) = L9cjJ4(x) = 0. 
Suppose we do not want to search for these particular functions and we 

just take any choice of cjJ3 (x), cjJ4 (x) which completes the transformation. This 
can be done, e.g. by taking 

Z3 cP3(x) = X3 

Z4 cP4(x) = Xt · 

The jacobian matrix of the transformation thus defined 

= 2Xt 1 0 0 ( 
0 0 0 1) 

ox 0 0 1 0 
1 0 0 0 

is nonsingular for all x, and the inverse transformation is given by 

Xt = Z4 

X2 = z2- zl 
X3 = Z3 
X4 Zt · 

Note also that = 0. In these new coordinates the system is described by 
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i1 Zz 
iz Z4 + 2z4(z4(zz- zi)- zD + (2 + 2z3)u 
Z3 -Z3 + u 
.z4 -2zr + zzz4 . 

These equations are valid globally (because the transformation we considered 
was a global coordinates transformation), but they are not in normal form 
because of the presence of the input u in the equation for z3 . 

lf one wants to get rid of u in this equation, it is necessary to use a 
different function <P3(x), making sure that 

ä<P3 ä<P3 ä<P3 = + = 0. 
uX uXz uX3 

An easy calculation shows that the function 

<P3(x) = xz- 2x3-

satisfies this equation. Using this new function and still taking q}4(x) = x1 
one finds a transformation (whose domain of definition does not include the 
points at which x 3 = -1) yielding the required normal form. <l 

4.2 Exact Linearization Via Feedback 

As we anticipated at the beginning of the previous section, one of the main 
purposes of these notes is the analysis and the design of feedback control 
laws for nonlinear systems. In almost all situations, we assume the state x 
of the system being available for measurements, and we let the input of the 
system to depend on this state and, possibly, on external reference signals. 
lf the value of the control at time t depends only on the values, at the same 
instant of time, of the state x and of the external reference input, the control 
is said to be a Static (or Memoryless) State Feedback Control. Otherwise, 
if the control depends also on a set of additional state variables, i.e. if this 
control is itself the output of an appropriate dynamical system having its 
own internal state, driven by x and by the external reference input, we say 
that a Dynamic State Feedback Control is implemented. 

In a single-input single-output system, the most convenient structure for 
a Static State Feedback Control is the one in which the input variable u is 
set equal to 

u = a(x) + ß(x)v (4.10) 

where v is the external reference input (see Fig. 4.2). In fact, the composition 
of this control with a system of the form 

± = f(x) + g(x)u 
y = h(x) 
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yields a closed loop characterized by the similar structure 

x = f(x) + g(x)a(x) + g(x)ß(x)v o 

y = h(x) 

The functions a(x) and ß(x) that characterize the control (4o10) are de-
fined on a suitable open set of !Rn o For obvious reasons, ß(x) is assumed to 
be nonzero for all x in this seto 

V 'U x = f(x) + g(x)u y -- a(x) + ß(x)v y=h(x) 

l I X 

Fig. 4.2. 

The first application that will be discussed is the use of state feedback 
( and change of coordinates in the state-space) to the purpose of transforming 
a given nonlinear system into a linear and controllable one. The point of 
departure of this study will be the normal form developed and illustrated in 
the previous sectiono 

Consider a nonlinear system having relative degree r = n, i.eo exactly 
equal to the dimension of the state space, at some point x = x 0 

0 In this 
case the change of coordinates required to construct the normal form is given 
exactly by 

i.eo by the function h(x) and its first n- 1 derivatives along f(x)o No extra 
functions are needed in order to complete the transformation. In the new 
coordinates 

the system will appear described by equations of the form 

i1 = Z2 

i2 = Z3 

Zn-1 = Zn 

Zn = b(z) + a(z)u 
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where z = (z1 , ... , Zn)· Recall also that at the point Z 0 = P(x0 ), and thus at 
all z in a neighborhood of Z 0 , the function a(z) is nonzero. 

Suppose now the following state feedback control law is chosen 

1 
u = a(z) ( -b(z) + v) (4.11) 

which indeed exists and is well-defined in a neighborhood of Z 0 • The resulting 
closed loop system is governed by the equations (Fig. 4.3) 

i1 Z2 

i2 Z3 

Zn-1 = Zn 

Zn V 

i.e. is linear and controllable. Thus we conclude that any system 
with relative degree n at some point X 0 can be transformed into a system 
which, in a neighborhood of the point Z 0 = P(x0 ), is linear and controllable. 
It is important to stress that the transformation in question consists of two 
basic ingredients 

(i) a change of coordinates, defined locally around the point X 0 

(ii) a state feedback, also defined locally around the point X 0 • 

Fig. 4.3. 

Remark 4. 2.1. It is easily checked that the two transformations used in order 
to obtain the linear form can be interchanged. One can first use a feedback 
and then change the coordinates in the state space, and the result is the 
same. The feedback needed to this purpose is exactly the same feedback just 
used, but now expressed in the x coordinates, i.e. as 

1 
u = a(P(x)) (-b(<P(x)) + v). 
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Comparing this with the expressions for a(z) and b(z) given in the previous 
section, one realizes that this feedback - expressed in terms of the functions 
f(x), g(x), h(x) which characterize the original system- has the form 

u = n:l ( ) ( -Ljh(x) + v) o 

LgL, h X 
(4012) 

An immediate calculation shows that this feedback, tagether with the same 
change of Coordinates used so far, exactly yields the same linear and control-
lable system already obtainedo <1 

Remark 402020 Note that if X0 is an equilibrium point for the original non-
linear system, i.eo if f(x 0 ) = 0, and if also h(x0 ) = 0, then Z 0 = 4i(x0 ) = Oo 
As a matter of fact 

</J1 (x 0 ) = h(x0 ) = 0 
8(Li-2 h) 

</Ji(X0 ) = J f(x 0 ) = 0 ax forall2SiSno 

Note also that a condition like h(x0 ) = 0 can always be satisfied, by means 
of a suitable translation of the origin of the output spaceo 

Thus, we conclude that if x 0 is an equilibrium point for the original sys-
tem, and this system has relative degree n at X 0 , there is a feedback control 
law (defined in a neighborhood of x 0 ) and a coordinates transformation (also 
defined in a neighborhood of x 0 ) changing the system into a linear and con-
trollable one, defined in a neighborhood of 00 <1 

Remark 402090 On the linear system thus obtained one r.an impose new feed-
back controls, like for instance 

v=Kz 

with 
K =(Co o 0 o Cn-d 

chosen eogo in order to assign a specific set of eigenvalues, or to satisfy an 
optimality criteriono Recalling the expression of the Zi 's as functions of x, the 
feedback in question can be rewritten as 

(4o13) 

i.eo in the form of a nonlinear feedback from the state x of the original de-
scription of the systemo Note that the composition of (4012) and (4013) is 
again a state feedback, having the form 

-Ljh(x) ciL}h(x) 
u= L 9Lj 1h(x) o<l 
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Example 4.2.4. Consider the system 

y = X3 . 

For this system we have 

L9 h(x) 
L9 L1h(x) 
L9 L}h(x) 

L}h(x) 

= 0, LJh(x) = x1 - x2, 
= 0, L}h(x) = -x1 -

-(1 + 2x2) exp(x2), 
-2x2(x1 + . 

Thus, we see that the system has relative degree 3 (i.e. equal to n) at each 
point such that 1 + 2x2 =j:. 0. Around any of such points, for insta,nce around 
x = 0, the system can be transformed into a linear and controllable system 
by means of the feedback control 

-2x2(x1 + 1 
U = - V (1 + 2x2) exp(x2) (1 + 2x2) exp(x2) 

and the change of coordinates 

Z1 h(x) = X3 

z2 LJh(x) = x1 - x2 
Z3 L}h(x) = -x1 - . 

Note that both the feedback and the change of coordinates are defined only 
locally around x = 0. In particular, the feedback u is not defined at points x 
such that 1 + 2x2 = 0 and the jacobian matrix of the coordinates transfor-
mation is singular at these points. 

In the new coordinates, the system appears as 

(
0 1 

i = 

which is linear and controllable. <l 

Of course, the basic feature of the system that made it possible to change 
it into a linear and controllable one was the existence of an "output" function 
h(x) for which the system had relative degree n (at X 0 ). Weshallsee 
now that the existence of such a function is not only a sufficient - as the 
previous discussion shows - but also a necessary condition for the existence 
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of a state feedback and a change of coordinates transforrning a given systern 
into a linear and controllable one. 

More precisely, consider a systern ( without output) 

x = f(x) + g(x)u 

and suppose the following problern is set: given a point x 0 find (if possible), 
a neighborhood U of X 0 , a feedback 

u = a(x) + ß(x)v 

defined on U, and a coordinates transforrnation z = I.P(x) also defined on U, 
such that the corresponding closed loop systern 

x = f(x) + g(x)a(x) + g(x)ß(x)v 

in the coordinates z = I.P(x), is linear and controllable, i.e. suchthat 

(J(x) + g(x)a(x))L=<P-'(z) = Az 

(g(x)ß(x))L=<P-'(z) = B 

( 4.14) 

( 4.15) 

for sorne suitable rnatrix A E JRnxn and vector B E ]Rn satisfying the condi-
tion 

rank(B AB ... An-1 B) = n . 

This problern is the "single-input" version of the so-called State Space 
Exact Linearization Problem. The previous analysis has already established 
a sufficient condition for the existence of a solution; we show now that this 
condition is also necessary. 

Lemma 4.2.1. The State Space Exact Linearization Problem is solvable if 
and only if there exist a neighborhood U of X 0 and a real-valued function .A(x), 
defined on U, such that the system 

x f(x) + g(x)u 

y = .A(x) 

has relative degree n at x 0 • 

Proof. Clearly, we only have to show that the condition is necessary. Webegin 
by showing an interesting feature of the notion of relative degree, namely that 
the latter is invariant under coordinates transforrnations and feedback. For, 
let z = I.P(x) be a Coordinates transforrnation, and set 

- [aq; ] [aq; ] - 1 f(z) = a f(x) g(z) = ag(x) h(z) = h{I.P- (z)). 
X z=<P-l(z) X z=<P-'(z) 
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Then 

= ah /(z) = [8h] [aci>-1
] [8ci> f(x)] 

8z 8x x=<li-'(z) 8z 8x x=<li-'(z) 

= f(x)] = [Lth(x)]x=<li-'(z)· 
X x=4i- 1 (z) 

Iterated calculations of this kind show that 

from which it is easily concluded that the relative degree is invariant under 
coordinates transformation. As far as the feedback is concerned, note that 

for all 0 k r - 1 . (4.16) 

As a matter of fact, this equality is trivially true for k = 0. By induction, 
suppose is true for some 0 < k < r - 1. Then 

= Lf+9aL}h(x) = + L9 L}h(x)o:(x) = 

thus showing that the equality in question holds for k + 1. From (4.16), one 
deduces that 

L9ßL}+90h(x) = 0 

and that, if ß(x0 ) =f 0 

for all 0 k < r - 1 

=f 0 . 

This shows that r is invariant under feedback. 
Now, let (A, B) be a reachable pair. Then, it is well-known from the theory 

of linear systems that there exists a nonsingular n x n matrix T and a 1 x n 
vector k such that 

T(A+Bk)T-1 = ::: 
0 0 0 .. . 
0 0 0 .. . 

Suppose (4.14) and (4.15) hold and set 

z = !l>(x) = Tci>(x) 
ä(x) = o:(x) + ß(x)kci>(x). 

Then, it is easily seen that 

( 4.17) 
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(0 I 0 

... [ (f(x) + g(x)ä(x))] x=<l>-'(z) 

0 0 1 
= 

0 0 0 ... 1 
0 0 0 ... 0 

[ (g(x)ß(x))] m 
From this, it is deduced that there is no loss of generality in assuming that the 
pair (A, B) which renders the (4.14)-(4.15) satisfied has the form indicated 
in the right-hand-sides of ( 4.17). 

Define now the "output" function 

y = (1 o · · · O)z. 

A Straightforward calculation shows that the linear system with A and B in 
the form of the right-hand-sides of (4.17) and with this output function has 
exactly relative degree n. Thus, since the relative degree is invariant under 
feedback and Coordinates transformation, the proof is complete. <l 

The problern of finding a function .X(x) such that the relative degree of 
the system at x 0 is exactly n, namely a function such that 

L9 .X(x) = L9 L1.X(x) = ... = L9 L/-2 .X(x) = 0 for all x (4.18) 

L9 L/-l .X(x0 ) =j; 0 (4.19) 

is apparently a problern involving the solution of a system of partial differen-
tial equations (namely the equations (4.18)), in which the unknown function 
.X(x) is differentiated up to n-1 times, together with a condition (namely the 
condition (4.19)) which singles-out trivial solutions like e.g . .X(x) = 0. How-
ever, thanks to Lemma 4.1.2, this system is in fact equivalent to a system of 
first order partial differential equations, of a rather simple form. As a matter 
offact, this Lemma exactly shows that the equations (4.18) are equivalent to 

L9 .X(x) = Lad19.X(x) = ... = Lad'j-29 -X(x) = 0 

and that the nontriviality condition (4.19) is equivalent to 

(4.20) 

(4.21) 

The existence of a function satisfying these relations is an easy conse-
quence of Frobenius' Theorem, as it can be seen in the proof of the following 
result. 
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Lemma 4.2.2. There exists a real-valued function .\(x) defined in a neigh-
borhood U of X 0 solving the partial differential equations ( 4. 20), and satisfying 
the nontriviality condition (4.21), if and only if 

(i) the matrix (g(x 0 ) ad,g(x0 ) ••• adf-2g(x0 ) ad'F 1g(x0 )) has rank n, 

(ii) the distribution D = span{g,ad,g, ... ,adf-2g} is involutive in a neigh-
borhood of X 0 • 

Proof. Suppose a function .\(x) satisfying (4.20) and (4.21) exists. Then, from 
the proof of Lemma 4.1.1, in particular from the nonsingularity of the matrix 
(4.5), we deduce that the n vectors 

g(xo), ad,g(xo), ... 'adf-2g(xo), adf-lg(xo) 

are linearly independent. This proves the necessity of (i). If (i) holds then 
the distribution D is nonsingular and ( n - 1 )-dimensional around x0 • The 
equations (4.20), that can be rewritten as 

(4.22) 

tellusthat the differential d.\(x) is a basis ofthe I-dimensional codistribution 
DJ.. around X 0 • So, by Frobenius' Theorem, the distribution D is involutive, 
and this proves the necessity of (ii). Conversely, suppose (i) holds. Then the 
distribution Disnonsingular and (n -!)-dimensional around X 0 • If also (ii) 
holds, by Frobenius' Theorem we know there exists a real-valued function 
.\(x), defined in a neighborhood U of x 0 whose differential d.\(x) spans DJ.., 
i.e. solves the partial differential equation (4.20). Moreover, d.\(x) also satis-
fies (4.21), because otherwise d.\(x) would be annihilated by a set of n linearly 
independent vectors, i.e. a contradiction. <J 

We can at this point summarize the results established so far in the fol-
lowing formal statement 

Theorem 4.2.3. Suppose a system 

x = f(x) + g(x)u 

is given. The State Space Exact Linearization Problem is solvable near a 
point X 0 (i.e. there exists an "output" function .\(x) for which the system has 
relative degree n at X 0 ) if and only if the following conditions are satisfied 

(i) the matrix ([g(x0 ) ad,g(x0 ) ••• adf-2g(x0 ) adf-1g(x0 )) has rank n, 

(ii) the distribution D = span{g, ad,g, ... , adf-2 g} is involutive near X 0 • 

On the basis of the previous discussion, it is now clear that the procedure 
leading to the construction of a feedback u = o:(x) + ß(x)v and of a Coordi-
nates transformation z = cJ>(x) solving the State Space Exact Linearization 
problern consists of the following steps 
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- from f(x) and g(x), construct the vector fields 

g(x), ad,g(x), ... , adj-2g(x), ad'j- 1g(x) 

and check the conditions (i) and {ii), 
- if both are satisfied, solve for .X(x) the partial differential equation (4.20), 

- set 

- set 

-Ln1.X(x) 
a(x) -

- L9L'j-1 .X(x) 
1 

ß(x) = LgL'j 1 .X(x) 

!l>(x) = col{.X(x), LJ.X(x), ... , L'j-1 .X(x)) . 

(4.23) 

(4.24) 

The feedback defined by the functions (4.23) is called the linearizing feed-
back and the new coordinates defined by ( 4.24) are called the linearizing 
coordinates. We illustrate now the whole Exact Linearization procedure in a 
simple example. 

Example 4.2.5. Consider the system 

:i:= + (1:x2) u. 
x2{1 + xl) -xa 

In order to check whether or not this system can be transformed into a 
linear and controllable system via state feedback and coordinates transfor-
mation, we have to compute the functions ad,g(x) and ad}g(x) and test the 
conditions of Theorem 4.2.3. 

Appropriate calculations show that ad,g(x) = 

( 0 ) - Xl 

-{1 + x1){1 + 2x2) 

and that 

At x = 0, the matrix 

(g(x) ad,g(x) ad}g(x) = 0 n 
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has rank 3 and therefore the condition (i) is satisfied. lt is also easily checked 
that the product [g, ad 1 g] ( x) has a form 

[g,adty)(x) m 
and therefore also the condition (ii) is satisfied, because the matrix 

(g(x) adtg(x) [g,adtg](x)) 

has rank 2 for all x near x = 0. 
In the present case, it is easily seen that a function A(x) that solves the 

equation 
ÖA 
äx(g(x) adtg(x))=O 

is given by 
A(x) =x1. 

From our previous discussion, we know that considering this as "output" 
will yield a system having relative degree 3 (i.e. equal to n) at the point 
x = 0. We double-check and observe that 

L9 A(x) = 0, L9 LJA(x) = 0, L9 LJA(x) = (1 + x1)(l + x2)(l + 2x2)- x1x3 

and L9 L}A(0) = 1. Locally around x = 0, the system will be transformed 
into a linear and controllable one by means of the state feedback 

-L}A(x) + v 
u = L9 L}A(x) = 

+ X2)- X2X3(l + X2)2 - X1 (1 + xt)(l + 2x2)- X1X2(l + Xl) +V 

(1 + xt)(l + x2)(l + 2x2)- X1X3 

and the coordinates transformation 

z1 = A(x) = x1 

Z2 LtA(x) = X3(l + x2) 
Z3 L}A(x) = X3X1 + (1 + xt)(l + X2)X2 .<1 

Remark 4.2.6. Using the above result, it is easily seen that any nonlinear 
system whose state space has dimension n = 2 can be transformed into a 
linear system, via state feedback and change of coordinates, around a point 
X 0 , if and only if the matrix 

has rank 2. As a matter of fact, this is exactly the condition (i) of the previous 
Theorem, and condition (ii) is always satisfied, because D = span{g} is I-
dimensional. In this case it is always possible to find a function A(x) = 
A(x1 , x2), defined locally around X 0 , suchthat 
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Remark 4.2. 7. The condition (i) of Theorem 4.2.3 has the following interest-
ing interpretation. Suppose the vector field f(x) has an equilibrium at X 0 = 0, 
i.e. f(O) = 0, and consider for f(x) an expansion of the form 

f(x) = Ax + h(x) 

with 

A = [8!] and 
8x x=O 

[8/2] -0 
8x x=O-

which separates the linear approximation Ax from the higher-arder term 
h(x). Consider also for g(x) an expansion of the form 

g(x) = B + g1(x) 

with B = g(O). These expansions characterize the linear approximation of 
the system at x = 0, which is defined as 

x =Ax+Bu. 

An easy calculation shows that the vector fields ad,g(x) can be expanded 
in the following way 

ad,g(x) = (-l)kAkB+pk(x) 

where Pk(x) is a function such that Pk(O) = 0. As a matter of fact, the 
expansion in question is trivially true for k = 0. By induction, suppose is 
true for some k. Then, by definition 

where Pk+l (x), by construction, is zero at x = 0. 
From this, we see that the condition (i) of Theorem 4.2.3 (written at 

X 0 = 0) is equivalent to the condition 

rank(B AB ... An-l B) = n 

i. e. to the condition that the linear approximation of the system at x =0 is 
controllable. 

In other words, we conclude that the controllability of the linear approx-
imation of the system at x = X 0 is a necessary condition for the solvability 
of the State Space Exact Linearization Problem. <1 
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Remark 4.2.8. It is interesting to observe that the conditions (i) and (ii) of 
Theorem 4.2.3 imply the involutivity of the distribution 

Dk = span{g, ad,g, ... , ad'g} 

for any 1 ::; k ::; n - 3. As a matter of fact, since (i) and (ii) imply the 
existence of a .A(x) such that (4.18) and (4.19) hold, from Lemma 4.1.2 it 
follows that 

d.A(x)(g(x) ad,g(x) 

dL,.A(x) ( g(x) ad,g(x) 

These equalities show that 

ad,g(x)) 
ad,g(x)) 

span{d.A,dL,.A, ... ,dLj-k-2 -A} C Dt. 

0 

0 

0. 

Moreover, since (Lemma 4.1.1) the differentials d.A, dL1.A, ... , dLj-k-2 .A 
are linearly independent around X 0 and Dt has dimension n - k - 1 around 
X 0 (as a consequence of assumption (i)), it is concluded that Dt is spanned 
by exact differentials. Then, by Frobenius' Theorem, Dk is involutive. 

We see from this property that the involutivity of all the distributions 
Dk, 1 ::; k ::; n- 2, is a necessary condition for the solvability of the Exact 
State Space Linearization Problem. <1 

Remark 4.2.9. Note that if the State Space Exact Linearization Problem is 
solved by means of a feedback and a coordinates transformation z = 4>(x) 
defined in a neighborhood U of X 0 , the corresponding linear system is defined 
on the open set 4>(U). For obvious reasons, it is interesting to have 4>(U) 
containing the origin of ]Rn, and in particular to have 4>(x 0 ) = 0. In this case, 
in fact, one could for instance use linear systems theory concepts in order to 
asymptotically stabilize at z = 0 the transformed system and then use the 
stabilizer thus found in a composite loop to the purpose of stabilizing the 
nonlinear system at x = X 0 (see Remark 4.2.3). 

This is indeed the case when X 0 is an equilibrium of the vector field f ( x). 
In this case, in fact, choosing the solution .A(x) of the differential equation 
with the additional constraint .A(x0 ) = 0, as is always possible, one gets 
4>(x0 ) = 0, as already shown at the beginning of the section (see Remark 
4.2.2). 

If X 0 is not an equilibrium of the vector field f(x), one can manage to 
have this occurring by means of feedback. As a matter of fact, the condition 
4>(x0 ) = 0, replaced into (4.14), necessarily yields 
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i.e. 
f(x 0 ) + g(x0 )a(x0 ) = 0 . 

This clearly expresses the fact that the point X 0 is an equilibrium of the 
vector field f(x) + g(x)a(x), and can be obtained if and only if the vectors 
f(x 0 ) and g(x0 ) are such that 

where c is a real number. If this is the case, an easy calculation shows that 
the linearizing coordinates are still zero at x0 (if A(x) is such), because, for 
all2$;i$;n 

L/-1 A(x0 ) = cL9 L/-2 A(X0 ) = 0 . 

Moreover, the linearizing feedback o:(x) is suchthat 

LnA(X0 ) 

a(x0 ) -- 1 - -c 
- L9Lj 1 A(x0 ) -

as expected. <1 

Remark 4.2.10. Note that a nonlinear system 

x = f(x) + g(x)u 
y = h(x) 

having relative degree strictly less than n could as well meet the requirements 
(i) and (ii) of Theorem 4.2.3. If this is the case, there will be a different "out-
put" function, say A(x), with respect to which the system will have relative 
degree exactly n. Starting from this new function it will be possible to con-
struct a feedback u = a(x) + ß(x)v and a change of coordinates z = 4>(x), 
that will transform the state space equation 

x = f(x) + g(x)u 

into a linear and controllable one. However, the real output of the system, in 
the new coordinates 

y = h(4>-1(z)) 

will in general continue to be a nonlinear function of the state z. <1 

lf the system has relative degree r < n, for some given output h(x), and 
either the conditions of Lemma 4.2.2 - for the existence of another output 
for which the relative degree is equal to n - are not satisfied, or more simply 
one doesn't like to ernhark oneself in the solution of the partial differential 
equation ( 4.20) yielding such an output, it is still possible to obtain - by 
means of state feedback- a system which is partially linear. As a matter of 
fact, setting again 

1 
u = a(z) ( -b(z) + v) (4.25) 
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on the normal form of the equations, one obtains, if r < n, a system like 

zl Z2 

z2 Z3 

Zr-1 = Zr 

Zr = V (4.26) 

Zr+! qr+l (z) 

Zn qn(z) 
y Z1 . 

This system clearly appears decomposed into a linear Subsystem, or di-
mension r, which is the only one responsible for the input-output behavior, 
and a possibly nonlinear subsystem, of dimension n- r, whose behavior how-
ever does not affect the output (Fig.4.4). 

Fig. 4.4. 

We summarize this result for convenience in a formal statement where, for 
more generality, the linearizing feedback is specified in terms of the functions 
f(x), g(x) and h(x) characterizing the original description of the system. 

Proposition 4.2.4. Consider a nonlinear system having relative degree r at 
a point x 0 • The state feedback 

u = r \ ( ) ( -L'jh(x) + v) 
LgL, h X 

(4.27) 

transforms this system into a system whose input-output behavior is identical 
to that of a linear system having a transfer function 

1 
H(s) =-. sr 
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4.3 The Zero Dynamics 

In this section we introduce and discuss an important concept, that in many 
instances plays a role exactly similar to that of the "zeros" of the transfer 
function in a linear system. We have already seen that the relative degree r 
of a linear system can be interpreted as the difference between the number 
of poles and the number of zeros in the transfer function. In particular, any 
linear system in which r is strictly less than n has zeros in its transfer function. 
On the contrary, if r = n the transfer function has no zeros; thus, the systems 
considered at the beginning of the previous section are in some sense analogue 
to linear systems without zeros. Weshallsee in this section that this kind of 
analogy can be pushed much further. 

Consider a nonlinear system with r strictly less than n and Iook at its 
normal form. In order to write the equations in a slightly more compact 
manner, we introduce a suitable vector notation. In particular, since there 
is no specific need to keep track individually of each one of the last n - r 
components of the state vector, weshall represent all of them tagether as 

_ (Zr+l) TJ- 0 0 0 0 

Zn 

Sometimes, whenever convenient and not otherwise required, we shall repre-
sent also the first r components tagether, as 

With the help of these notations, the normal form of a single-input Single-
output nonlinear system having r < n ( at some point of interest x 0 , e.g. an 
equilibrium point) can be rewritten as 

i1 Z2 
i2 Z3 

Zr-l Zr 
Zr TJ) + TJ)u 

iJ TJ) 0 

Recall that, if X 0 is such that f(x 0 ) = 0 and h(x0 ) = 0, then necessarily 
the first r new coordinates Zi are 0 at x 0 • Note also that it is always possible 
to choose arbitrarily the value at X 0 of the last n - r new coordinates, thus 
in particular being 0 at x 0 • Therefore, without loss of generality, one can 
assume that = 0 and TJ = 0 at X 0 • Thus, if X 0 was an equilibrium for the 
system in the original Coordinates, its corresponding point TJ) = (0, 0) is an 
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equilibrium for the system in the new coordinates and from this we deduce 
that 

71) = 0 

71) = 0 

at 71) = (0, 0) 
at 71) = (0, 0) . 

Suppose now we want to analyze the following problem, called the Problem 
of Zeroing the Output. Find, if any, pairs consisting of an initial state X 0 and 
of an input function U 0 (·), defined for all t in a neighborhood oft= 0, such 
that the corresponding output y(t) ofthe system is identically zero for all t in 
a neighborhood oft = 0. Of course, we are interested in finding all such pairs 
(x0 , u0 ) and not simply in the trivial pair X 0 = 0, U 0 = 0 (corresponding to 
the situation in which the system is initially at rest and no input is applied). 
We perform this analysis on the normal form of the system. 

Recalling that in the normal form 

y(t) = Z1(t), 

we see that the constraint y(t) = 0 for all t implies 

.i1(t) = .i2(t) = ... = .ir(t) = 0, 

that is = 0 for all t. 
Thus, we see that when the output of the system is identically zero its 

state is constrained to evolve in such a way that also is identically zero. 
In addition, the input u(t) must necessarily be the unique solution of the 
equation 

0 = b(O, 71(t)) + a(O, 71(t))u(t) 

(recall that a(O, 71(t)) "1- 0 if 71(t) is close to 0). As far as the variable 71(t) is 
concerned, it is clear that, being identically zero, its behavior is governed 
by the differential equation 

7]( t) = q(O, 71( t)) . (4.28) 

From this analysis we deduce the following facts. If the output y(t) has to 
be zero, then necessarily the initial state of the system must be set to a value 
such that = 0, whereas 77(0) = 7J0 can be chosen arbitrarily. According 
to the value of 7J0 , the input must be set as 

u( t) = _ b(O, 71( t)) 
a(O, 71(t)) 

where 71(t) denotes the solution of the differential equation 

7j(t) = q(0,7J(t)) with initial condition 77{0) = 7J0 • 

Note also that for each set of initial data = 0 and 71 = 7J0 the input thus 
defined is the unique input capable to keep y(t) identically zero for all times. 
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The dynamics of (4.28) correspond to the dynamics describing the "in-
ternal" behavior of the system when input and initial conditions have been 
chosen in such a way as to constrain the output to remain identically zero. 
These dynamics, which are rather important i:Q. many of our developments, 
are called the zero dynamics of the system. 

Remark 4.9.1. In order to understand why we used the terminology "zero" 
dynamics in dealing with the dynamical system (4.28), it is convenient to 
examine how these dynamics are related to the zeros of the transfer function 
in a linear system. Let 

bo + b + + b n-r-l + n-r H(s) = K 18 · · · n-r-lS 8 
ao + a1s + · · · + an-lsn-l + sn 

denote the transfer function of a linear system (where r characterizes, as ex-
pected, the relative degree). Suppose the numerator and denominator poly-
nomials are relatively prime and consider a minimal realization of H(s) 

with 

A = 

c = 

x = Ax+Bu 

y = Cx 

0 
1 

0 : ) B = (·:·) 
-an-l K 

1 0 . . . 0). 

Let us now calculate its normal form. For the first r new coordinates we 
know we have to take 

Zl = Cx =boxt+ b1X2 + · · · + bn-r-lXn-r + Xn-r+l 

Z2 = CAx = box2 + b1X3 + · · · + bn-r-lXn-r+l + Xn-r+2 

Zr = CAr-lx = boxr + btXr+l + · · · + bn-r-lXn-l + Xn· 

For the other n-r new coordinates we have some freedom of choice (provided 
that the conditions stated in Proposition 4.1.3 are satisfied), but the simplest 
one is 

Zr+l = Xt 

Zr+2 = X2 

Zn = Xn-r· 

This is indeed an admissible choice because the corresponding coordinates 
transformation z = 4>(x) has a jacobian matrix with the following structure 
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c 
0 

D ( ... ) 1 

{)ijj * 8x 

c 
0 

D G 
0 

D 
1 0 

0 0 

and therefore nonsingular. 
In the new coordinates we obtain equations in normal form, which, be-

cause of the linearity of the system, have the following structure 

i1 = Z2 

i2 = zs 

Zr-1 = Zr 

Zr = Rf. + STJ +Ku 

iJ = PE,+ QTJ 

where R and S are row vectors and P and Q matrices, of suitable dimensions. 
The zero dynamics of this system, according to our previous definition, are 
those of 

iJ = QTJ. 

The particular choice of the last n - r new coordinates (i.e. of the elements 
of TJ) entails a particularly simple structure for the matrix Q. As a matter of 
fact, is easily checked that 

dzr+l 
dt 

dZn-1 
dt 
dzn 
dt 

= dxn-r-1 ( ) ( ) dt = Xn-r t = Zn t 

= dxn-r = Xn-r+l(t) = -box1(t)- · · ·- bn-r-1Xn-r(t) + Z1(t) 

= -boZrH(t)- · ·- bn-r-1Zn(t) + Z1(t) 

from which we deduce that 

1 0 

-bLJ 
0 1 

Q= 
0 0 

-b1 -b2 

From the particular form of this matrix, it is clear that the eigenvalues of 
Q coincide with the zeros of the numerator polynomial of H(s), i.e. with the 
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zeros of the transfer function. Thus it is concluded that in a linear system 
the zero dynamics are linear dynamics with eigenvalues coinciding with the 
zeros of the transfer function of the system. <1 

Remark 4.3.2. The calculations carried out in the previous Remark arealso 
useful in showing that the linear approximation, at 77 = 0, of the zero dynam-
ics of a system coincide with the zero dynamics of the linear approximation 
of the system at x = 0, i. e. that the Operations of taking the linear approxi-
mation and calculating the zero dynamics commute. 

In order to check this, all we have to show is that the linear approximation 
of equations in normal form coincides with the normal form of the linear 
approximation of the original description of the system and this amounts 
only to show that the relative degree of the system and that of its linear 
approximation are the same. To this end, suppose that the system has relative 
degree r at x = 0. Consider the expansions already introduced in Remark 
4.2.7 

f(x) = Ax + h(x) 

g(x) = B+g1(x) 

and, in addition, expand h(x) (which is 0 at x = 0) as 

h(x) = Cx + h2(x) 

where 
c- [8h] 

- OX z=O 
and [8h2] - 0 

8x z=O- · 

An easy calculation shows, by induction, that 

L}h(x) = CAkx + dk(x) 

where dk ( x) is a function such that 

[8dk] - 0 
8x z=O- . 

From this one deduces that 

CAk B = L9 L,h(O) = 0 for all k < r- 1 
CAr-l B = L9 L'j-1h(O) -::j; 0 

i.e. that the relative degree of the linear approximation of the system at x = 0 
is exactly r. 

From this fact, it is concluded that taking the linear approximation of 
equations in normal form, based on expansions of the form 

b(e, 77) = Re+ s'TJ + 77) 
a(e, 77) = K + a1 (e, 77) 
q(e, 77) = Pe + QTJ + q2(e, 77) 
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yields a linear system in normal form. Thus, the jacobian matrix 

Q- [äq] 
- Ö'fl {{,IJ)=O 

which describes the linear approximation at 'Tl = 0 of the zero dynamics of 
the original nonlinear system has eigenvalues which coincide with the zeros 
of the transfer function of the linear approximation of the system at x = 0. <1 

Example 4.3.3. Suppose we want to calculate the zero dynamics ofthe system 
already analyzed in the Example 4.1.4. The only thing we have to do is to 
set z1 = z2 = 0 in the last equation of the normal form of the equations and 
get 

Z3 = -Z3 ° 

These are the zero dynamics of the system. <1 

Example 4.3.4. Suppose we want to analyze the zero dynamics ofthe system 

(
X3- ( 0 ) 

2
-xz + -1 u 

x 1 - X3 1 
y X1 • 

For this system we have 

L 9 h(x) = 0 

We can calculate a normal form by taking 

Z1 X1 

Zz X3-

Z3 Xz + X3 

which is a globally defined coordinates transformation. Using these new CO-

ordinates we obtain equations of the following form 

i1 = zz 

iz = b(zt,zz,z3) +a(z1,zz,z3)u 
i3 = Z3. 

The constraint y(t) = 0 for all t imposes z1 (t) = z2 (t) = 0 for all t, and 
this shows that when the output is identically zero the state must necessarily 
evolve on the curve (see Fig 4.5) 

M = {X E IR3 : Xl = 0 and X3 = xn 
and be governed by its zero dynamics 
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M 

Z3 = const --....",. I 

z2 = const ......_ 

Fig. 4.5. 

Although all the properties illustrated so far were discovered and discussed 
using the normal form, it is not difficult to arrive at similar conclusions 
starting from equations in different formso If, for instance, one has not been 
able to find exactly the normal form because of the difficulty in constructing 
functions 4>r+l (x), 0 0 0, 4>n(x) with the property that L 9f/>;(x) = 0 (see Remark 
4o1.3), one can still identify the zero dynamics of the system working on 
equations of the form 

i1 Z2 

i2 = Z3 

Zr-1 Zr 

Zr = 17) + ry)u 

iJ 17) + ry)u 0 

As a matter of fact, having seen that the zero dynamics of the system 
describe its behavior when the output is forced to be zero, we impose this 
condition on the equations aboveo We obtain, as before, = 0 and 

0 = b(O, ry(t)) + a(O, ry(t))u(t) 0 

Replacing u(t) from this equation into the last one, yields a differential equa-
tion for 77( t) 

0 ( ) ( )b(O,ry) 
17 = q O,TJ - p O,ry a(O,ry) 

which describes the zero dynamics in the new coordinates choseno 

Example 403050 Suppose we want to calculate the zero dynamics ofthe system 
already analyzed in the Example 401.5. In this case we don't have the normal 
form, but the calculation of the zero dynamics is still very easy. Setting 
z1 = z2 = 0 in the second equation yields 
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Z4- 4z.f 
U=- o 

2 + 2z3 

Replacing this, and z1 = z2 = 0, in the third and fourth equation yields 

Z4- 4z.f 
Z3 = - Z3 - ----=-

2+ 2z3 
Z4 = 

which describes the zero dynamics of the systemo <l 

The problern of zeroing the output could also have been analyzed di-
rectly on the original form of the equationso Keeping in mind the calcula-
tions already clone at the beginning of section 401, it is easy to deduce th._at 
y(i-ll(t) = 0 implies = 0, for all 1 $ i $ ro Thus, as expected, 
the system has to evolve on the subset 

Z* = {x E ]Rn : h(x) = L1h(x) = o o o = L'j-1h(x) = 0}. 

which, locally around x 0 , is exactly the set of points whose new coordinates 
z1 , 0 0 o, Zr are 0 (see Figo 4o6)o If one writes the additional constraint 

0 = y<r>(t) = L'jh(x(t)) + L9 L'j-1h(x(t))u(t) 

this turnsouttobe exactly the same constraint previously obtained for u(t), 
but now expressed in terms of the functions which characterize the original 
equationso 

Fig. 4.6. 

Note that, since the differentials dL}h(x), 0 $ i $ r -1, are linearly inde-
pendent at X 0 (Lemma 4.1.1), the set Z* is a smooth manifold of dimension 
n - r, near X 0 • The state feedback 
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-L/h(x) 
u*(x)- ----=-...,....---

- L9 Lj- 1h(x) 

by construction is such that 

( ) (f(x) + g(x)u*(x)) 

dLj- 1h(x) 

= L}h(x) + L9 Lth(x)u*(x) _ '· .. ( 
Lth(x) + L9 h(x)u*(x) ) ( ) 

L/h(x) + - . 

Thus 

( ) (f(x) + g(x)u*(x)) = 0 

dLj- 1h(x) 

for all x E Z* (because h(x) = Lth(x) = · · · = Lj-1h(x) = 0 if x E Z*) and 
therefore the vector field 

f*(x) = f(x) + g(x)u*(x) 

is tangent to Z*. As a consequence, any trajectory of the closed loop system 

x = f*(x) 

starting at a point of Z* remains in Z* (for small values oft). The restriction 
f*(x)lz· of f*(x) to Z* is a well-defined vector field of Z*, which exactly 
describes - in a coordinate-free setting - the zero dynamics of the system. 

We will illustrate in the sequel a series of relevant issues in which the 
notion of zero dynamics, and in particular its asymptotic properties, plays 
an important role. For the time being we can show, for instance, how the 
zero dynamics are naturally imposed as internal dynamics of a closed loop 
system whose input-output behavior has been rendered linear by means of 
state feedback. For, consider again a system in normal form and suppose the 
feedback controllaw ( 4.25) is imposed, under which the input-output behav-
ior becomes identical with that of a linear system consisting of a string of r 
integrators between input and output (see Fig. 4.4). The closed loop system 
thus obtained is described by the equations (4.26), that can be rewritten in 
the form 

= 
iJ rJ) 
Y = 
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with 

c = (1 0 0). 

If the linear subsystem is initially at rest and no input is applied, then y ( t) = 0 
for all values of t, and the corresponding internal dynamics of the whole 
(closed loop) system are exactly those of (4.28), namely the zero dynamics 
of the open loop system. 

We conclude the section by showing that the interpretation of 

iJ(t) = q(O, 17(t)) , 

as of the dynamics describing the internal behavior of the system when the 
output is forced to track exactly the output y(t) = 0, can easily be extended 
to the case in which the output to be tracked is any arbitrary function. 
Consider the following problem, which is called the Problem of Reproducing 
the Reference Output YR(t). Find, if any, pairs consisting of an initial state 
X 0 and of an input function u0 (-), defined for all t in a neighborhood oft= 0, 
suchthat the corresponding output y(t) of the system coincides exactly with 
YR(t) for all t in a neighborhood oft= 0. Again, we are interested in finding 
all such pairs (x 0 , U 0 ). Proceeding as before, we deduce that y(t) = YR(t) 
necessarily implies 

for all t and all 1 i r . 

Setting 
{R(t) = col(yR(t), (t), ... , (t)) 

we then see that the input u(t) must necessarily satisfy 

= b({R(t),17(t)) + a({R(t),17(t))u(t) 

where 17(t) is a solution of the differential equation 

f7(t) = q({R(t),17(t)). 

(4.29) 

(4.30) 

Thus, if the output y(t) has to track exactly YR(t), then necessarily the 
initial state of the system must be set to a value such that {(0) = {R(O), 
whereas 17(0) = 11° can be chosen arbitrarily. According to the value of 11°, 
the input must be set as 

u(t) = b({R(t),17(t)) 
a({R(t), 17(t)} 

(4.31) 
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where ry(t) denotes the solution of the differential equation ( 4.30) with initial 
condition ry(O) = 1J0 • Note also that for each set of initial data = 
and ry(O) = 1J0 the input thus defined is the unique input capable of keeping 
y(t) = YR(t) for all times. 

The ( forced) dynamics ( 4.30) clearly correspond to the dynamics describ-
ing the "internal" behavior of the system when input and initial conditions 
have been chosen in such a way as to constrain the output to track exactly 
YR(t). Note that the relations (4.30) and (4.31) describe a system with input 

output u(t) and state ry(t) that can be interpreted as a realization of 
the inverse of the original system. 

4.4 Local Asymptotic Stabilization 

In this section we illustrate how the notion of zero dynamics can be helpful 
in dealing with the problern of asymptotically stabilizing a nonlinear system 
at a given equilibrium point. Suppose, as usual, a nonlinear system of the 
form 

x = f(x) + g(x)u 

is given, with f(x) having an equilibrium point at X 0 that, without loss of 
generality, we assume to be X 0 = 0. The problern we want to discuss is the 
one of finding a smooth state feedback 

u = a(x) 

defined locally around the point X 0 = 0 and preserving the equilibrium, i.e. 
such that a(O) = 0, with the property that the corresponding closed loop 
system 

x = f(x) + g(x)a(x) 

has a locally asymptotically stable equilibrium at x = 0. We shall refer to it 
as to the Local Asymptotic Stabilization Problem. 

First of all, we review a rather well-known property, by discussing to 
what extent the possibility of solving the problern in question depends on 
the properties of the linear approximation of the system near x 0 = 0. To this 
end, recall that the linear approximation of a system having an equilibrium 
at X 0 = 0 is defined by expanding f(x) and g(x) as (see Remark 4.2.7) 

f(x) Ax + h(x) 
g(x) B+g1(x) 

with 
A- [ö!] 

- ÖX x=O 
and B = g(O). 

From the point of view of the stability properties of the closed loop sys-
tem, the importance of the linear approximation is essentially related to the 
following result. 


