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part 1

• some methods for finding a control law               that is optimal w.r.t to 
a cost function

• DP is only applicable on small, finite and discrete state and input 
spaces 

• the HJB equation is the extension of the DP equation for state - input 
space and time

• the Riccati equation is a special solution of the HJB equation for linear 
system; the resulting LQR can be used as a control law for nonlinear
systems, but it only works in the vicinity of the linearization point
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outline of part 2

• discrete linear time-invariant LQR

• discrete linear time-varying LQR

• trajectory optimization 

• linear constrained optimization 

• nonlinear constrained optimization

• case study  
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continuous LQR - infinite horizon 

• we derived and applied LQR for linear time-invariant (LTI) systems 

with the cost function

and we end up obtaining an optimal control law of the form 

they do not depend on time 
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discrete LQR

• we can easily derive a discrete version of LQR using dynamic 
programming

• define a change of coordinates for the nonlinear system

• and linearize the system using a first-order Taylor expansion

• in general,  we have                                       and therefore  
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discrete LQR

• discretize the resulting LTI system

• the cost function is defined up to an horizon 

• remember that in DP we want to retrieve the optimal value function 
with a backward computation  

starting from a known final cost
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discrete LQR

• defining                      we can proceed in backward

• the minimum              is   

that we can plug back in   
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discrete LQR - recursion

until we reach the first time instant
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linear time-varying LQR

• LQR can be used as a linear and local control law for nonlinear 
systems, linearizing the model around a fixed point

• what happens if we linearize the system around a trajectory?

• same computation as before!
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linear time-varying LQR 

• suppose to have a discrete desired trajectory that we want to track, 
defined as a pair of state and input   

• we can still apply LQR, but we must deal now with a linear time-
variant (LTV) system

since at each time step the linearization point changes along the         
trajectory

they depend on time!  

for
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linear time-varying LQR  

• we will consider the discrete version of LTV LQR

• define a change of coordinates for the nonlinear system

and linearize the system using a first-order Taylor expansion
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linear time-varying LQR  

• discretize the resulting LTV system

• penalize the deviation from the desired trajectory in the cost function

• the optimal cost-to-go at the end of the trajectory is 

where
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linear time-varying LQR  

• iterate from the end of the trajectory to its beginning

• obtaining for each discrete time step     the optimal control feedback 
for tracking the desired trajectory  

can use time-varying weights 
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trajectory optimization

• LTV LQR can be used to stabilize a nonlinear system around the 
desired trajectory

• it requires that the system starts close to the trajectory, otherwise the 
linearization is no longer accurate (same as in the LTI LQR case)   

• the presented recursive algorithm used for solving the LTV LQR can be 
used (with some modifications) even to generate an unconstrained 
desired trajectory 

• this problem is called trajectory optimization, and it can be solved 
using iterative LQR (ILQR)
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iterative LQR - algorithm 

• define the cost 

• steps to repeat from              to 

1.  linearize the system over an initial guess  

2. run the LTV LQR (backward pass) to minimize 

3. apply the new inputs to the nominal model (forward pass)  

4. set                    and as initial guess the new states obtained running 
the forward pass and the applied inputs
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iterative LQR - backward pass

• to minimize

expand                        at the second order around the last initial guess 

with                                   and            
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iterative LQR - backward pass

with

discarded inside ILQR
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iterative LQR - backward pass

• compute the minimum

• the value function at time      is given by

where
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iterative LQR - forward pass 

1. from step             to    , apply to the nominal model the control 
inputs

2. collect the new state evolution and set the new initial guess for the 
next iteration 
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iterative LQR - algorithm

• after each iteration, the cost will be lower than the previous one

• the iterations can be stopped when         is close to        or there is no 
improvement in the cost               

• the system is nonlinear, hence this is a non-convex optimization 
problem and the algorithm can get stuck in a local minimum
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iterative LQR - Acrobot

• consider the Acrobot, a 2R robot with the first joint passive and the 
second joint actuated

• the video below shows the evolution of the trajectory planned by the 
ILQR during each iteration

• state                                        , goal
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iterative LQR - receding horizon 

• ILQR generates an unconstrained open-loop trajectory for nonlinear 
systems

• we can close the loop and use ILQR directly for control, but only if we 
can obtain a solution fast enough to be real-time

• at every control time step    :

1. measure the current state of the robot

2. use ILQR to plan an open-loop trajectory                                         to 
minimize the cost function

3. execute       and discard

• this strategy is called receding horizon
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iterative LQR - video  
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iterative LQR - limitations 

• ILQR can be used both for planning and control (for the last using a 
receding horizon strategy and only if the resulting controller is real-
time)

• its performance depends largely on the cost function and on the 
chosen horizon length (how far we look into the future)

• it does not scale well to high-dimensional state spaces, hindering its 
applicability for closed-loop control (but not for planning)

• it does not handle state and input constraints that can be essential on 
a real system  
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constrained optimization 

• in general, constrained optimization problems are difficult to solve 

• the solution of the optimization problem cannot always be found in 
closed form
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constrained optimization - convex set 

• optimization problems that are convex are easier to solve

• definition: a set     is convex if for each point                      we have
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constrained optimization - convex function  

• definition: a function                    is convex if      is convex and   



28

constrained optimization - convex problem  

• the optimization problem

is a convex optimization problem if      is a convex set and                                
is a convex function

• every convex optimization problem has a unique optimum

• for unconstrained optimization, the optimum can be found in closed 
form

• for constrained optimization, different solvers are available, e.g. 
QPOASES for quadratic problem (QP)
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Model Predictive Control

• Model Predictive Control (MPC) is a control approach which can 
handle state and input constraints

• it solves at each time step an optimization problem over a fixed 
prediction horizon, computing an optimal sequence of control inputs 

• only the first input is applied to the system, while the rest is discarded 
(receding horizon strategy) 
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linear MPC

• linear prediction model

• constraints

• optimization problem with a quadratic cost function
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linear MPC - formulation

• condensed form
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linear MPC - formulation

constrained QP problem
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LQR and MPC: comparison

LQR Linear MPC

• limited horizon length 

• in general no explicit solution

• needs to be recomputed at each 
control step

• handles constraints  

• infinite horizon 

• explicit linear solution

• feedback matrix computed only 
once

• does not handle any constraints
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linear time varying MPC

• we can use MPC for trajectory tracking

• for linear systems, we can just formulate the cost function in order to 
penalize the deviation w.r.t the desired trajectory

• for nonlinear systems, we can replicate the procedure for LTV LQR, 
linearizing the model along the trajectory

• the optimization problem remains a QP

LTV system
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from LTV MPC to Nonlinear MPC

• LTV MPC works only if we start close enough to the desired trajectory

• we can obtain better performance solving directly the nonlinear 
optimization problem, which will not be convex anymore

• multiple local optima may be present and convergence at the global 
optimum is not guaranteed

• Nonlinear MPC (NMPC) can be useful to deal with strong 
nonlinearities and/or nonlinear constraints/costs

• NMPC is more computationally intensive to solve compared to Linear 
and LTV MPC

• different optimization methods can be used, such as Sequential 
Quadratic Programming  (SQP) and Interior Point Method 



36

NMPC - SQP algorithm

• at each control step   , start with an initial guess

• for             to            repeat:

1. simulate the nonlinear system from the current state under the 
inputs     , obtaining the state evolution 

2. linearize the nonlinear system around the new state evolution and 
input 

3. get        from the solution of the QP (as in LTV MPC)

4. update the control input                                and set it as the new 
initial guess for the next iteration
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case study - LQR-Tree

• aim: stabilize a nonlinear system from a wide range of different initial 
conditions

• idea: grow a randomized tree of stabilizing controllers that leads the 
system from any initial condition to the goal

• steps:

• randomly explore a bounded set of initial states by tracing an 
open-loop trajectory leading to the goal (e.g. nonlinear 
optimization with SQP)

• stabilize the trajectories by a feedback controller (LTV LQR)

• approximate the set of states that can be stabilized to the goal 
tracking the planned trajectories (funnel)
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case study - LQR-Tree

• funnel - set of states around a trajectory that can be stabilized to a 
goal applying a feedback tracking controller (LTV LQR)
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case study - LQR-Tree

• we want to add offline trajectories to the tree until the concatenation 
of their funnel covers all the possible initial states 

• once the tree is created, we search online for a trajectory whose 
funnel contains the actual state of the system and apply the 
corresponding feedback tracking controller
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case study - LQR-Tree


