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Abstract

We consider planning and control problems for underactuated manipulators, a special instance of mechanical systems
having fewer input commands than degrees of freedom. This class includes robots with passive joints, elastic joints, or
flexible links. Structural control properties are investigated, showing that manipulators with passive joints in the absence
of gravity are the most difficult to control. With reference to these, solutions are proposed for the typical problems of
trajectory planning, trajectory tracking, and set-point stabilization. The relevance of nonlinear control techniques such
as dynamic feedback linearization and iterative steering is clarified through illustrative examples.

I. INTRODUCTION

Underactuated controlled mechanical systems are characterized by the fact that the number of
available independent commands is strictly less than the number of generalized coordinates. This class
encompasses many interesting robotic devices, ranging from underwater vehicles to legged humanoids
with some passive joints.

In recent years, a remarkable research effort has been devoted to the study of underactuated ma-
nipulators, i.e., fixed-base articulated chains of bodies whose dynamics is described by n nonlinear
second-order equations actuated by m < n control inputs (see [49]). The list of underactuated manip-
ulators includes, among the others, rigid robots with transmission elasticity, lightweight robots with
flexible links, and robots with passive joints. In the first two cases, underactuation is mainly a result of
a more accurate dynamic modeling of the system, with the available commands affecting directly only
rigid-body motion. In the last case, underactuation is a consequence of special operative conditions:
the failure of one or more actuators or an on-purpose ‘minimalistic’ design that avoids the use of full
actuation.

The common definition of underactuation does not capture however the fact that mechanical systems
within this class display different levels of difficulties from the control point of view. In particular, it
has been recognized that manipulators with passive joints in the absence of gravity raise by far the
most challenging theoretical problems, typically requiring non-classical feedback control approaches.
To clarify this issue, we shall provide some inherent reasons for such differences, based on the analysis
of structural control properties of a general dynamic model of underactuated robots.

Dynamic modeling, trajectory planning and feedback control of specific instances of underactuated
mechanical systems have already been investigated. The basic motion tasks that are considered are the
planning of (dynamically) feasible point-to-point trajectories, their asymptotic tracking by feedback
control, and the regulation to a desired equilibrium configuration. Significant theoretical results can
be found in [41] and [43]. Nevertheless, a general theory is not yet available and only case-by-case
planning and/or control solutions have been obtained so far.



Motivated by this, we sketch a review of the most significant case studies found in the literature of
underactuated robots with passive joints. Exploiting results from advanced nonlinear control theory,
we describe in some detail two quite general approaches which have proved to be effective in controlling
these systems, namely dynamic linearization via feedback and iterative steering. For illustration, we
also work out the application of these techniques to examples of planar manipulators with passive
joints.

The paper is organized as follows. In Sect. II, underactuated manipulators are described in a unified
framework. The typical planning and control problems are defined in Sect. I1I, while Sect. IV presents
the most relevant structural control properties. After providing a synopsis of the existing control
approaches in Sect. V, dynamic linearization and iterative steering techniques are used in Sect. VI
and VII, respectively for planning and tracking rest-to-rest trajectories and for set-point stabilization
of two different planar manipulators with passive joints.

II. UNDERACTUATED MANIPULATORS

The dynamics of robot manipulators can be described in general by
B(9)6 + c(0,0) + e(0) = G(0) , (1)

where 0 € IR" is the vector of generalized coordinates, B(6) is the positive definite symmetric inertia
matrix, 0(9,9) and e(f) are respectively the vectors of velocity (Coriolis/centrifugal) and potential
(gravitational /elastic) terms, and G(f) is the matrix mapping the external forces/torques 7 € IR™
acting on the system to generalized forces performing work on 6.

When m < n, a manipulator is said to be underactuated (of degree n — m), i.e., it has less control
inputs than generalized coordinates. If matrix G is full column rank, it is easy (e.g., see [18]) to show
that, by performing an input transformation and a change of coordinates, the system dynamics takes
on the partitioned structure

Bua(q) By, (Q)> ((L) (ca(q d)) (ea(Q)) <Ta>
ua )+ )+ = : 2
(s mecto) () + Cad) + (o) = (G @)
where 7, € IR™ and, with a slight abuse of notation, we kept the same symbols of eq. (1) for the
dynamic terms. The new vector of generalized coordinates ¢ displays the partition in actuated (active)

and unactuated (passive) degrees of freedom, respectively ¢, € IR™ and ¢, € R"™™.
In particular, the last n — m equations of the dynamics (2)

Bua(@)da + Buu(@)Gu + culq, ) + eu(q) =0, (3)

represent a set of second-order differential constraints. In order to be feasible, a trajectory q = q(t)
should satisfy these constraints at all times . Due to the intrinsic presence of these differential
constraints as part of the system dynamics, these mechanisms have also been called second-order
nonholonomic systems. Indeed, some useful ideas for trajectory planning and control of underactuated
manipulators have been suggested by the analogy with kinematic systems subject to classical first-order
nonholonomic constraints.

In principle, eq. (2) includes the following types of N-joint manipulators:

a) rigid robots with n, active and n, = N — n, passive joints:
n = Ng + Ny, m = Nq;
b) robots with n, rigid and n, = N — n, elastic joints:

n = n, + 2n,, m = N, + N;



c) robots with n, rigid and ny = N — n, flexible links, each modeled by 7y deformation modes:
n=mn,+ g+ ng,  m=mn,+ny.

Another interesting example of underactuated manipulators is represented by kinematically redundant
arms with all n joints passive and m < n forces/torques applied to the end-effector as the only available
input command [18]. From a modeling viewpoint, the dynamics of these mechanisms can be written as
in eq. (1) and thus can be equivalently expressed, up to kinematic singularities, in the form of eq. (2).

Finally, we mention here that underactuated manipulators my be equipped with on/off brakes at the
passive joints. Switching control strategies can be designed in this case; in particular, configuration
control techniques have been addressed in [1], [2] and [5]. We shall not consider the presence of brakes
in this paper.

In order to simplify the following analysis, as well as the control design, it is convenient to perform a
preliminary partial feedback linearization of eq. (2). Solving the second equation for §, and substituting
in the first, one can check that the (globally defined) static feedback

7a = (Buala) = BL(@)Bi (0)Bua(@)) a + cal,d) + eala) = BL(0)Bl(0) (cula ) + eula))  (4)

leads to a system in the form

ija = a (5)
Buu(q) Gu = —Bua(q) a—cu(q,q) — eu(q), (6)

where the actuated degrees of freedom are now directly controlled by the new acceleration input
a € RealSet™.

Equations (5-6) can be seen as a canonical representation of underactuated manipulator dynamics.
The controllability properties remains obviously the same as those of eq. (2).

III. FORMULATION OF PLANNING AND CONTROL PROBLEMS

In the control of mechanical systems, three basic problems arise:

P1 Trajectory planning

Given an initial state (¢%,¢°) and a final desired state (¢¢,¢?), find a feasible trajectory q(t) (i.e.,
satisfying eq. (2) for some 7,(t), with ¢ € [0, T]) that joins the initial and the final state. If ¢° = ¢* = 0,
this is a rest-to-rest trajectory planning problem. The motion time 7" > (0 may be assigned or not.

P2 Trajectory tracking

Given a feasible trajectory ¢?(t), with ¢ € [0, 00), find a feedback control law that asymptotically drives
the tracking error e(t) = q%(t) — q(t) to zero, at least locally.

P3 Set-point regulation
Given a desired equilibrium configuration ¢¢, find a feedback control law that makes the state (g, ) =
(¢%,0) asymptotically stable, at least locally around the trajectory.

Note that by solving problem P1 for a finite time 7', we implicitly obtain an input command 7,()
that drives the system between the two given states —a controllability result. Moreover, if there is no
solution to the assigned trajectory planning problem P1, the corresponding trajectory tracking problem
P2 becomes meaningless. On the other hand, it may happen that a feasible trajectory ¢(t) joining the
two equilibrium states (¢°,0) and (g%, 0) exists, but we are not able to compute it in advance through
a planning phase. Still, if problem P3 can be solved, and if (¢°,¢°) lies within the basin of attraction
of the stabilizing controller, one obtains as a byproduct an asymptotic solution (i.e., for motion time
T going to infinity) to problem P1.

We recall that for fully actuated mechanical systems (i.e., with m = n) these three problems have
always solution. As for P1, any trajectory ¢(t) interpolating ¢(0) and ¢4(T), for an arbitrary T > 0
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and with any boundary velocities, is feasible provided that ¢(t) is twice differentiable. Moreover,
since there exists a nonlinear static state feedback that converts the system into a linear controllable
form (the so-called computed torque method), P2 and P3 can be solved using standard control tech-
niques. Indeed, even simpler feedforward plus linear feedback solutions are available (typically, based
on Lyapunov/LaSalle analysis).

IV. CONTROL PROPERTIES OF UNDERACTUATED MANIPULATORS

In this section we investigate some structural control properties of underactuated systems of the
form (2) in order to gain a deeper insight into the solvability of problems P1-P3, and possibly to
envisage appropriate design techniques.

We begin by noting that, when T is not assigned, the existence of a finite-time solution to P1 for
any state (¢, ¢?) in a neighborhood of (¢°, ¢°) is equivalent to the property of local controllability at
(¢°, ¢°). If local controllability holds at any state, then the system is controllable (in the natural sense)
and P1 is solvable for any pair of initial and final states. On the other hand, the existence of a solution
to problem P2 or P3 implies that the system is (locally or globally) stabilizable along the reference
trajectory or, respectively, at the set-point.

Note that, in general, controllability does not imply stabilizability for nonlinear systems. As a matter
of fact, as shown in [41], manipulators with passive joints in the absence of gravity cannot be stabilized
at a point by smooth static feedback, as they violate the necessary condition due to Brockett [7]. As
a consequence, any feedback law solving P3 must necessarily be discontinuous and/or time-varying.

Unfortunately, there are no general necessary and sufficient conditions for the study of controllability
and stabilizability of nonlinear systems. In the following, we present a number of controllability-related
properties, for which verifiable conditions exist. As structural control properties are invariant under
regular feedback, we shall use either eq. (2) or egs. (5-6) in our investigation.

A. Integrability

A first test on the controllability of an underactuated robot consists in checking whether the (n—m)-
dimensional second-order differential constraint expressed by eq. (3) is integrable in the sense of [41].
In particular, eq. (3) may be partially integrable to a set of ny (0 < ny < n—m) first-order differential
constraints

hl(q) Q) = 07 (7)
or even completely integrable to a set of ny < n; holonomic constraints
h2<(1) =0. <8>

These integrability properties may be tested by the necessary and sufficient conditions given in [41];
if any of these holds, then full state controllability is lost. However, if eq. (3) is only partially (but
not completely) integrable, it is still possible to steer the mechanism between equilibrium points. In
fact, this property (equilibrium controllability, see Sect. IV-C) is easily established, essentially by
noting that at equilibrium points the first-order differential constraint (7) becomes Pfaffian (see [41]),
and recalling that the non-integrability of this kind of constraints implies the controllability of the
associated kinematic system. One example of partial (but not complete) integrability is a planar
R, (nR,) maniupulator! in the absence of gravity.

If eq. (3) is instead completely integrable to n — m holonomic constraints, then the system motion
is confined to a particular m-dimensional submanifold of the configuration space, depending on the
initial configuration ¢° = (¢°,¢%). As a consequence, problems P1 and P3 admit no solution, except
for special choices of the initial and final states. One example of complete integrability is a planar
R,R, robot in the absence of gravity [41].

We use in the following the notation P./Pu, Ra/Ru for actuated/unactuated prismatic and, respectively, revolute joints. If
present, a prefix n indicates the occurrence of n > 2 consecutive such joints.



B. First-order controllability

When the second-order differential constraint (3) is not partially or completely integrable, there is
no kinematic or dynamic obstruction to the controllability of the system. However, the nature of this
controllability can be very different, with relevant implications on the design of control methods.

For nonlinear systems, the simplest way to establish local controllability at an equilibrium point
is to prove that the approximate linearization of the system around the point is controllable. Define
the set of equilibrium states as Q¢ = {q = ¢° : e.(¢°) = 0, ¢ = 0}. Since ¢, is quadratic in ¢, the
approximate linearization of the dynamics (5-6) at any point of Q° is obtained as

0 = a
Buu(q%) 8Gu + (V, €a)(¢9) 6 = —Bua(¢®) a.

If this linear dynamics is controllable, local controllability of the original nonlinear system is guaran-
teed. Moreover, for each state (¢¢,0) € Q¢ problem P3 is solved by any control law that stabilizes the
linear approximation; the corresponding trajectory represents an asymptotic solution to the associated
P1 problem.

One can show that underactuated manipulators are controllable in the first approximation only if:

1.m>n—m;

2. (Vyew)(¢°) is full row rank.

In particular, underactuated manipulators are not linearly controllable in case of simultaneous absence
of gravitational and flexibility/elasticity effects on the passive dof’s (e,(q) = 0, Vq).

Underactuated systems that are controllable in the first approximation include robots with elastic
joints and/or flexible links, as well as examples of robots with passive joints subject to gravity. In
principle, the control of these mechanisms may be attempted using more conventional nonlinear tech-
niques. In particular, robots with elastic joints are globally equivalent to linear controllable systems
under the action of a nonlinear (static or dynamic) feedback: global solutions to problems P1-P2 and
P3 can be found, e.g., in [47], [16] and, respectively, in [53]. As for robots with flexible links, the reader
may refer to [12] for trajectory planning, to [25] for tracking and to [24] for set-point regulation tech-
niques. Finally, linearly controllable underactuated manipulators under the action of gravity are the
so-called Acrobot (R, R,) and Pendubot (R, R.), see, e.g., [48], [49], [50], [20] for specific stabilization
strategies.

A similar approach can be followed in order to establish local controllability along a reference
trajectory, using the approximate linearization of the system around a feasible trajectory q¢?(t). If the
resulting linear (and, in general, time-varying) system is controllable, problem P2 can be locally solved
using linear techniques.

C. Nonlinear controllability

When linear controllability does not hold, it is necessary to investigate nonlinear controllability
concepts. Among these, the most elementary is accessibility: a mechanical system is said to be
accessible at 20 = (¢°, ¢°) if the set R(z") of states that are reachable from x° within any finite
time includes some open subset of the state space. Such property may be easily tested through the
well-known accessibility rank condition [40]. While for driftless systems accessibility is equivalent to
controllability, this is not true for underactuated manipulators, because egs. (5-6) have a drift term.

A stronger concept is small-time local controllability (STLC), see [51]. A mechanical system is said
to be small-time locally controllable at z° = (¢°, ¢°) if, for any neighborhood V of z° and any time
T > 0, the set RY(2°) of states that are reachable from z° within time 7" along trajectories contained
in V includes a neighborhood of z°. STLC is a stronger property than controllability. In particular, a
non-STLC but controllable system must in general perform finite-size maneuvers in order to achieve
arbitrarily small reconfigurations. Therefore, while a feasible trajectory joining any two given states
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exists in this case by definition, its planning may be out of reach, at least with the available techniques.
Interestingly, however, problem P3 (set-point regulation) for non-STLC systems may still be solvable;
we will present an example in Sect. VII-A.

Only sufficient conditions are available for testing STLC; see [51], [6] and, for the specific case of
underactuated mechanical systems, also [18] and [13]. The planar (RR),R, manipulator satisfies the
sufficient conditions for STLC, as shown in [3] and [13]. In general, no conclusion about STLC can be
drawn for a mechanism that violates these conditions; a notable exception is the class of manipulators
with passive joints and a single actuator (m = 1) in zero gravity, which was explicitly proven to be
non-STLC in [28].

The interest of the STLC notion is however limited, for there is no constructive control design based
on such property; we only know [11] that STLC systems can be locally stabilized by time-varying
feedback —an existence result. Therefore, new concepts of nonlinear controllability have been defined,
in order to better reflect the nature of the control problems of interest for underactuated manipulators
and, whenever possible, provide constructive design methods.

As a matter of fact, for a mechanical system the typical interest is solving problems P1 and P3 (i.e.,
proving controllability and stabilizability) for equilibrium states. On the other hand, second-order
mechanical systems cannot be STLC at states with nonzero velocity?, showing that this property
is indeed very restrictive. Motivated by this, the weaker concepts of small-time local configuration
controllability (STLCC) and equilibrium controllability (EC) have been introduced (see [33], [34]).

A system has the STLCC property at a configuration ¢° if, for any neighborhood V, of ¢° in the
configuration space, and any time T" > 0, the set qu(qo) of configurations that are reachable (with
some final velocity ¢) within 7', starting from (¢°,0) and along configuration trajectories contained in
V,, includes a neighborhood of ¢°. By definition, an STLC system is also STLCC. Sufficient conditions
for STLCC are given in [34].

A system has the EC property if it can be steered between any two equilibrium configurations in
finite time. The sufficient conditions for STLCC, if verified at any configuration, guarantee that the
system is equilibrium controllable. It can also be shown that an STLC system is also equilibrium
controllable.

A special form of equilibrium controllability is the so-called kinematic controllability (KC) (see [8],
[9]). A mechanical system has the KC property if every configuration is reachable via a sequence
of kinematic motions, i.e., feasible paths in the configuration space which may be followed with any
arbitrary timing law. A vector field whose flow generates a kinematic motion is called decoupling. Note
that KC implies both EC and STLCC, while it has no implications on STLC. Examples of kineatically
controllable underactuated manipulators are the planar R, (RR),, R.R.Rq, and (RR),R,, robots (the
latter being also STLC). If a mechanism is kinematic controllable, the trajectory planning problem P1
may be solved in an algorithmic fashion; however, stabilizing the system along the decoupling vector
fields (problem P2) may be an issue and is currently a subject of research.

The relationships among the various nonlinear controllability concepts for mechanical systems are
illustrated in Fig. 1.

D. Feedback linearizability

Under appropriate conditions, controlled mechanical systems with nonlinear dynamics can be exactly
transformed into linear controllable systems by means of a nonlinear state feedback and a change of
coordinates. For underactuated robots, static feedback laws are never able to achieve this result, since
they allow at most a partial feedback linearization such as the one presented in egs. (5-6).

More interestingly, the use of a nonlinear dynamic feedback linearization(DFL) approach can lead to

2For example, consider the simple mechanical system described by § = u, ¢ € IR. From a state z° = (qo, qo) having ¢° > 0, it is
not possible to reach states z¢ = (qd,qd) having ¢¢ < ¢ with a trajectory arbitrarily close to z°; in fact, any trajectory joining
z° and ¢ must intersect the axis ¢ = 0 in order to invert the velocity.



Fig. 1. Relations among nonlinear controllability concepts for mechanical systems at an equilibrium point

an equivalent linear controllable system, provided that a set of m linearizing (also called flat) outputs
exists. Unfortunately, only necessary or sufficient conditions (see, e.g., [32, Prop. 5.4.4], [10], [27]) are
currently available for the existence of these linearizing outputs and no systematic procedure is defined
in order to individuate these outputs®. Thus, the property of being exactly linearizable via dynamic
feedback can only be established by studying the specific case at hand. When this result holds true,
P1-P3 may then be solved by suitable control design on the linear side of the problem. However, in
the absence of linear controllability, the original underactuation of the robot ultimately leads to the
presence of control singularities, at least at the regulation point (otherwise smooth stabilization would
be possible). Special care should be devoted to the handling of such singularities during motion (see
Sect. VI-A).

V. A REVIEW OF CONTROL TECHNIQUES

The previous considerations on structural control properties should clarify the severe theoretical
difficulties that arise when addressing control problems for underactuated manipulators and justify
the variety of approaches taken by researchers in order to solve them on a case-by-case basis. An
overview of case studies for planar underactuated manipulators found in the literature is given in
Table I and briefly discussed in this section.

In the absence of gravity, stabilization of a planar 2R manipulator with a passive elbow joint (R,R,
robot) has been obtained in [39] by means of a time-varying periodic feedback designed via Poincaré
map analysis. For the same robot, iterative steering has been used in [19]. The lack of other successful
solutions for underactuated manipulators with a single actuation command follows from the previous
negative results on their controllability properties.

On the other hand, 2R planar manipulators with a single actuator in the presence of gravity (R,R,,
or R,R, robots) have been considered by several authors. Due to the gravitational drift, the region
of the state space where the robot can be kept in equilibrium is reduced, and consists of two disjoint
manifolds. Moving between these two requires appropriate swing-up maneuvers, whose synthesis has
been tackled so far by energy-based [48], [50], passivity-based [26], [44], or iterative steering [20] control
techniques. The trajectory tracking problem has been solved for these robots, based on nonlinear
output regulation [4], [42]. Finally, also the control around a non-equilibrium configuration of a R,R,,
robot in the vertical plane can be achieved using vibratory inputs [52].

Another planar underactuated manipulator that gained recently attention is the (XY),R, robot,
i.e., having two actuated joints of any kind (prismatic or rotational, and thus generically denoted
by X and Y) and a third rotational passive joint. Most results are available for the no-gravity case.
In [31], it is shown that the dynamic equations can be rewritten in terms of a so-called second-
order chained form. Based on this result, a feedback control can be designed so as to stabilize the
system on a (asympotically vanishing) trajectory [55]. Set-point regulation is obtained in [36] using a

3The resort to dynamic feedback may become useful for linearization purposes only for systems with at least m > 2 control
inputs.



Robot Controllability Trajectory Planning (P1) Set-point
and Tracking (P2) Regulation (P3)
R.R. integrable [41] - -
R.Ry not STLC or STLCC [8] open periodic/Poincare [39]
iterative steering [19]
R,R.+ gravity linearly controllable output tracking [4] energetic [48]
(Acrobot) not STLC or STLCC [8] iterative steering [20]
R.R.,+ gravity linearly controllable output tracking [42] energetic [50]
(Pendubot) not STLC or STLCC [8] passivity based [26], [44]

P.R, integrable [15] - -

P.R, not STLC or STLCC [§] open iterative steering [15]

R.P, integrable [29] - -

R.P, not STLC or STLCC 8] open iterative steering [29]
R.R.Rq KC, STLCC [9] decoupling vectors [9 open
R.R.Ra STLC [13] decoupling vectors |9 open

KC, STLCC [9]
(XY).R. STLC [3] elementary maneuvers [3] vanishing trajectory [55]
KC [9], STLCC [34] DFL [21] variable deadbeat [36]
decoupling vectors [9]
(XY).R, linearly controllable DFL [22] open
+ gravity STLC [13], STLCC
[(n— 1)X|.R, | KC, STLC, STLCC DFL 23] open
[(n — 1)X].Ry linearly controllable DFL [23] open
+ gravity STLC, STLCC
(n1R)oRu(n2R), STLC [13] open open
(XY)a(nR), open DFL [30] open
(CP; hinged) elementary maneuvers [45]
(XY)q(nR), linearly controllable DFL [30] open
+ gravity
(CP; hinged)
TABLE I

UNDERACTUATED PLANAR MANIPULATORS WITH PASSIVE JOINTS: ANALYSIS, PLANNING, AND CONTROL RESULTS

deadbeat control scheme with variable period of application. In [3], a trajectory planning algorithm
for this robotic system has been determined through the composition of (up to five) translational and
rotational elementary motions of the last link. The key was recognizing the main role played by the
motion of the center of percussion (CP) of the third link. Once a composed point-to-point trajectory
is planned, a different controller should be used for each translational or rotational phase in order to
achieve stable trajectory tracking. The CP point was also used for solving trajectory planning and
control problems, both in the presence [21] and in the absence [22] of gravity, by means of dynamic
feedback linearization. In this case, it is possible to determine a single smooth trajectory that joins any
initial and desired robot configurations and, as a byproduct, a single (linear) feedback controller for
tracking the whole trajectory. This approach has been recently extended to the class of ((n —1)X),R,
planar manipulators (i.e., with only the last joint passive) in [23].

There are barely analysis and control results for manipulators with n —m > 1 passive joints. In [38],
it has been shown that trajectory planning (problem P1) for a chain of n coupled planar rigid bodies
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subject to two cartesian force inputs at one end can be performed, whenever each body is hinged at
the CP of the previous one. As a matter of fact, the CP of the last body is a linearizing output.
Interestingly, this can be seen as the dynamic counterpart of the nonholonomic N-trailer wheeled
mobile robot (a kinematic system) with zero hooking [46]. In other terms, the above system is actually
an (XY),(nR), robot, for which there have been successful attempts to generalize the trajectory
planning results holding for the (XY),R, robot. In fact, the algorithm of [3] has been adapted to the
(XY).(nR), robot (without gravity) in [45]. This method, however, needs to decompose the global
motion into a long sequence of translational and rotational phases for each passive link. Similarly,
the dynamic feedback linerization approach presented in [21], [22] has been extended, under the same
hinging hypothesis of [38], [45], to the trajectory planning and tracking of (XY),(nR), robots moving
in the absence or presence of gravity [14], [30].

In the following sections, we illustrate the two methods that we have proposed (see again Table I)
and that have proven to be effective and generalizable, at least to some degree, to significant classes
of manipulators with passive joints: exact linearization via dynamic feedback for trajectory plan-
ning/tracking (problems P1 and P2) and iterative steering for set-point regulation (problem P3).

VI. TRAJECTORY PLANNING AND TRACKING VIA DYNAMIC FEEDBACK LINEARIZATION

The exact linearization technique via dynamic feedback [32] represents an effective solution to the
P1 (trajectory planning) and P2 (trajectory tracking) problems. For this, a set of linearizing outputs

z = h(q), z € R™ (9)

should be found, having the property that the whole state and the input of the system can be written
in terms of z and its time derivatives. Then, it is possible to build a dynamic compensator of the form

£ = aléq,q)+B(Eq.d)v
a = v(,q,4) +06&q,4) v,

with state £ € IR” and new input v € IR™, such that the closed-loop system (5-6), (9-10) is input-
state-output linear and decoupled, i.e., represented by m chains of integrators between v and z.

Assuming for simplicity that the system has m = 2 inputs (as in the case study presented later),
the linearizing algorithm proceeds qualitatively as follows. The two linearizing outputs z; and 2z, are
differentiated repeatedly until at least an input is found in each of them. If the matrix (actually, the
decoupling matriz) multiplying the inputs at this differentiation level is nonsingular, then static state
feedback can be used in order to linearize the input-output behavior. However, if the sum of the orders
of the output derivatives is strictly less than the dimension of the state space, full state linearization
cannot be achieved. On the contrary, if the decoupling matrix is singular (thus, of rank one in the
considered case), one can perform a state-dependent change of coordinates in the input space so as to
let only one new input appear. On this input, a dynamic extension is performed, namely the addition
of one integrator (which becomes the first component &; of the state of the dynamic compensator (10))
driven by a new scalar input. Therefore, the derivatives of the two outputs at this level will not depend
anymore on the newly defined inputs and we can proceed with their differentiation. This process is
iterated as many times as needed so as to arrive at a final nonsingular (at least locally) decoupling
matrix for the extended system. While doing this, the whole state £ of the dynamic compensator (10)
is built iteratively. At the end, the sum of the output derivative orders equals the dimension of the
extended state space (robot + dynamic compensator) and full input-state-output linearization can be
obtained by inversion.

Once the above construction has been carried out, the trajectory planning problem (P1) can be
formulated and easily solved as a simple interpolation problem on the equivalent linear system. An
interesting byproduct of this approach is that control techniques for linear single-input/single-output

(10)
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Fig. 2. An underactuated XYRR robot

systems allow to exponentially stabilize the error dynamics, thus providing a straightforward solution
also to the problem of tracking the planned trajectory (P2).

It should be mentioned that singularities may arise in the resulting controller, essentially because
dynamic feedback linearization is based on model inversion. Such singularities must be carefully
kept into account and avoided when planning the trajectory via interpolation. This can be usually
achieved by appropriately choosing the initialization of the dynamic compensator state & —actually
an additional degree of freedom available in the design.

In [21] and [23], we have shown that planar three-link (or n-link) robots with passive rotational third
(or last) joint can be exactly linearized via feedback, with or without gravity. The linearizing output
is the cartesian position of the center of percussion (CP) of the third (last) link. In the following, we
show that the same procedure can be applied also in the presence of a double degree of underactuation,
provided that a special mechanical condition is satisfied.

A. Example: An underactuated XYRR robot

An XYRR planar robot is a mechanism where the two distal joints are rotational, while the two
proximal d.o.f.’s may be any combination of prismatic and rotational joints. Assume that only the
first two joints are actuated (thus, the robot is labeled (XY),(RR),), that the fourth link is hinged
exactly at the center of percussion (CPj3) of the third link (see Fig. 2), and that the robot moves in
the horizontal plane. Denote by I;, d;, and k; (i = 3,4) respectively the length of the i-th link, the
distance between the i-th joint axis and the i-th link center of mass, and the distance between the i-th
joint axis and the i-th link center of percussion CP;. Under the special hinging condition of [38], [45],
we have
2 1 4+ m4di
—— =13, ky=——7—

m3d3 m4d4

where m; and [I; are, respectively, the mass and the centroidal moment of inertia of the i-th link.
Choose the generalized coordinates as ¢ = (qa,qu) = (¥,¥,¢s,q4), where (z,y) are the cartesian

coordinates of the base of the third link while g3 and ¢4 are the (absolute) orientation of the last two

links w.r.t. the z-axis. After partial feedback linearization (see eq. (4)), the robot dynamic equations
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take the form (5-6):

T = ag
b= a 11
l3Gs + A34C34Gs = S30, — C3ay — )\34334@% (11)
l3c34Gs + kaGs = sS40, — caay + l3534G3,

where we have set for compactness s; = sing;, ¢; = cos ¢;, s;; = sin(¢; —q;), ¢ij = cos(¢i—¢q;) (i, = 3,4)
and A3y = mylsdy/(mads + myl3). Note that the last two equations in (11) have been conveniently
scaled by constant factors (destroying the symmetry of matrix B,u(q)). The inputs to the mechanism
are the accelerations a, and a,.
The linearizing outputs for system (11) are the cartesian coordinates of CPy, the center of percussion
of the fourth link (see Fig. 2):
zZ1 = T+ lgC3 + k4C4

12
Z2 =Y + l353 + k‘484. ( )

Following the dynamic linearization algorithm (see [30] for details), each of the two outputs in (12)
will be differentiated six times. Starting from the second level of differentiation (acceleration level),
we need to perform a dynamic extension at each step, being the intermediate decoupling matrices
singular, which results in the total addition of four integrators. At the end, we obtain a linearizing
dynamic compensator of dimension v = 4, with state equations

éfl = &
& = &+ i &1
& = Q+238 —ptain (13)

&4 = U+ 0G— V(43 — qa)da

and output equation

1 (ka—Aaac -2 )
<“1>:R(q3)<a(ﬁﬁ+k4%>+l3%)7 (14)
y Ug
where R(g3) is the planar rotation matrix defined by the angle ¢3. In eqs. (13—-14), we have set
t3y = S34/Cs4
o fl .2
Y o= p&/ C§4

¢ = 2¢5& — Btaap o+ 341 & — t3a & fu.

Finally, the auxiliary inputs u; and uy are obtained by inverting the expressions of (d°z; /dt%, d®z, /dt%)
in terms of the new input vector (v, vq):

U] = C4U] + S4U9

Uy = %j (C4U2 — 5401 — Ga s+ (43 — Ga)p — §5+¢5) ,

l3 4+ N34 C34 .2>
O =tagy | ———F& + )
& <13<k:4 ) T

(15)

with
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Under the action of the dynamic compensator (13-15), the system is input-output decoupled and
completely linearized in the proper coordinates, i.e., is equivalent to two chains of six integrators from
input to output:

d621 d62’2

s ~ dt®
Note that the robot has n = 8 states (g, ), while the compensator has v = 4 states {. Thus, the
total number of output derivatives equals the dimension of the extended state space (n + v = 12).
Furthermore, the linearizing algorithm defines in its intermediate steps also a transformation map
between (21, 29, 21, 22, . . -, ddi'?, dd;?) and (q, ¢, ).

Planning a feasible trajectory on the equivalent representation (16) can be formulated as two sep-
arate smooth interpolation problems for the two outputs z; and z,. For example, one could use two
polynomial functions z41(t) and z42(t), for ¢ € [0,T], to join the initial 2° (corresponding to the start
configuration ¢° at t = 0) with the final z¢ (corresponding to the final configuration ¢ at t = T,
imposing appropriate boundary conditions at ¢ = 0 and ¢ = T" on the derivatives of z up to the fifth
order. These will depend both on ¢(0) and ¢(T") (typically, zero for rest-to-rest maneuvers), as well as
on the initial and final selected values for the compensator state ¢ through the transformation map.

However, it should be considered that the above linearization procedure is valid if and only if the
following regularity conditions are satisfied

c34 # 0 and W #£0 (17)

= V2. (16)

throughout the motion, since these quantities appear in the denominator of the dynamic compensator
expressions. The conditions (17) can be easily given an interesting physical interpretation. In partic-
ular, c34 # 0 means that the fourth link should never become orthogonal to the third, while ¢ # 0
holds as long as the acceleration &; of the center of percussion CP, along the fourth link axis does
not vanish during the motion. Besides, being ¢ = 32 + 22, such a regularity condition can be checked
directly from the linearizing outputs trajectory, without actually computing &;. In any case, one way
to avoid the singularity during the motion is to reset the component & of the dynamic compensator
state whenever it approaches zero.

For illustration, the trajectory planning technique outlined above has been applied to generate a
feasible trajectory from ¢° = (1,1,0,7/8) to ¢* = (1,2,0,7/4) (m,m,rad,rad), with 7= 10 s. The
underactuated manipulator has I3 = k3 = 1, [y = 1, ky = 2/3 and A3y = 1/3 (m). The resulting
trajectory for the center of percussion CPy of the fourth link is shown in Fig. 3, while the corresponding
cartesian motion of the last two links is depicted in Fig. 4 and Fig. 5 (stroboscopic view)?. The two
last links undergo a counterclockwise rotation of 360°. Assuming that also the first two joints are
rotational, the motion of the whole (RR),(RR), manipulator appears as in Fig. 6.

As already mentioned, this dynamic linearization approach yields also a straightforward solution
to the trajectory tracking problem. The simple linear control laws (two independent generalized PD?
controller) designed on the linear dynamics (16)

d62di 5 djzdz- dei
P = ’ E i - — -,  =1,2, 18

where s% + f5;8° + frist + f348° + fouis® + fris + foi, @ = 1,2, are Hurwitz polynomials, will drive
the tracking error exponentially to zero. Figure 7 shows this convergence for the case of the third link
base initially placed at a cartesian position corresponding to an off-trajectory start (i.e., with initial
output errors e; = zq4; — 2; # 0, for i = 1,2).

“In order to gain clarity, the last link is represented only until its center of percussion (ks4) and not with its full length (I4).
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VII. SET-POINT REGULATION VIA ITERATIVE STEERING

The iterative steering technique for solving problem P3 is based on the general stabilization frame-
work proposed in [35]. For systems in the form (5-6), it requires in principle the application of two
control phases [19]. In the first, called alignment, the active joints g, are brought to the desired equi-
librium (g?,0) using, e.g., a terminal controller or a fast PD controller. At the end of this phase, the
passive joints ¢, will have drifted to some position and velocity, and must be driven to the desired
state (¢¢,0). This is achieved in the contraction phase by the iterative application of an appropriate
steering control (an open-loop finite-time command), whose task is to decrease at each iteration (of
possibly varying duration T') the passive joint state error (¢¢ — q,(kT), —¢,(kT)) while guaranteeing
qu(kT) = q¢ and ¢,(kT) = 0, with k = 1,2,.... At the end of each iteration, the state of the system is
measured and the parameters of the steering controller are updated accordingly, resulting in a sampled
feedback action. The general results of [35] indicate how to choose the open-loop controller so as to
ensure asymptotic stability of the desired equilibrium, with exponential rate of convergence: essen-
tially, the open-loop control law must be a Holder-continuous function of the desired reconfiguration
(see [35]). Moreover, a certain degree of robustness is obtained: ultimate boundedness is guaranteed
in the presence of persistent perturbations, whereas small non-persistent perturbations are rejected.

One difficulty in applying the conceptual approach outlined above to system (5-6) lies in the compu-
tation of a steering control that enforces a suitable contraction; this is mainly due to the presence of a
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Fig. 8. An underactuated PR robot

drift term in the dynamic equations. As proposed in [19], a useful tool is the nilpotent approxzimation of
the system, which is by construction polynomial and strictly triangular (and hence forward-integrable).
For an underactuated manipulator in the absence of gravity, the nilpotent approximation preserves as
much as possible the controllability properties of the original dynamics (this does not happen with the
linear approximation). Based on the approximate system, a contracting steering control can then be
computed which satisfies the Holder-continuity conditions. However, one may find that this controller
works only from certain contraction regions of the passive joint state space. In this case, it may be
necessary to perform an intermediate phase (called transition) between alignment and contraction, so
as to bring (qy, ¢.) from the value attained at the end of the first phase to a state belonging to one of
the contraction regions. The design of the transition phase depends on the specific mechanism under
consideration.

In [19], we presented a complete solution to the P3 problem for a 2R planar robot with passive
second joint. Hereafter, we sketch the application of the same technique to an underactuated PR
robot. This system is not STLC, according to the results in [28].

A. Example: An underactuated PR robot

A planar PR robot with a passive second joint® is shown in Fig. 8. After the partial feedback
linearizing law (4), the system dynamics takes the form:

511 = a
. 1 .

= — sing,a,
q2 ks q2

where q;, ¢» are the generalized coordinates and we have set ko = (Iy + mad3)/mads, with my, I,
respectively the mass and the centroidal moment of inertia of the second link, and dy the distance
between the second joint axis and the center of mass of the second link.

For the alignment phase, we can use a simple PD controller

a = kp(‘]f — 1) — kads, kp, kg >0 (19)

to bring the first joint to the desired position. Denoting by (qok, Gox), the passive joint state at
the beginning of the k-th iteration (k = 1,2,...), the contraction phase is obtained by the iterated
application of the polynomial steering control for a period T}

A
a(t) = T_;; (42X = 105M" + 90A* — 30A% + 3)) (20)

®Based on the results in [41], the same manipulator with a passive first joint is integrable, in the sense that the second-order
differential constraint (2) turns out to be holonomic. Therefore, such a mechanism would not be controllable.
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where A = t/T}, and

T, = (1 _ 771) 424 — q2k (21)
q2k
Ti(1 — ]
A, = w’ (22)
k33 sin 2qoy,

being = 3/80080 and 1 —ny, 1 —n € (0, 1) the chosen contraction rates for the passive joint position
and velocity errors, respectively.
The following arguments are used in the control design.

« The steering control (20-22) has been designed (see [15] for details) on the basis of the following
nilpotent approximation of the system computed at (gx, 4x):

G o=

G- a

b= G

b= - g L

_4cosq2k L9

This local approximation is expressed in terms of a new state (, related to the original state (g, q)
through a change of coordinates based on the structure of the system Lie Algebra.

« The parameter choice (21-22) meets the requirements of the iterative steering paradigm (essentially,
Holder-continuity of the steering control with respect to the desired reconfiguration), provided that
m < mo; in fact, this will guarantee that the passive joint position error converges to zero faster than
the velocity error, so that T}, is always finite.

e Other contraction conditions come from the requirements that 7}, should be positive and Aj real
and finite. In particular, one finds that contraction is guaranteed if the state belongs to one of the
following regions:

¢(0) >0 42(0) <0
G2a > q2(0) or ¢2q < ¢2(0)
¢2(0) € Tor III @(0) e or IV,

where roman numbers define the four (open) quadrants of the 27 angle. If at the end of the alignment
phase the robot is not in a contraction region, a transition phase is required (see [15] for the detail on
transition maneuvers). However, once the proper contraction region is reached, it is never left during
the iterated application of the steering control.

For illustration, the set-point regulation technique described above has been applied to an under-
actuated P,R, robot having m; = my = 1 kg, I, = 1 kgm?, dy = 0.5 m, and thus ks = 2.5 m.
The desired configuration to be stabilized is ¢ = (0,7/4), starting from an initial configuration
¢" = (1,—7/4) (m,rad). Figures 9 and 10 show the joint evolutions during the alignment, transition,
and contraction phases. Note how the second joint velocity is kept constant at the end of the alignment
phase (by setting a = 0) until ¢, enters the appropriate contraction region. The acceleration command
a and the actual robot input 7, (a scalar force) on the active prismatic joint are reported in Fig. 11.

In order to test the robustness of the stabilizing strategy, we have applied the same previous control
law in the presence of a model perturbation due to viscous friction at both joints, with friction coef-
ficients by = by = 0.02 (N-s/m,Nm-s/rad). The results are shown in Figs. 12-14: the alignment phase
is still achieved by the PD law (19) in about the same time, while the longer transition phase ends at
t = 18.3 s. Sufficient error contraction is preserved but, after each contraction phase, a re-alignment of
the first joint is needed due to the uncomplete cancellation of the actuated joint dynamics achieved by
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Fig. 13. Set-point regulation: Joint velocities in the presence of viscous friction

the partial feedback linearizing law. In any case, this modification is still consistent with the iterative
steering paradigm. Note finally that the control effort is slightly reduced in the presence of friction
(compare Figs. 11 and 14).

VIII. CONCLUSIONS

Underactuated manipulators are attracting considerable scientific interest in the robotics and control
communities. Unfortunately, they suffer from the lack of general results on feasible trajectory planning
and on set-point regulation or trajectory tracking control design. Several interesting ‘case studies’ have
been solved so far, but only with ad-hoc solutions.

In this paper, we have discussed some relevant structural control properties of underactuated me-
chanical systems, such as integrability of the second-order differential constraints, linear controllability,
small-time local controllability, or kinematic controllability, as well as the relations among them.

This analysis helps in assessing more carefully the difficulties to be encountered when addressing
motion problems for specific instances within the broad class of underactuated mechanical systems. In
particular, the class of manipulators with passive joints in the absence of gravity (or any other potential
terms) was found to be considerably more difficult to control. Also, the availability of a single actuation
command imposes severe constraints to the definition of feasible trajectories for achieving a desired
reconfiguration.

From the point of view of trajectory planning methods and feedback control design, we have then
illustrated the use of two advanced techniques: dynamic feedback linearization and iterative steering.
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The former allows in particular to command a planar manipulator with double degree of underactua-
tion along a rest-to-rest trajectory, while the latter has been used to stabilize to a desired configuration
a simple planar underactuated manipulator having only one actuator. Supported by simulation re-
sults, we have also pointed out the ability of avoiding control singularities inherent to the dynamic
linearization (flatness) approach, as well as some robustness to dynamic perturbations for the iterative
steering method.

The integrated mechanical and control design of on-purpose underactuated robotic systems that use
a reduced number of actuators has still to face rather difficult theoretical problems. Among the open
issues in control research for underactuated second-order mechanical systems we mention: the need
for a global theory capable of an automatic handling of dynamic singularities, technical developments
in the nilpotent approximation of systems with drift, a deeper understanding of cases with degree of
underactuation n —m > 2, and the consideration of non-planar structures.

Whenever robot underactuation is instead the result of an actuator failure, in order to preserve
robot operation one should be able to detect and isolate the occurred fault on-line and without extra
measurements and then immediately switch in a safe and stable way from a conventional controller to
one designed assuming the absence of the faulted actuator. Preliminary results on such a fault tolerant
control architecture are promising (see, e.g., [54], [17]).
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