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•   Port-Hamiltonian Systems (PHS): strong link with passivity 

•  Passivity:  
•  I/O characterization 
•  “Constraint” on the I/O energy flow 
•  Many desirable properties 

•  Stability of free-evolution 
•  Stability of zero-dynamics 
•  Easy stabilization with static output-feedback 
•  Modularity: passivity is preserved under proper compositions 

•  However, no insights on the structure of a passive system 
•  PHS: focus on the structure behind passive systems 

Introduction to Port-Hamiltonian Systems
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•   Review of the mass-spring-damper example 

•  This system was shown to be passive w.r.t. the pair  
   with            ,            , and as storage function the total energy (kinetic + potential) 

•  Indeed, it is 

•  But why is it passive? We must investigate its internal structure... 

Mass-spring-damper vs. PHS
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•   The spring-mass system is made of 2 components (2 states) 
•  Assume for now no damping 

•  Mass = kinetic energy 
 
•  Spring = elastic energy 

•  Let us consider the 2 components separately 

•  Note that these (elementary) systems are the “integrators with nonlinear outputs” 
we have seen before 
•  We know they are passive w.r.t.            and            , respectively 

Mass-spring-damper vs. PHS
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•  Let us interconnect them in “feedback” 

•  The resulting system can be written as 
 
 
                (■)  
 
 
  where                                    is the total energy (Hamiltonian) 

•  Prove that (■) is equivalent to  

Mass-spring-damper vs. PHS
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•   How does the energy balance look like? 

•  We find again the passivity condition w.r.t. the pair 

•  The subsystems      and      exchange energy 
   in a power-preserving way – no energy is 
   created/destroyed 

•  The subsystem     exchanges energy with the “external world” through the pair 

•  Total energy     can vary only because of the power flowing through 

Mass-spring-damper vs. PHS
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•   What if a damping term            is present in the system? 

•  By interconnecting      and     as before (feedback interconnection), we get 
 
 
                                                                                                          (■)  

 
•  Prove that (■) is equivalent to 

•  The energy balance now reads 

Mass-spring-damper vs. PHS
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•  Again the passivity condition w.r.t. the pair 

•  Total energy      can now  
•  vary only because of the power flowing through 
•  decrease because of internal dissipation 

•  But still, power-preserving exchange of energy between      and 

Mass-spring-damper vs. PHS
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•   Summarizing, this particular passive system is made of: 
•  Two atomic energy storing elements      and 
•  A power-preserving interconnection among      and 
•  An energy dissipation element 
•  A pair           to exchange energy with the “external world” 

•  Why passivity of the complete system? 

•      and     are passive (and “irreducible”) 
•  Their power-preserving interconnection is a feedback interconnection (thus, 
preserves passivity) 
•  The element    dissipates energy 
•  Therefore, any increase of the total energy     is due to the power flowing 
through          . For this reason, this pair is also called power-port 

•  How general are these results? 

Mass-spring-damper vs. PHS
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•   In the linear time-invariant case                                          (■)  
 
 
  passivity implies existence of a storage function 
 
   such that                               and 

•  If                         (always true if              ) 
 
 then (■) can be rewritten as 
 
 
 
 
 and energy balance 

•             is called the Hamiltonian function 
 

Introduction to Port-Hamiltonian Systems
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•   Similarly, most nonlinear passive system can be rewritten as 
 
 
 
 
 
 
   with                  being the Hamiltonian function (storage function) and 
 
 
 
 
    showing the passivity condition 

•  Roles: 
             represents the energy stored by the system 
             represents the internal dissipation in the system 
             represents an internal power-preserving interconnection among different 
components 
             represents a “power-port”, allowing energy exchange (in/out) with the 
external world 

Introduction to Port-Hamiltonian Systems
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•  In the mass-spring-damper case, the generic Port-Hamiltonian formulation 
 
 
 
 
 
 
specializes into                            ,                          ,  

Introduction to Port-Hamiltonian Systems
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•  In the (more abstract) example we have seen during the Passivity lectures, we 
showed that 
 
 
 
is a passive system with passive output               and Storage function 

•  Can it be recast in PHS form with                            being the Hamiltonian? 

•  Yes: 

Introduction to Port-Hamiltonian Systems
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•   What is then Port-Hamiltonian modeling? 

•  It is a cross-domain energy-based modeling philosophy, generalizing Bond Graphs 
•  Historically, network modeling of lumped-parameter physical systems (e.g., 
circuit theory) 

•  Main insights: all the physical domains deal, in a way or  
another, with the concept of Energy storage and 
Energy flows 

•  Electrical 
•  Hydraulical 
•  Mechanical 
•  Thermodynamical 

•  Dynamical behavior comes from the exchange of energy 
•  The “energy paths” (power flows) define the internal model structure 

Introduction to Port-Hamiltonian Systems
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•  Port-Hamiltonian modeling 

•  Most (passive) physical systems can be modeled as a set of simpler subsystems 
(modularity!) that either: 

•  Store energy 
•  Dissipate energy 
•  Exchange energy (internally or with the external world) through power ports 

•  Role of energy and the interconnections between subsystems provide the basis for 
various control techniques 

•  Easily address complex nonlinear systems, especially when related to real “physical” 
ones 

Introduction to Port-Hamiltonian Systems

16
Robuffo Giordano P., Multi-Robot Systems: Port-Hamiltonian Modeling



•  Port-Hamiltonian systems can be formally defined in an abstract way 

•  Everything revolves about the concepts of  
•  Power ports (medium to exchange energy) 
•  Dirac structures (“pattern” of energy flow) 
•  Hamiltonian (storage of energy) 

•  We will now give a (very brief and informal) introduction of these concepts 

•  Big guys in the field: 
•  Arjan van der Schaft 
•  Romeo Ortega 
•  Bernard Maschke 
•  Mark W. Spong 
•  Stefano Stramigioli 
•  Alessandro Astolfi 
•  and many more (maybe one of you in the future?) 

Introduction to Port-Hamiltonian Systems
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•   A power port is a pair of variables            called “effort” and “flow” that mediates a 
power exchange (energy flow) among 2 physical components 

Introduction to Port-Hamiltonian Systems
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Physical domain         Flow         Effort 

electric Current Voltage

magnetic Voltage Current

Potential (mechanics) Velocity Force

Kinetic (mechanics) Force Velocity

Potential (hydraulic) Volume flow Pressure

Kinetic (hydraulics) pressure Volume flow

chemical Molar flow Chemical potential

thermal Entropy flow temperature
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•   A generic port-Hamiltonian model is then 
•  A set of energy storage elements (with their power ports             ) 
•  A set of resistive elements (with their power ports             ) 
•  A set of open power-ports (with their power ports             ) 
•  An internal power-preserving interconnetion    , called Dirac structure 

•  An explicit example of a “Dirac structure” is the power-preserving interconnection 
represented by the skew-symmetric matrix  

Introduction to Port-Hamiltonian Systems
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•   Any mechanical system (also constrained) described by the Euler-Lagrange equations 
can be recast in a Port-Hamiltonian form 

•  Start with a set of generalized coordinates 

•  Define the Lagrangian                                   with 
   
being the kinetic energy,          the potential energy, and                   the positive 
definite Inertia matrix 

•  Apply a change of coordinates                            where                    are usually called 
“generalized momenta” 

•  The kinetic energy in the new coordinates is 

General Mechanical System
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•   Define the Hamiltonian (total energy) of the system as 

•  The Euler-Lagrange equations for the system are 
 
                                                                                        (■)  

•  Since                            we can rewrite (■) as 

General Mechanical System

21
Robuffo Giordano P., Multi-Robot Systems: Port-Hamiltonian Modeling



•   It follows that  

•  If               (i.e.,          ) is bounded from below, the system is passive w.r.t. the 
power port 

•  Similarly, a mechanical system with collocated inputs and outputs (also 
underactuated) is generally described by 

•  Again, passivity w.r.t.  

General Mechanical System
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•  As one can expect, the “proper” interconnection of a number of Port-Hamiltonian 
Systems 
 
 
   through a Dirac structure       is again a Port-Hamiltonian System 
   with 

•  Hamiltonian 

•  State manifold 

•  Dirac structure  

•  This allows for modularity and scalability 

Modularity
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•   Example: given two Port-Hamiltonian System 

•  Define an interconnecting Dirac structure       as (for example) 

•  The composed system is again Port-Hamiltonian 
 
 
 
 
 
 
with Hamiltonian function 

Modularity
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•  Much more could be said on Port-Hamiltonian System…. 

•  Can model distributed parameters physical systems (wherever energy plays a role) 
•  Transmission line 
•  Flexible beams 
•  Wave equations 
•  Gas/fluid dynamics 

•  Are modular (re-usability) 
•  Network structure (…. -> multi-agent) 

•  Are flexible 
•  State-dependent (time-varying) interconnection structure 

Further generalizations
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•   PHS are a powerful way to model a very large class of physical systems 
•  For instance, every physical system admitting an Energy concept (the whole 
physics?) 

•  In PHS, the emphasis in on the internal structure of a system. A PHS system is a 
network of 

•  Power ports: medium to exchange energy 
•  Elementary/irreducible energy storing elements endowed with their power ports 
•  Dissipating elements endowed with their power ports 
•  “External world” power ports for external interaction 
•  A power-preserving interconnection structure (Dirac structure) among the 
internal power ports 

•  The total energy of a PHS is called Hamiltonian. If the Hamiltonian is bounded from 
below, a PHS is passive w.r.t. its external ports 

•  Proper compositions of PHS are PHS 

Summary
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•   How to control a Port-Hamiltonian System? 

•  A PHS is still a dynamical system in the general form 
 
 
 
 
hence, one could use any of the available (nonlinear) control techniques 

•  However, in closed-loop, we want to retain and to exploit the PHS structure 
•  PHS plant and controller 
•  Power-preserving interconnection among them 

Control of PHS
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•  The general idea is: assume a plant and controller in PHS form, and interconnected 
through a suitable 

 
where we split the plant port            into               and              , and use  
for the interconnection with the controller port 

•  In general, one can imagine two distinct control goals 
•  Regulation to     or tracking of         for the plant state variables 
•  Desired (closed-loop) behavior of the plant at the interaction port 
•  The latter is for instance the case of Impedance Control for robot manipulators 

Control of PHS
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•   Consider two PHS 
 

•  And assume we want to transfer some amount of energy among them by keeping the 
total energy                             constant 

•  This can be done by interconnecting the two PHS as 

•  Note that this is an example of a state-modulated power preserving interconnection 

Energy Transfer Control
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•   Since the interconnection is power-preserving, it follows that the total Hamiltonian 
                                                 stays constant, i.e., 

•  However, what happens to the individual energies? 

•  Exercise: show that                                             , 
   
•  Thus, depending on the parameter    , energy is extracted/injected from system 1 to 
system 2 (no energy transfer with            ) 

•  If              is lower-bounded, a finite amount of energy will be transferred to system 
2. Indeed, at the minimum,                                  and 

•  The same of course holds for 

•  We will use these ideas in some of the following developments 

Energy Transfer Control
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•  Let us examine a concrete example of the Energy Transfer Control technique 

•  To this end, we introduce the concept of “Energy Tank” 

•  Assume the usual PHS 

•  We know it is passive w.r.t.           since 

Energy Tanks
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•  In its integral form, the passivity condition reads 

•  Let                                      and 

•  Over time,  

Energy Tanks
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•  Why this gap over time 
between               and            ? 

•  Because of the integral of the dissipation 
term 

•  However, we would be happy (from the passivity point of view) by just ensuring a 
lossless energy balance 

Energy Tanks
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•  Dissipation term: passivity margin of the system 

•  Imagine we could recover this “passivity gap” 

•  This recovered energy can be freely used for 
whatever goal without violating the passivity 
constraint 

•  This idea is at the basis of the Energy Tank machinery 

•  Energy Tank: an atomic energy storing element with state               and energy 

function 

Energy Tanks
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•  We want to exploit the tank for: 
•  storing back the natural dissipation of a PHS 
•  allowing to use the stored energy for implementing some action on the PHS 
•  this tank-based action will necessarily meet the passivity constraint 

•  How to achieve these goals? Let us consider again the PHS and Tank Energy element 

•  Let                                      represent the (scalar) dissipation rate of the PHS 

•  We start by choosing                               in the Tank dynamics 

Energy Tanks
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•  The choice                                allows to store back the dissipated energy 

•  In fact,  

•  In order to exploit this stored energy to implement an action on the PHS system, we 
must design a suitable (power-preserving) interconnection among the PHS and Tank 
element 

•  We will make use of the ideas seen in the Energy Transfer Control technique! 

•  Implement the desired action as a “lossless energy transfer” between Tank and PHS 

•  This action will always preserve passivity by construction 

Energy Tanks
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•  Assume we want to implement the action                 on the PHS (                        ) 

•  We then interconnect the PHS and the Tank element by means of this state-
modulated power-preserving interconnection 

•  Since this coupling is skew-symmetric, no energy is created/lost during the transfer 

Energy Tanks
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•  After this coupling the individual dynamics become 
 
 
 
 
and 

•  And altogether, a new PHS with Hamiltonian  

Energy Tanks
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•  Fact 1: action     is correctly implemented on the original PHS 

•  Fact 2: the composite PHS is (altogether) a passive (lossless) system whatever the 
expression of  

•  Proof: evaluating      along the system trajectories, we obtain a lossless energy 
balance 

Energy Tanks
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•  Fact 3: the machinery proposed so far becomes singular when  

•  What does the condition              represent? 

•  From the definition of the Tank energy function                              we have that  
                         the Tank energy is depleted 

  
•  Therefore, this singularity represents the impossibility of passively perform the 
desired action 

•  One can always imagine some (safety) switching parameter          such that 
 
 
 
 
and implement              instead of     (i.e., implement     only if you can in a “passive 
way”). If cannot implement    , wait for better times (the Tank gets replenished) 

Energy Tanks
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•  Note that the Tank dynamics is made of two terms 

•  The first term is always non-negative, and represents the “refilling” action due to 
the dissipation present in the PHS plant 

•  The second term can have any sign, also negative. It is then possible for the action 
      to actually refill the tank! 

•  Finally, note that no condition is present on            ! This can be chosen as any 

•  In other words, complete freedom in choosing the initial amount of energy in the 
tank 

•  In fact, passivity ultimately is: bounded amount of extractable energy, but for 
whatever initial energy in the system (only needs to be finite) 

Energy Tanks
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