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Undirected Graphs

» An undirected Graph G = (), £) is made of a Vertex Set (a finite set of elements)

V:{’Ul, v ooy ?}N}
and an Edge Set (a subset of unordered pairs of [V]2, the “2-element subsets” of }/)

VPP ={(vi, vj)},i=1...N, j=1...N,i#
E C [V]Q (?}Z‘, ?}j) ct = (Uj, Ui) c&
(V] Vs
O e
Cat (%)) U4 = {vla VU2, U3, U4, U5}

& = {(vlv U2)7 (7}27 7)3)7 (7}27 7}5)7 (7}37 /05)7 (’03, U4)7 (047 ’1)5)} 4
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Directed Graphs

- A directed Graph D = (), &) is made of a Vertex Set (a finite set of elements)

V:{’Ul, v e ey UN}
and an Edge Set (a subset of ordered pairs of [V] 2, the “2-element subsets” of }/)

V2 ={(vi,v)},i=1...N,j=1...N,i#j

ECV]? (vi,v;) €EE - (v, v;) €E

U3 Vs
"®
O i O
’
(3 Vo () Y = {Ul, V2, V3, V4, Us}

E = {(Ul, ’02), (113, Uz), (U27 U5)7 (U37 7}4)7 (?}5, 03)7 (057 ?)4)}
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Definitions

* Node V; is said adjacent (neighbor) of v; if (vj, vi) e &
» Given a node v;, the set M is the set of all neighbors of v;

N; = {v; € V] (v, vi) € €}

» The degree of a node v; is d; = \/\/;, (undirected graphs)

* The in-degree of a node v; is d?;:n = ./\/;\ (directed graphs)

* A path is a sequence of distinct vertexes V;,vV;; - .. V; . such that,
Vk = 0,...,m — 1the vertexes V;, and vV;,_, are adjacent (neighbors)

- If U3, = U4, (special exception), then the path is called a cycle
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Definitions

« An undirected graph is said connected if there exists a path joining any two vertexes

in )/

* A directed graph is said strongly connected if there exists a (directed) path joining
any two vertexes in )/

* A directed graph is said weakly connected if there exists an undirected path joining
any two vertexes in ))

connected weakly connected

V1 V1 ’Ub

strongly connected disconnected

V3 (% V3 C ’Up
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Definitions

* A tree is a connected graph containing no cycles
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Definitions

* Other special graphs

; A complete graph

star graph \
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Why do we need graphs?

* Why are graphs important for multi-robot systems?

» Graphs are extremely powerful tools for encoding the information/action flow
among the robots

» We (sometimes implicitly) assume that every robot has a limited ability to
* perceive the environment with onboard sensors (e.g., other robots)
- communicate information to other robots (via a communication medium)
 elaborate information (gathered from onboard sensors or comm. medium)
* in general, plan, act, and influence the environment (e.g., other robots)
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Why do we need graphs?

S

a

* A graph naturally encodes in a compact way these limitations

* Many distinct graphs can be associated to a group of multiple robots (agents)

 Sensing graphs: for each sensors, encode what robots can be locally sensed

« Communication graphs: for each communication medium, encode with which robots
a comm. link can be established (uni- or bi-directional)

* Action graphs: for each control action, encode what robots will be (locally) affected

* And so on...

I
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Decentralization

* The issue of limited sensing/communication/action abilities (and, thus, the use of
graphs) is closely related to the notion of decentralization and decentralized/
distributed sensing/control

» Decentralization: every unit (robot) has
* limited sensing/communication (information gathering)
* limited computing power (information processing)
- limited available memory (information storage)

* For a robot, it (typically) must elaborate the gathered information to run its local
controller (making use of local computing power and memory)

* The controller complexity is bounded by the above limitations

* If the whole state of all the robots is needed, the complexity (e.g., computing
power) increases with the total number of robots

* May easily become unfeasible because of the above limitations

* And each robot would need to know the whole state...
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Decentralization

» Decentralization: cope with the above limitations by designing decentralized
controllers (i.e., spreading the complexity across the multiple robots)

1
* What do we exactly mean by “decentralized controller” ? e
2 3
» An example: assume graphs are used to encode the ® ./
information flow among robots (sensed, communicated, \10 Bytes/s
elaborated) ®
4
@5
* Decentralization: on each edge, the size of the O 1
information flow is constant (w.r.t. the number of robots)
2 3
Example: adding node 6 does not i th F *
« Example: adding node 6 does not increase the
information needed by nodes 1,2,3,4 \10 Bytes/s
@ 4
 Thus, the amount of information grows linearly with @5
the number of neighbors ®6

 The same applies to the used memory or computing power (constant per neighbor) 5
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ALGEBRAIC GRAPH THEORY



Graphs and Matrixes

 Several matrixes can be associated to graphs and....
- ....several graph properties can be deduced from the associated matrixes

* Graphs + Matrixes = Algebraic Graph Theory

* The following Algebraic tools will be fundamental for linking Graph Theory to the
study of multi-robot systems (when seen as a collection of dynamical systems)

x(t) E(g)l
V3 s
E(G) -
o— ol
U1 Vo V4
L(G)—

Robuffo Giordano P, Multi-Robot Systems: Elements of Graph Theory



Adjacency Matrix

- Adjacency Matrix A € RVXN

* Square and symmetric (only for undirected graphs) matrix

- Defined so that A;; = 0 if (v;, v;) € £ and A;; = 1if (v, v;) € &
“Note: A;; =0 and A;; = Aj;, thus A = At

 Note: one can generalize to any positive weight Az-j = w;, w; > 0

» Note: for directed graphs, in general A;; # A,; and thus A # AT
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* Example

Adjacency Matrix

Us
O e

(] Vo (oY
0 1 0 0 O]

I 01 0 1

A=10 1 0 1 1

0 0 1 0 1
01110
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Degree Matrix

- Degree matrix A € RV*HN

- Diagonal (symmetric) matrix with the node degrees d; as diagonal elements

A = dzag(dz) ?égL /)fU5
* Alternatively,
N
A = diag A, G Q
1 0 0 0 O]
0O 3 0 0 O
A=10 0 3 0 O
0O 0 0 2 0
00 0 0 3
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Incidence Matrix

 Incidence matrix £ € RV *I€l

* Used to encode the incidence relationship among edges and vertexes

* Assign an arbitrary orientation and an arbitrary labeling to the edges

(O] (V)
Us, 3 €3 OU5
e
€2 6 €5
O ( N ®
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Incidence Matrix

€3 Us

=@

e

€2 6 €5

Y €4 4

Cr > O
U1 €1 Vo Ug

- Let £;; = —1 if vertex ¥; is the tail of edge €;

- Let F/j; = 1 if vertex v; is the head of edge €;

- Let B;; = 0 otherwise —1 0 0 0 0
1 1 0O -1 O

E=10 -1 1 0 0

0 0 0 0 1

|0 o -1 1 -1
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Laplacian Matrix

- Laplacian matrix [, € RV XN
- First definition: [, = A — A
« Second definition: [, — EET

* The two Defs. are equivalent, and the latter does not depend on the particular
labeling and orientation chosen for the graph

o Y5 "1 -1 0 0

1 3 -1 0

L=|0 -1 3 -1

0 0 -1 2

G Q 0 -1 -1 -1
(0] Vo (W) =

Robuffo Giordano P, Multi-Robot Systems: Elements of Graph Theory
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Laplacian Matrix

. [ is symmetric (from both Defs.)
« [, is positive semi-definite (from Def. 2)

- L1 = 0 where 1 is a vector of all ones
- this shows that [, is actually positive semi-definite as it has a non-void null-space

- Being symmetric and positive semi-definite, all its /V eigenvalues \; are real and
non-negative

*Orderthemas 0 = A\ < A\ < ... < A\y

- Property: the graph § is connected if and only if Ay > (
- The quantity )\ is referred to as connectivity eigenvalue (or Fiedler eigenvalue)

- Obviously, 1 is the eigenvector associated to \; and rank(L) = N — 1 (for
connected graphs)

Robuffo Giordano P, Multi-Robot Systems: Elements of Graph Theory
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Laplacian Matrix

- Note also that, being L. symmetric, it is 11, = 0

- Also, being L, = EET ,itis EY1 = 0 and rank(FE) = N — 1 (for

connected graphs)

- Some additional properties (among many....)

- trace(L) = 2|&|

- Let L; be the matrix obtained from the Laplacian [, after removing the row and
column indexing vertex v;

- Then det L; = t(G) for any v; where t(G) is the number of spanning trees of
graph G

23
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THE CONSENSUS PROTOCOL
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The Consensus Protocol

* Let us use the tools introduced so far for studying one of the most fundamental
problem in multi-robots (and multi-agents) literature

« The Consensus Protocol

* Formulation of the problem:
- Consider N agents with an internal state x; € R
 Consider an internal dynamics for the state evolution
- in our case, single integrator T; = u;
- Consider an interaction graph  having the agents as vertexes

* Problem: design the control inputs u; so that
- all the states x; agree on the same common value x (unspecified)

t—00

* by making use in u; of only relative information w.r.t. the neghbors’ state
(relative sensing and decentralization)

Robuffo Giordano P, Multi-Robot Systems: Elements of Graph Theory
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The Consensus Protocol

* Possible applications of the consensus protocol
* rendezvous: meet at a common point (uniform the positions)
« alignment: point in the same direction (uniform the angles)

« distributed estimation: agree on the estimation of some distributed quantity
(e.g., average temperature)

* synchronization: agree on the same time (regardless of phase shifts or different
rates in the clocks)

..

| #I & 1

7 \ -
“ “. e o

26
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The Consensus Protocol

- Take NV = 5 agents and the interaction graph G
U3

Us
®)
o C
V1 Vo (oY}

» The graph G models how information flows across the agents
* Design u; = ’LLZ(QZZ — xj) Vg € M

- Example: u; = ul(xl — :CQ), Uy = U2(CI31 — X2, X2 — I3, T2 — 335) , and
SO on....

» Any idea on how to solve the problem?

27
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The Consensus Protocol

* Solution: let U; be the sum of all the differences of the neighbors’ states w.r.t. the
state of agent 2 V3

Vs
G e
V1 Vo (oY

Uy (372 — I1)

Uo — (xl — ZEQ) -+ (2133 — LUQ) —+ (375 — wg)

uz = (r2 — x3) + (r4 — x3) + (x5 — 23)

ug = (r3 — x4) + (5 — 4)

us = (r9 — x5) + (r3 — x5) + (x4 — x5)

28
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The Consensus Protocol

- Consensus protocol:

* in compact form for agent ¢ ‘ U; = E (ajj — :U,,,)

JEN;
- in compact form for all the agents 4 = — Lx

1 -1 0 0 0
-1 3 -1 0 -1
o -1 3 -1 —-1|«x
0 o -1 2 -1

o -1 -1 -1 3

- and when closing the loop (recall that ; = u;)
r = —Lx

Robuffo Giordano P, Multi-Robot Systems: Elements of Graph Theory
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The Consensus Protocol

* Problem: under which conditions the closed-loop system
r=—Lzx
will solve the initial consensus requirement (if at all)?

t—00

« Convergence to an (arbitrary but common) & is related to the properties of the
Laplacian L (the state-transition matrix in the closed-loop dynamics)

- Properties of the Laplacian [, are directly related to the associated graph

U
3 Vs

O Q
U1 Vo V4

Robuffo Giordano P, Multi-Robot Systems: Elements of Graph Theory
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The Consensus Protocol

» Main result: the consensus protocol converges if and only if graph G is connected
- First proof making use of the explicit solution of + = — Lx

 Given an initial condition X, the explicit solution of the consensus dynamics (time-
invariant linear system) is

r(t) = e Flag

- Fact 1: a symmetric matrix (such as [, ) is always diagonalizable by an orthonormal
matrix [/, i.e., such that UUT — [

- Therefore, [, = UAU" where A = diag()\;)

—_— T —_—
eFact 2: e UAU't _ [jo=AT

+ We then get z(t) = Ue MUz

31
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The Consensus Protocol

- Rewrite as x(t) = ujui e Mtxg + E wsu; e M

* We already know that A1 = 0 and uj =

%\H

1
- Thus x(t) = xO —I—Zuzu e it

- If G is connected, then A\g Z Qand Ay > ... > Ay >0

, (1)1
- Therefore tlggo x(t) = N

T
* What is ( :170)1 ?

N

Robuffo Giordano P, Multi-Robot Systems: Elements of Graph Theory
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The Consensus Protocol

1T

T
* The term O s just the average of the initial state g

(1129)1
» The post-multiplication by 1 in spreads this average on all the
components of L N
]_T.CC() )
° .CEIL > N 3 \V/Z

* Thus, what have we obtained? All the agent states I'; converge towards a common
value, that is, the average of the initial state I

- Definition: the agreement subset A C ]RN = Spcm(l) = {33| Ly = CCj}

* The consensus protocol makes the state :E(t) — A

33
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The Consensus Protocol

 Second proof: exploit Lyapunov Arguments

1
- Define the Lyapunov candidate V' (x) = —xlx

* Its evolution (along the system trajectories) is
Vizg) =o't =—2' Lz

 Matrix [, is positive semi-definite. Therefore V(a?) < (

- This shows that the state trajectories are bounded since 1/ (x) does not increase
over time

 To draw additional conclusions, we must resort to LaSalle’s Invariance theorem

- What is the largest invariant set contained in V(aj) =07

34
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The Consensus Protocol

- What is the set V(x) =zl Lr=07

« It is the null-space of I (remember [, is symmetric)

- If the graph G is connected, we know that this null-space is just 4
- Therefore, z(t) — A = span(1)

* Another remark: consider the scalar quantity 1T:z: . What is its time evolution
under the consensus protocol?

174 = —-1TLax =0
* Therefore, 1Taj represents a constant of motion of the closed-loop system

. 1T:13(t) = 1T:130 = const . The centroid of the states never changes over time

35
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The Consensus Protocol

* Some simulations:

({3 » h
“sparse” graph dense” grap

i i i L i : : : : :
0 o L =0 200 %30 a0 30 ’0 50 100 150 200 250 300 350
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The Consensus Protocol

» What dictates the rate of convergence of the consensus protocol?

* Sparse graph -> slow convergence
» Dense graph -> fast convergence

- Rate of convergence is directly related to the value of Ay (i.e., to the degree of
connectivity of the graph)

17
- From x(t) = ( :EO + Zuzu e Nl

* The value of Ao (smallest elgenvalue in the sum) dictates the rate of the asymptotic
decay of the sum of exponential functions

- If Ao is large, the exponential sum will decay faster

» Therefore: the more connected the graph, the faster the consensus convergence

37
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The Consensus Protocol

* Let us now briefly consider the case of directed graphs
U3

Us

Q

) 4 4

o— Q
U1 Vo Vg

* How does the consensus machinery apply to this case?

* First “big” difference: the graph Laplacian [ is not symmetric any more

0 0 0O 0 O
-1 2 -1 0 0
L=10 0 I 0 -1
0 0O -1 2 -1
O -1 0 0 1
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The Consensus Protocol

- How does now the system & = — Lx evolve in this situation?
- We still have L1 = ( but in general 17 I =+ 0

 Fact 1: rank(L) — /N — 1if and only if the graph contains a rooted out-
branching

* A rooted out-branching is a directed graph such that
* it contains no cycles
* it has a vertex (root) with a directed path to all the other vertexes

U3 €3 QU’S
ey | 0 es
Y €4 Y
O > Q
U1 €1 Vo U4

39
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The Consensus Protocol

- If rank(L) = N — 1 then 1 is the only vector spanning its right null-space

* Fact 2 (application of Gersgorin Theorem): a Laplacian matrix for directed graphs
has all the eigenvalues with non-negative real part (and they cannot be an imaginary

pair) §R(>\z) >0
- Exploiting fact 1, it mustbe A1 =0 and 0 < R(A2) < ... < R(An)

* Then, we can follow an argument equivalent to the undirected graph case

clet L = PJ(A)P_l be the Jordan decomposition of L

0 0 0

0 JX2) ... 0
with J(A) = | . . . .

o0 ... 0 J(An)

40
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The Consensus Protocol

- Expanding into the explicit solution of + = — Lx we get

N
x(t) = e_thO = (p1q1T)£U0 + PZ(e_JO‘i)t)P_lxo
1=2
where P1 and @ are the right and left eigenvector associated to A7 = 0
(p1 = 1 as we already know)

- Since 0 < 3?()\2) <...< 3?()\1\7) we then obtain (normalizing q{l = 1)
lim x(t) = (g1 zo)p1 = (g1 o)1

t— o0
* Note that in general G1 §§ Spcm(l)
- For instance, for our example it is q1 = Span([l 000 O]T)

* In general, the consensus will not converge to the average of the initial condition

41
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The Consensus Protocol

* Is it possible to have g1 € Span(l) also for the directed graph case?

. (1TJ@)1
- This would allow for lim :U(t) = also in this case

t— 00 ]V

- Definition: a directed graph is called balanced if, for every vertex, the in-degree
equals the out-degree

- Example
i U3 10 -1 0 0
-1 1 0 0 0
L=10 0 2 -1 -1
0 o -1 2 -1
O > Q 0 -1 0 -1 2
U1 V9 Vg

42
Robuffo Giordano P, Multi-Robot Systems: Elements of Graph Theory



The Consensus Protocol

- For a balanced directed graph, itis 11 [, = () (in addition to L1 = Q)

* Thus, assuming existence of a rooted out-branching (as before), we have

, - (1Tzg)1
tligloa?(t) N

analogously to the undirected graph case

Robuffo Giordano P, Multi-Robot Systems: Elements of Graph Theory
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The Consensus Protocol

* To conclude, we draw some additional remarks on the consensus machinery

* It is straightforward to modify the consensus protocol in order to take into account

suitable gains
U; — kz(t) Z (il?j — ZCZ)
JEN;
with k;(t) > 0

* It is possible to generalize to a stochastic settings (agreement over Markov chains)

* It is possible to consider time-varying topologies for the graph §

« In this case, § = (V, g(t)) and U; = Z (CCj — :U,,,)
JEN; (t)
* This case is highly relevant whenever ability to establish an edge depends on the

state of the robots (e.g., maximum range for communication or occlusion of visibility)

44
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The Consensus Protocol

 Considering a time-varying topology induces a time-varying closed-loop linear
system & = — [(t)x, in particular may lead to a switching dynamics

* One can still prove convergence given some looser properties of the underlying
graph structure (~ the graph maintains some form of global connectivity across the
switchings)

. I’g is possible to consider more complex linear or nonlinear dynamics in place of
r = Uy
- for example second-order systems, general Lagrangian (mechanical) systems
* but also unicycle-like (nhonholonomic)

* It is possible to consider time delays and/or asynchronous communication in the
information exchange (along edges)

* The “consensus paradigm” has given rise to a large number of variants

» one example: decentralized estimation of exogenous time-varying quantities
(PI-ACE - proportional/integral average consensus estimator)

Robuffo Giordano P, Multi-Robot Systems: Elements of Graph Theory
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GRAPH RIGIDITY

Robuffo Giordano P, Multi-Robot Systems: Elements of Graph Theory
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Rigidity of Structures

* Given N agentsand M < N(N — 1)/2 pair-wise geometrical constraints (edges),
do the constraints univocally determine the shape (spatial arrangement) of the
agents ?

* Consider the case of distance constraints for planar agents: each edge in the graph
imposes a desired distance to the incident pair

*If M = N(N — 1)/2 (complete graph), then the shape is univocally determined
(up to a rototranslation on the plane). The agents behave as a planar rigid body

v3
(V)
O O
m)
Vg
U% OU2
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Rigidity of Structures

“If M < N(N — 1)/2(not the complete graph) the situation is less clear

-/

» With these 4 edges the shape is not preserved: multiple non-congruent realizations
meeting the 4 pair-wise distance constraints

U3 V4

(i U2

U3 V4

U1 U2
» With these 5 edges the shape is instead preserved up to a rototranslation on the
plane

48
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Rigidity of Structures

 Graph rigidity: how to characterize the “flexibility” of multi-agents bound to pair-
wise geometric constraints

* Needed tools: graph theory + geometry + linear algebra

* Loosely speaking: a “framework” (graph + agent poses) is rigid if the only allowed
motions satisfying the constraints are those of the complete graph

- Complete graph: N(N — 1)/2 edges, and thus need to measure/control/enforce
N(N — 1)/2 constraints (the complexity is O(N2))

- However, framework rigidity is often possible with only a O(/V) set of constraints:
in the previous case a minimum of 2N — 3 (properly placed) edges would be
sufficient

N(N —1)/2 ON — 3
N =3 3 3
« Comparison: N — 4 6 5
N =10 45 17 49
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Why rigidity matters
* If a framework is rigid then:

* Formation control can be solved by regulating the pair-wise geometrical
constraints to their desired values

» Each agent pair controls the value of its own constraint (e.g., the distance)
* This is enough for ensuring that the desired global shape is realized

* And... no need to control all the possible pair-wise constraints (i.e., no need of
a complete graph)

* Relative localization can be univocally solved from the measured value of the
constrains

* Only one solution for the formation shape consistent with the pair-wise
geometric constraints V3 V4

» Each agent can only be at one specific location
(w.r.t. a frame attached with the formation)

(O U2

50
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Definitions

 Bar-and-joint framework: let G = SV, £) beagraphandp:V — R? a function
mapping each vertex to a point in R

« Just the usual graph structure + a “position” associated to each node

» One could also consider mappings to full “poses” p:V — SE(d)

- For each edge (i, j) € £ consider a constraint function g;;(pi, ;)

* In most (but not all) cases, the constraint only depends on the relative positions/
poses gij(Pi — pj)

- Example: in case of distances, one can take g;;(p; — pj) = ||pi — pj H2

Letthengg ={...¢gij ...} : RN — RI¢l pe the cumulative constraint function over
all the edges in g

51
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Definitions

» A framework is rigid (w.r.t. the chosen constraint function) if there exists a
neighborhood &/ c R™? of p such that

95 (9g(p)) NU = g (9x (p)) NU

where Ky is the complete graph

* In short: a framework G = (V, £) is rigid if the only allowed motions preserving the
constraints are those of the complete graph

* i.e., removing some edges w.r.t. K “does not matter” for maintaining the shape

* the value of the constraints for the “missing edges” w.r.t. K is univocally
determined (and it is what one would have had with G = K )

* Framework equivalency: two frameworks (G, p1) and (G, p2) are equivalent if
ag (pl) = gg (pg) (the constraints are satisfied over all the edges in £ )

- Framework congruency: two frameworks (G, p1)and (G, p2)are congruent if
JdK (p1) — JK (pz) (the constraints are satisfied over all the possible edges)

52
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Definitions

- Alternative definition of rigidity: a framework (G, p1)is rigid if all the frameworks
(G, p2), P2 € U(p1), which are equivalent to (G, p1) are also congruent to (G, p1)

« In all the above, a framework is globally rigid if Z/ = R"¢

* Finally, a framework is minimally rigid if the removal of any edge yields a non-rigid

framework

o <gap1) . g p2

- Now some examples:

U3

(g, p1) is not rigid because one can find a framework (g, pg) which is equivalent but not
congruent: the constraints are met over the edges of  but not over all the possible edges in K
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Definitions

 This framework is minimally rigid: by removing any edge, one gets a non-rigid

framework Vs "

(%)
U1

* However, the framework is not globally rigid: these two frameworks are equivalent

but not congruent

v
U3 V4 3 ;- ,.'U4

=)

V2

v
U1 1 (%

* Note that no “smooth” motions could take the first framework to the second one.

Indeed the two frameworks are (locally) rigid. Two “isolated” solutions exist for the

given distance constraints
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Infinitesimal Rigidity

* Infinitesimal rigidity: study the flexibility of a framework under instantaneous
motions of its nodes

- Assume a smooth time dependence p = p(t): what are the instantaneous motions of
p(t) which preserve the constraints gg(p(t)) = const ?
* gg(p(t)) = const = gg(p(t)) = 0 and using the chain rule

do(p(1) =0 — 2~ Ro()— 0

» Matrix|Rg (p) € RI€IXN4is known as the rigidity matrix
» The infinitesimal motions consistent with the constraints are then p € ker(Rg(p))

- A framework is infinitesimally rigid if ker(Rg(p)) = ker(Rx (p)) or, equivalently,
rank(Rg(p)) = rank(Rx (p))

* Usual definition involving the complete graph Ky
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Infinitesimal Rigidity

* Infinitesimal rigidity implies rigidity, but the converse is not always true

* Indeed, the rigidity matrix can lose rank because of “non-generic” agent positions
that involve special alignments

v3

vy e
™ {v1,v2} 2 {vg,vs}

(G,p1) (G,p2)

- (G, p1) is infinitesimally rigid, and therefore rigid. However, (G, p2) is not
infinitesimally rigid, but it is rigid (same set of constraints over the edges)
* the problem is the alignment of agents v1, v2, v3 which causes the rigidity

matrix to (point-wise) lose rank. Any perturbation of this alignment would allow to
regain infinitesimal rigidity

- A point P is a regular point if rank(Rg(p)) = max(rank(Rg(p)))

o . . _ . P : :
* Infinitesimal rigidity = rigidity + p is a regular point (~ no special alignments)
Robuffo Giordano P, Multi-Robot Systems: Elements of Graph Theory



Infinitesimal Rigidity

* The Rigidity matrix is a fundamental tool for control and estimation purposes
* It establishes a link between agent motion and constraint variations
* Its null-space ker(Rg(p)) describes all the motions preserving the constraints

- Rigidity of a framework is equivalent to a rank condition on Rg(p). This allows to
exploit spectral tools (e.g., eigenvalues, singular values) for checking or enforcing
rigidity)

» The rank condition allows to also determine the minimum number of edges in a
graph ¢ for being rigid

e Let rank(Rg, (p)) =1 < Nd. A framework is rigid if rank(Rg(p)) = rank(Rg,, (p))
- Since Rg(p) € RI€*N4  this implies presence of at least|£| = rin the edge set of G

- However, not any collection of |£| = r edges would be good ! One needs the
“right ones”
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Infinitesimal Rigidity

« For distance constraints in R? the complete graph allows 3 collective motions: 2
translations on the plane + 1 rotation (those of a rigid body on the plane)

- Therefore, for a rigid graph, dim ker(Rg(p)) = 3 and rank(Rg(p)) = 2N — 3

* One needs at least 2N — 3 edges (connecting the “correct” agent pairs)
* Note the linearity w.r.t. )V (instead of O(N2) as in the complete graph)

- Similar arguments hold for embeddings in R®, SE(2)and SE(3)

Robuffo Giordano P, Multi-Robot Systems: Elements of Graph Theory
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Infinitesimal Rigidity vy 3

 Let us consider this graph

* What is the associated rigidity matrix ?

- Start with the constraint function g(p) =

* Being Rg(p) = 8gag]§p ) one obtains
pl —py P3 — D
pi —pi 0
Rg(p) = 0  p3—p3 D3
0 p3 —pi
0 0

P1 — P2
P1 — P4
P2 — P3
P2 — P4
P3 — P4
0

0

—p3

0

pi —pl pi—pl

V2
27 U
2
2
2
2
0
T T
Ps — D1
0
T T
Py — P2
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Infinitesimal Rigidity

« At generic positions (i.e., without “special” alignments), one has
rank(Rg(p)) = 5 = 2N — 3 (the framework is rigid)

- What is a basis for the (3-dimensional) ker(Rg(p)) ?

- Two vectors can be identified as 71,2 = 1,, ® I2: these represent the two planar
translations along the x and y directions

- A third vector can be identified as n3 = (Iy ® S)(p — p*) with S = [ ? _01 ]
and p™ an arbitrary point on the plane

- This represents a collective rotation around the “pivot point” p*
+ Proof: the k-th element of Rg(p)ni 2 is just (p; — p; D~ (pf — p]T) =0

- the k-th element of Rg(p)ns is (p; — p;F)S(pq; —p*) — (p] — p?)s(pj —p°) =
= p; Spi +p; Sp; =0 since § = — ST
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Infinitesimal Rigidity

- Note: any other linear combination of the three vectors (n1, no, n3) would also be a
valid solution for ker(Rg(p))

- However, the set(n1, n2, n3) has a clear geometrical interpretation

* by, e.g., setting p = a1n1 + asns + agng one could steer the whole formation
by individually actuating the three dofs: 2D translation and rotation around p”

- By embedding in R> one obtains dim ker(Rg(p)) = 6 for a rigid graph

» The constraint-preserving motions are the 3 translations and 3 rotations around
an arbitrary p* (the motions of a rigid body in 3D space)

* Note: so far we have dealt with distance constraints. However, another very popular
application of rigidity theory is in the case of bearing constraints

 Bearing vector: unit vector (direction) from one agent to another
* Interesting because it is what can be measured from, e.g., perspective cameras

6l
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Bearing Rigidity

 Bearing constraint: keep a desired bearing vector (i.e., a “set of angles”) w.r.t.
neighboring pairs

* Note: the distance constraint is a scalar constraint in any dimension

- The bearing constraint is a (n — 1)-dimensional constraint in R"™ (more stringent
constraint)

- Examples of relative bearings:

» Absolute bearing: Bi; = BB ggnt pointing vector expressed in a

common frame lp; — pil

» Body-frame bearing: 8;; = R’ by — P e S™~! pointing vector expressed in the
! lp; — pill

local frame of agent i Pj — Pi

» The analysis becomes slightly more complex than for the distance case. However,
the same general reasoning applies
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Bearing Rigidity

P; — Pi

Ior = pil € S™ ! one talks about
i — Di

* For instance, in case of absolute bearings 3;; =
“parallel rigidity”

* The only allowed motions of the complete graph K5 on the plane are the usual 2D

translations and an expansion/retraction (but no rotation!)
U3

U3
V2
U1 V2

U1

* Thus, in R? one has rank(Rg(p)) = 2N — 3. Same rank as for the previous distance
constraints, but different kernel !! (in particular, n3is different)

* When dealing with bearing constraints, the scale is never fixed. Not surprising since

we are constraining “relative angles” between pairs of agents 63
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Rigidity-based control and localization

« We will quickly review why rigidity (and, in particular, the rigidity matrix) are
important for formation control and localization

» We will only consider the case of distance constraints (however, similar ideas apply,
mutatis mutandis, for the bearing case)

« Assume that we want to stabilize the pose p € RV of N agents to a pose congruent
with a desired pq

* in other words, we only care about the final shape, and not of where the shape
will be placed on the plane

- Neighboring agent pairs can only sense the constraint value g;;(p) (i.e., they can
only measure their relative distance)

- Let g4 = gg(paq) be the constraint value at the desired pose: find a feedback
controller which zeros the “constraint error” g4 — gg (p)

- If the framework is rigid, we are guaranteed that g; = gg(p) implies congruency

: : 64
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Rigidity-based control and localization

1 1
* Define the usual scalar error function e = |lga — g ) = 5 > (9i5(pa) — 9i5(p))

* sum over the edges of the squared constraint violations (4,5)€E

de . Oe T T d9g(p)

- What isa—p ? 9 —(94 — 95 (p)) o —(94 — 95 (p))Rg(p)

* The error function can be minimized by following its negative gradient, i.e.,
p = RE(P) (94 — 95(p)) (m)

* This is a nice result because (M) is inherently decentralized. This is because of the
decentralized structure of the rigidity matrix Rg(p)

- Indeed, the explicit expression of (M) for the i-th agent is p; = — Z (llesslI? — d; ) e
where €;; = p; — p; and d;; = ||pj.d — Pidll JEN;

1
- Additional feature: the centroid p° = I sz- is invariant under (m), i.e., |p° =0

65
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Rigidity-based control and localization

- Recall the example Agent 3 v Vs
pi —py Py — D1 0 V.
pi —pi 0 0 |pf-pt
Rg(p) = 0 py —ps |p3 —p3 0
0 p3 — i 0 pi — D3 vy
0 0 \pi—pi)pi—p5 | 01

- The i-th column of Rg(p) (associated to agent i) only depends on p; and p;, j € N;
* The rigidity matrix has a decentralized structure

» Conceptually analogous results can be obtained for the bearing-rigidity case
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Rigidity-based control and localization

A similar reasoning can be applied to the (dual) localization problem

« Assume NV agents can measure a set of relative distances according to some
measurement graph G

* Is it possible to univocally localize the agent positions from the measured
distances ? Localize = find correct agent positions in some “common frame”

* Assume (G, p) is a rigid framework and let p an estimation of the agent positions

- Because of the framework rigidity, if p agrees with the measurements, i.e., if
9¢(p) = gg(p), then P can only be a rigid rototranslation of the real p

- Therefore, p represents a correct localization of the agents in “some frame” (which
can be different from the frame where p is expressed!). However:

- all the agents will obtain an estimation of their position w.r.t. a unique common
frame

 and, this is achieved by only exploiting measured distances !

Robuffo Giordano P, Multi-Robot Systems: Elements of Graph Theory
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Rigidity-based control and localization

1
- The localization problem can be solved as before: define e = §||gg (p) — gg(P)||*.
Note that we now consider p = const and minimize w.r.t. p
Oe T T (A A 5 i
* One has i —(95 (p) — 95 (p))Rg(p). Therefore, an update law for p is
p

p =R () (9g(p) — 95(p))
» As before, decentralized structure....

* It is also possible to enforce additional constraints on the estimated positions p for
fixing the final roto-translation ambiguity

* For instance, one could add constraints to fix the origin of the underlying common
frame by fixing the estimated position of one of the agents

- If, for instance, one sets p1 = 0, then all the remaining D; will represent relative
positions w.r.t. the position of agent 1

* This essentially removes the translational ambiguity in ker(Rg) 63
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Rigidity-based control and localization

- Similarly, one could fix the orientation of the common frame by fixing the direction
of one of its edges connecting two agents

- For instance, one can enforce p1 — px = p1 — pr With k£ € N . Force px to lie on
the direction of the real p1 — Pk

* This removes the last rotational ambiguity in ker(Rg)
* All these constraints can be embedded in a single cost function
1 . 1, . 1 . A
e =5l9g(p) = 9P + P11 + 5 lIpr = pr = (1 = Di)II°

which leads to the update law

pi=— Y (ldi — 9;1° — ;) (Bs — B5) — 611 — din(Br — Dr — (i — Px))
JEN;
where¢;;is the Kroenecker delta

* This law is, again, decentralized
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Rigidity-based control and localization

_ RZ p] D c Sn—l
||p] il

- Consider the case of body-frame bearings Bi; =

* Set of relative angles expressed in the local frame of sensmg agents
* What one can retrieve from onboard cameras 1

* We consider a planar problem in which the vertexes
of graph G are mapped to a pose (p;, ¥;) € SE(2)

« Each node consists of a position on the plane and an orientation w.r.t. some global
frame

* The configuration space (p1, 1, ...pn, ¥ ) has then dimension 3V

» The associated bearing-rigidity matrix will then have dimensions R; € RI¢I*3N

70
Robuffo Giordano P, Multi-Robot Systems: Elements of Graph Theory



Bearing-based localization and control

 For the complete graph Ky there exist 4 allowed motions:
» 2D translation
« expansion/contraction
- coordinated rotation about a pivot point p*

» Therefore, for an infinitesimally rigid framework one has rank(Rg) = 3N — 4
* Need of at least 3NV — 4 edges in the edge set £ for being bearing-rigid

» Let us consider the case of formation control and of localization

- Note that, because of the structure of ker(Rg) these two problems can only be
solved up to a global roto-translation and scaling on the plane

Robuffo Giordano P, Multi-Robot Systems: Elements of Graph Theory
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Bearing-based localization and control

* Let us consider the case of bearing formation control

U1

0.25 : . : ; " . . .
/ A
ol
0.2 4
< 015 1 >l \
g
S ooat 1 - |
: 0.05 1 ’
.
or &
0 N
U4 0 10 20 30 40 50
time [s] 05 : : : : : :

-1.5 -1 -0.5 0 0.5 1 1.5 2

pi(t)iev
- N =6 agents and |£| = 14 edges (bearing measurements/constraints)
* The framework is minimally infinitesimally rigid
* The “usual” gradient controller steers the formation to a configuration congruent
with the desired one

€, €total
pu(t) ey
e
L

N

N
1 1
o . R , “« »<s o =112
Fegture; of the controller: the centroid p = N E p; and “scale” 5, = ~ E |p: — D
are invariant i=1 i=1

72
Robuffo Giordano P, Multi-Robot Systems: Elements of Graph Theory



Bearing-based localization and control

3
257}
2 L
- '
15}
h !
1 K
'Q'
’
»
05}
/ .
0} oot
05}
_1 1 1 1 1 1 1 1
-1.5 -1 0.5 0 0.5 1 1.5 2 2.5
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Bearing-based localization and control

- By removing one edge (edge (4, 1)) bearing rigidity is lost

/ > 1: i 02
5 s® | . ol

-0.5

Vv
<

{(t)ic
()
(<
€, €total
2

pi(t)iey time [s]

* The agents converge to a formation equivalent but not congruent with the desired
on

74
Robuffo Giordano P, Multi-Robot Systems: Elements of Graph Theory



An example of bearing-based localization

@)

» Similar results for the localization case

Non-rigid framework
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An example of bearing-based localization
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Bearing Formation Control for Quadrotors

» Use relative bearings (unit vectors in 3D) for
formation control

» Relative bearings can be directly retrieved
from onboard cameras

» Lack of metric (distance) measurements

» The spatial formation is defined up to 5
dofs:

« Collective translatio € R3
« Synchronized expansion is € R
« Synchronized rotationyy € R

« The human operator controls these 5 dofs
with 2 haptic devices

 Force feedback: mismatch between the
desired and actual commands

(b1)
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Bearing Formation Control for Quadrotors

(with force feedback)

2D 3D
+ translation
control control

Master Devices Multi-UAVs Slave System

The-UAVSs autonomously keep the bearing
formation using onboard vision

The human controls
3 translational + 1 expansion + 1 rotation DOFs
and receives a suitable force feedback

Bilateral Control of UAV Bearing-Formations

Antonio Franchi, Carlo Masone
Volker Grabe, Markus Ryl
Heinrich H. Bulthoff, and Paolo Robuffo Giordano

* The free dofs of a formation of UAVs are controlled by a human operator

* The instantaneous mismatch between commands (in terms of changes in formation

shape) and actual motion becomes a force cue 78
Robuffo Giordano P, Multi-Robot Systems: Elements of Graph Theory




Rigidity Maintenance with Distance Constraints

Rigidity Maintenance Control for Multi-robot Systems

Rigididty is a fundamental property for formation control and sensing

The 7 UAVs have limited range and line-of-sight communication/perception
( = almost disconnected)

2 Leader UAVs are partially controlled by two human operators ( and spheres)

Goal of the whole group: to maintain the rigidity of the formation igenvalue

D. Zelazo
| Technion,
Isreal

In collaboration with
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Rigidity Maintenance with Distance Constraints

Decentralized Rigidity Maintenance Control with Range-only Measurements for Multi-Robot Systems

Daniel Zelazo, Antonio Franchi and Heinrich H. Biilthoff, Paolo Robuffo Giordano,
Technion, Israel Max Planck Institute for Biological Cybernetics, Germany CNRS at Irisa, France

Distributed Estimates of the
Rigidity Eigenvalue (rigidity metrics)

Circled robots: Maintain rigidity while tracking an exogenous command
Other robots: Maintain rigidity
Link colors: 5 IJRR 2014
=ast I\ l e
ROBOTWITH | & " - SIMUEATED ’ _
OGENOUSESSHoeed W ROBOT =
L
BEE
: OGENOUS f
SFIGNAL 2 - _
Lateral view
The quadrotors are maintaining formation rigidity In collabratlc:n with
This allows them to run a decentralized estimator able to obtain relative D. Zelazo
positions out of measured relative distances i1 Technion,
. - . L Isreal
Relative positions are then needed by the rigidity controller
80
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Final remarks

* Many more extensions to the rigidity theory
* Here, only a sketch of the basics

* For instance:
* How to maintain rigidity in a robust way (possibility to lose/regain links)
* How to determine, in a decentralized way, whether a given framework is rigid

* How to characterize rigidity in a pure combinatorial way (i.e., only looking at the
graph G)

* How to characterize the stability and equilibria of the proposed control/
localization schemes based on the Rigidity Matrix

* How to grow rigid framework from a starting rigid framework

* How to split a rigid framework into two rigid frameworks

* How to join two rigid frameworks into a single rigid framework (with the
minimum

* And so on
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