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•  Main TextBook 
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•  An undirected Graph                        is made of a Vertex Set (a finite set of elements) 

  and an Edge Set (a subset of unordered pairs of       , the “2-element subsets” of     ) 

Undirected Graphs
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G = (V , E)

E ✓ [V]2
[V]2 = {(vi, vj)}, i = 1 . . . N, j = 1 . . . N, i 6= j

V = {v1, . . . , vN}
V

v1 v2

v3

v4

v5

V = {v1, v2, v3, v4, v5}

[V]2

(vi, vj) 2 E ) (vj , vi) 2 E

E = {(v1, v2), (v2, v3), (v2, v5), (v3, v5), (v3, v4), (v4, v5)}
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•  A directed Graph                        is made of a Vertex Set (a finite set of elements) 

  and an Edge Set (a subset of ordered pairs of        , the “2-element subsets” of    ) 

Directed Graphs
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E ✓ [V]2

[V]2 = {(vi, vj)}, i = 1 . . . N, j = 1 . . . N, i 6= j

V = {v1, . . . , vN}
V

V = {v1, v2, v3, v4, v5}

[V]2

(vi, vj) 2 E ; (vj , vi) 2 E

v1 v2

v3

v4

v5

E = {(v1, v2), (v3, v2), (v2, v5), (v3, v4), (v5, v3), (v5, v4)}

D = (V, E)
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•  Node      is said adjacent (neighbor) of       if 

•  Given a node    , the set        is the set of all neighbors of 

•  The degree of a node      is                     (undirected graphs) 

•  The in-degree of a node      is                       (directed graphs) 

•  A path is a sequence of distinct vertexes                          such that,  
                                      the vertexes        and            are adjacent (neighbors) 

•  If                    (special exception), then the path is called a cycle 

Definitions
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Ni

vivj

vi

vi

di = |Ni|

vi

(vj , vi) 2 E

Ni = {vj 2 V| (vj , vi) 2 E}

vi dini = |Ni|

vi0vi1 . . . vim
vik vik+18k = 0, . . . ,m� 1

vi0 = vim
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•  An undirected graph is said connected if there exists a path joining any two vertexes 
in  

•  A directed graph is said strongly connected if there exists a (directed) path joining 
any two vertexes in 

•  A directed graph is said weakly connected if there exists an undirected path joining 
any two vertexes in 

Definitions
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V

V

V

connected

strongly connected

weakly connected

disconnected
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•  A tree is a connected graph containing no cycles 

Definitions
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•  Other special graphs 

Definitions
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S10

P10

star graph

path (line) graph

K10

complete graph

k-regular graph

    4-regular
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•  Why are graphs important for multi-robot systems? 

•  Graphs are extremely powerful tools for encoding the information/action flow 
among the robots 

•  We (sometimes implicitly) assume that every robot has a limited ability to 
•  perceive the environment with onboard sensors (e.g., other robots) 
•  communicate information to other robots (via a communication medium) 
•  elaborate information (gathered from onboard sensors or comm. medium) 
•  in general, plan, act, and influence the environment (e.g., other robots) 

Why do we need graphs?
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Possibili applicazioni

Mobile Ad-hoc NETworks

Gianluca Antonelli Sistemi multi-robot
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•  A graph naturally encodes in a compact way these limitations 

•  Many distinct graphs can be associated to a group of multiple robots (agents) 

•  Sensing graphs: for each sensors, encode what robots can be locally sensed 
•  Communication graphs: for each communication medium, encode with which robots 
a comm. link can be established (uni- or bi-directional) 
•  Action graphs: for each control action, encode what robots will be (locally) affected 
•  And so on… 

Why do we need graphs?
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Possibili applicazioni

Mobile Ad-hoc NETworks

Gianluca Antonelli Sistemi multi-robot
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•  The issue of limited sensing/communication/action abilities (and, thus, the use of 
graphs) is closely related to the notion of decentralization and decentralized/
distributed sensing/control 

•  Decentralization: every unit (robot) has 
•  limited sensing/communication (information gathering)  
•  limited computing power (information processing) 
•  limited available memory (information storage) 

•  For a robot, it (typically) must elaborate the gathered information to run its local 
controller (making use of local computing power and memory) 

•  The controller complexity is bounded by the above limitations 

•  If the whole state of all the robots is needed, the complexity (e.g., computing 
power) increases with the total number of robots 

•  May easily become unfeasible because of the above limitations 
•  And each robot would need to know the whole state... 

Decentralization
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•  Decentralization: cope with the above limitations by designing decentralized 
controllers (i.e., spreading the complexity across the multiple robots) 
 
•  What do we exactly mean by “decentralized controller” ? 

•  An example: assume graphs are used to encode the 
information flow among robots (sensed, communicated, 
elaborated) 

•  Decentralization: on each edge, the size of the 
information flow is constant (w.r.t. the number of robots) 

•  Example: adding node 6 does not increase the 
information needed by nodes 1,2,3,4 

•  Thus, the amount of information grows linearly with 
the number of neighbors 

•  The same applies to the used memory or computing power (constant per neighbor) 

Decentralization
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ALGEBRAIC GRAPH THEORY 
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•  Several matrixes can be associated to graphs and…. 
•  ….several graph properties can be deduced from the associated matrixes 

•  Graphs + Matrixes = Algebraic Graph Theory 

•  The following Algebraic tools will be fundamental for linking Graph Theory to the 
study of multi-robot systems (when seen as a collection of dynamical systems) 

Graphs and Matrixes
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v1 v2

v3

v4

v5
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•  Adjacency Matrix 

•  Square and symmetric (only for undirected graphs) matrix 

•  Defined so that                  if                         and                 if 

•  Note:                 and                     , thus  

•  Note: one can generalize to any positive weight                  ,    

•  Note: for directed graphs, in general                      and thus 

Adjacency Matrix

16

A 2 RN⇥N

Aij = 0 Aij = 1

Aij = wi

Aii = 0 Aij = Aji A = AT

(vj , vi) 2 E(vj , vi) /2 E

A 6= AT

wi � 0

Aij 6= Aji
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•  Example 

Adjacency Matrix

17

v1 v2

v3

v4

v5

A =

2

66664

0 1 0 0 0
1 0 1 0 1
0 1 0 1 1
0 0 1 0 1
0 1 1 1 0

3

77775
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•  Degree matrix 

•  Diagonal (symmetric) matrix with the node degrees       as diagonal elements 

•  Alternatively,  

Degree Matrix

18

� 2 RN⇥N

di
� = diag(di)

v1 v2

v3

v4

v5

� = diag

0

@
NX

j=1

Aij

1

A

� =

2

66664

1 0 0 0 0
0 3 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 3

3

77775
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•  Incidence matrix  

•  Used to encode the incidence relationship among edges and vertexes 

•  Assign an arbitrary orientation and an arbitrary labeling to the edges  

Incidence Matrix
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E 2 RN⇥|E|

v1 v2

v3

v4

v5

v1 v2

v3

v4

v5

e1

e2

e3

e4

e5
e6
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•  Let                     if vertex      is the tail of edge 

•  Let                 if vertex      is the head of edge 

•  Let                 otherwise 

Incidence Matrix
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Eij = 0

v1 v2

v3

v4

v5

e1

e2

e3

e4

e5
e6

vi ej

Eij = 1

Eij = �1

vi ej

E =

2

66664

�1 0 0 0 0 0
1 1 0 �1 0 0
0 �1 1 0 0 �1
0 0 0 0 1 1
0 0 �1 1 �1 0

3

77775
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•  Laplacian matrix  

•  First definition:  

•  Second definition: 

•  The two Defs. are equivalent, and the latter does not depend on the particular 
labeling and orientation chosen for the graph 

Laplacian Matrix
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L 2 RN⇥N

L = EET

v1 v2

v3

v4

v5

L =

2

66664

1 �1 0 0 0
�1 3 �1 0 �1
0 �1 3 �1 �1
0 0 �1 2 �1
0 �1 �1 �1 3

3

77775
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•       is symmetric (from both Defs.) 
•       is positive semi-definite (from Def. 2) 

•                  where     is a vector of all ones 
•  this shows that      is actually positive semi-definite as it has a non-void null-space 

•  Being symmetric and positive semi-definite, all its     eigenvalues      are real and 
non-negative 

•  Order them as 
 
•  Property: the graph      is connected if and only if  

•  The quantity       is referred to as connectivity eigenvalue (or Fiedler eigenvalue) 

•  Obviously,     is the eigenvector associated to      and                                   (for 
connected graphs) 

Laplacian Matrix
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L
L

L1 = 0 1
L

�i

0 = �1  �2  . . .  �N

G �2 > 0

N

1 �1

�2

rank(L) = N � 1
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•  Note also that, being     symmetric, it is 

•  Also, being                    , it is                    and                                    (for 
connected graphs) 
 

•  Some additional properties (among many….) 

•    

•  Let        be the matrix obtained from the Laplacian      after removing the row and 
column indexing vertex  

•  Then                             for any      where           is the number of spanning trees of 
graph  

Laplacian Matrix

23

trace(L) = 2|E|

Li L
vi

detLi = t(G) vi t(G)
G

L = EET ET1 = 0

L 1TL = 0

rank(E) = N � 1
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THE CONSENSUS PROTOCOL 
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•  Let us use the tools introduced so far for studying one of the most fundamental 
problem in multi-robots (and multi-agents) literature 

•  The Consensus Protocol 

•  Formulation of the problem: 
•  Consider     agents with an internal state  
•  Consider an internal dynamics for the state evolution 

•  in our case, single integrator 
•  Consider an interaction graph     having the agents as vertexes 

•  Problem: design the control inputs      so that 
•  all the states      agree on the same common value     (unspecified) 

•  by making use in      of only relative information w.r.t. the neghbors’ state 
(relative sensing and decentralization) 

The Consensus Protocol
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N xi 2 R

ẋi = ui

G

ui

xi

ui

lim
t!1

xi(t) = x̄, 8i
x̄
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•  Possible applications of the consensus protocol 
•  rendezvous: meet at a common point (uniform the positions)  
•  alignment: point in the same direction (uniform the angles)  
•  distributed estimation: agree on the estimation of some distributed quantity 
(e.g., average temperature) 
•  synchronization: agree on the same time (regardless of phase shifts or different 
rates in the clocks)  

The Consensus Protocol
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•  Take               agents and the interaction graph 

•  The graph     models how information flows across the agents 
  
•  Design                                    

•  Example:                                  ,                                                                     , and 
so on…. 
•  Any idea on how to solve the problem? 

The Consensus Protocol
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v1 v2

v3

v4

v5

N = 5 G

G

ui = ui(xi � xj) 8j 2 Ni

u1 = u1(x1 � x2) u2 = u2(x1 � x2, x2 � x3, x2 � x5)
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•  Solution: let       be the sum of all the differences of the neighbors’ states w.r.t. the 
state of agent 

The Consensus Protocol
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ui
i

v1 v2

v3

v4

v5

u1 = (x2 � x1)

u2 = (x1 � x2) + (x3 � x2) + (x5 � x2)

u3 = (x2 � x3) + (x4 � x3) + (x5 � x3)

u4 = (x3 � x4) + (x5 � x4)

u5 = (x2 � x5) + (x3 � x5) + (x4 � x5)
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•  Consensus protocol:  
•  in compact form for agent  

•  in compact form for all the agents 

•  and when closing the loop (recall that               ) 

The Consensus Protocol
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ui =
X

j2Ni

(xj � xi)i

u = �Lx

ẋ = �Lx

ẋi = ui

u = �

2

66664

1 �1 0 0 0
�1 3 �1 0 �1
0 �1 3 �1 �1
0 0 �1 2 �1
0 �1 �1 �1 3

3

77775
x
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•  Problem: under which conditions the closed-loop system 
 
 
will solve the initial consensus requirement (if at all)? 

•  Convergence to an (arbitrary but common)     is related to the properties of the 
Laplacian     (the state-transition matrix in the closed-loop dynamics) 

•  Properties of the Laplacian      are directly related to the associated graph  

The Consensus Protocol
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ẋ = �Lx

lim
t!1

xi(t) = x̄, 8i

x̄

L

L

v1 v2

v3

v4

v5

G
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•  Main result: the consensus protocol converges if and only if graph      is connected 

•  First proof making use of the explicit solution of  

•  Given an initial condition      , the explicit solution of the consensus dynamics (time-
invariant linear system) is 

•  Fact 1: a symmetric matrix (such as     ) is always diagonalizable by an orthonormal 
matrix     , i.e., such that  

•  Therefore,                        where 

•  Fact 2:  

•  We then get 

The Consensus Protocol
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G

ẋ = �Lx

x(t) = e

�Lt
x0

x0

L
U UUT = I

L = U⇤UT ⇤ = diag(�i)

e�U⇤UT t = Ue�⇤tUT

x(t) = Ue

�⇤t
U

T
x0
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•  Rewrite as 

•  We already know that                and 

•  Thus 

•  If      is connected, then               and 

•  Therefore 

•  What is                    ? 

The Consensus Protocol
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x(t) = u1u
T
1 e

��1t
x0 +

NX

i=2

uiu
T
i e

��it
x0

�1 = 0 u1 =
1p
N

x(t) =
(1T

x0)1

N

+
NX

i=2

uiu
T
i e

��it
x0

G �N � . . . � �2 > 0�2 6= 0

lim
t!1

x(t) =
(1T

x0)1

N

(1T
x0)1

N
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•  The term              is just the average of the initial state 

•  The post-multiplication by     in                   spreads this average on all the 
components of  

•   

•  Thus, what have we obtained? All the agent states      converge towards a common 
value, that is, the average of the initial state 

•  Definition: the agreement subset 

•  The consensus protocol makes the state  

The Consensus Protocol
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(1T
x0)1

N

1T
x0

N

x0

1
x

xi !
1T

x0

N

, 8i

xi
x0

A ✓ RN = span(1) = {x| xi = xj}

x(t) ! A
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•  Second proof: exploit Lyapunov Arguments 

•  Define the Lyapunov candidate 

•  Its evolution (along the system trajectories) is 

•  Matrix     is positive semi-definite. Therefore  

•  This shows that the state trajectories are bounded since            does not increase 
over time 

•  To draw additional conclusions, we must resort to LaSalle’s Invariance theorem 

•  What is the largest invariant set contained in                    ? 

The Consensus Protocol
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V (x) =
1

2
x

T
x

V̇ (x) = x

T
ẋ = �x

T
Lx

L V̇ (x)  0

V (x)

V̇ (x) = 0
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•  What is the set                                     ? 

•  It is the null-space of     (remember     is symmetric) 

•  If the graph     is connected, we know that this null-space is just 

•  Therefore,  

•  Another remark: consider the scalar quantity          . What is its time evolution 
under the consensus protocol? 

•   

•  Therefore,           represents a constant of motion of the closed-loop system 

•                                                 . The centroid of the states never changes over time 

The Consensus Protocol
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V̇ (x) = x

T
Lx = 0

L L

G A

x(t) ! A = span(1)

1T
x

1T
ẋ = �1T

Lx = 0

1T
x

1T
x(t) ⌘ 1T

x0 = const
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•  Some simulations: 

The Consensus Protocol
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“sparse” graph 
“dense” graph 
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•  What dictates the rate of convergence of the consensus protocol? 

•  Sparse graph -> slow convergence 
•  Dense graph -> fast convergence 

•  Rate of convergence is directly related to the value of       (i.e., to the degree of 
connectivity of the graph) 

•  From 

•  The value of      (smallest eigenvalue in the sum) dictates the rate of the asymptotic 
decay of the sum of exponential functions 

•  If       is large, the exponential sum will decay faster 

•  Therefore: the more connected the graph, the faster the consensus convergence 

The Consensus Protocol
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�2

x(t) =
(1T

x0)1

N

+
NX

i=2

uiu
T
i e

��it
x0

�2

�2
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•  Let us now briefly consider the case of directed graphs 

 
•  How does the consensus machinery apply to this case? 

•  First “big” difference: the graph Laplacian     is not symmetric any more 

The Consensus Protocol

38

v1 v2

v3

v4

v5

L

L =

2

66664

0 0 0 0 0
�1 2 �1 0 0
0 0 1 0 �1
0 0 �1 2 �1
0 �1 0 0 1

3

77775
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•  How does now the system                     evolve in this situation? 

•  We still have                but in general  

•  Fact 1:                                   if and only if the graph contains a rooted out-
branching 

•  A rooted out-branching is a directed graph such that 
•  it contains no cycles 
•  it has a vertex (root) with a directed path to all the other vertexes 

The Consensus Protocol
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ẋ = �Lx

L1 = 0 1TL 6= 0

rank(L) = N � 1

v1 v2

v3

v4

v5

e1

e2

e3

e4

e5
e6
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•  If                                    then     is the only vector spanning its right null-space 

•  Fact 2 (application of Gersgorin Theorem): a Laplacian matrix for directed graphs 
has all the eigenvalues with non-negative real part (and they cannot be an imaginary 
pair) 
 
•  Exploiting fact 1, it must be               and 

•  Then, we can follow an argument equivalent to the undirected graph case 

•  Let                                 be the Jordan decomposition of  
 
 
 
 
with 

The Consensus Protocol

40

rank(L) = N � 1 1

<(�i) � 0

�1 = 0 0 < <(�2)  . . .  <(�N )

L = PJ(⇤)P�1 L

J(⇤) =

2

6664

0 0 . . . 0
0 J(�2) . . . 0
...

...
...

...
0 . . . 0 J(�N )

3

7775
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•  Expanding into the explicit solution of                      we get 
 
 
 
 
where      and      are the right and left eigenvector associated to               
(               as we already know) 
 

•  Since                                                    we then obtain (normalizing                 ) 

•  Note that in general 

•  For instance, for our example it is 

•  In general, the consensus will not converge to the average of the initial condition 

The Consensus Protocol
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ẋ = �Lx

x(t) = e

�Lt
x0 = (p1q

T
1 )x0 + P

NX

i=2

(e�J(�i)t)P�1
x0

0 < <(�2)  . . .  <(�N )

p1 q1 �1 = 0

lim
t!1

x(t) = (qT1 x0)p1 = (qT1 x0)1

p1 = 1

qT1 1 = 1

q1 /2 span(1)

q1 = span([1 0 0 0 0]T )
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•  Is it possible to have                           also for the directed graph case? 

•  This would allow for                                           also in this case 

•  Definition: a directed graph is called balanced if, for every vertex, the in-degree 
equals the out-degree 

•  Example 

The Consensus Protocol
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q1 2 span(1)

lim
t!1

x(t) =
(1T

x0)1

N

v1 v2

v3

v4

v5

L =

2

66664

1 0 �1 0 0
�1 1 0 0 0
0 0 2 �1 �1
0 0 �1 2 �1
0 �1 0 �1 2

3

77775
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•  For a balanced directed graph, it is                   (in addition to               ) 

•  Thus, assuming existence of a rooted out-branching (as before), we have 
 
 
 
 
 
analogously to the undirected graph case 

The Consensus Protocol
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1TL = 0

lim
t!1

x(t) =
(1T

x0)1

N

L1 = 0
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•  To conclude, we draw some additional remarks on the consensus machinery 

•  It is straightforward to modify the consensus protocol in order to take into account 
suitable gains 
 
 
 
with  

•  It is possible to generalize to a stochastic settings (agreement over Markov chains) 

•  It is possible to consider time-varying topologies for the graph 

•  In this case,                             and  

•  This case is highly relevant whenever ability to establish an edge depends on the 
state of the robots (e.g., maximum range for communication or occlusion of visibility) 

The Consensus Protocol
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ui = ki(t)
X

j2Ni

(xj � xi)

ki(t) > 0

G

G = (V, E(t)) ui =
X

j2Ni(t)

(xj � xi)
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•  Considering a time-varying topology induces a time-varying closed-loop linear 
system                        , in particular may lead to a switching dynamics 

•  One can still prove convergence given some looser properties of the underlying 
graph structure (~ the graph maintains some form of global connectivity across the 
switchings) 

•  It is possible to consider more complex linear or nonlinear dynamics in place of 
                 

•  for example second-order systems, general Lagrangian (mechanical) systems  
•  but also unicycle-like (nonholonomic) 

 
•  It is possible to consider time delays and/or asynchronous communication in the 
information exchange (along edges) 

•  The “consensus paradigm” has given rise to a large number of variants 
•  one example: decentralized estimation of exogenous time-varying quantities  
(PI-ACE – proportional/integral average consensus estimator) 

The Consensus Protocol
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ẋ = �L(t)x

ẋ = ui
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GRAPH RIGIDITY 
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•  Given     agents and                               pair-wise geometrical constraints (edges), 
do the constraints univocally determine the shape (spatial arrangement) of the 
agents ? 

•  Consider the case of distance constraints for planar agents: each edge in the graph 
imposes a desired distance to the incident pair 

•  If                               (complete graph), then the shape is univocally determined 
(up to a rototranslation on the plane). The agents behave as a planar rigid body 
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•  If                              (not the complete graph) the situation is less clear 
 
 
 
 
 
 
•  With these 4 edges the shape is not preserved: multiple non-congruent realizations 
meeting the 4 pair-wise distance constraints 

•  With these 5 edges the shape is instead preserved up to a rototranslation on the 
plane 
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•  Graph rigidity: how to characterize the “flexibility” of multi-agents bound to pair-
wise geometric constraints 

•  Needed tools: graph theory + geometry + linear algebra 

•  Loosely speaking: a “framework” (graph + agent poses) is rigid if the only allowed 
motions satisfying the constraints are those of the complete graph 

•  Complete graph:                     edges, and thus need to measure/control/enforce  
                       constraints (the complexity is            ) 

•  However, framework rigidity is often possible with only a            set of constraints: 
in the previous case a minimum of             (properly placed) edges would be 
sufficient 

•  Comparison: 
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•  If a framework is rigid then: 

•  Formation control can be solved by regulating the pair-wise geometrical 
constraints to their desired values 

•  Each agent pair controls the value of its own constraint (e.g., the distance) 
•  This is enough for ensuring that the desired global shape is realized 
•  And… no need to control all the possible pair-wise constraints (i.e., no need of 
a complete graph) 

•  Relative localization can be univocally solved from the measured value of the 
constrains 

•  Only one solution for the formation shape consistent with the pair-wise 
geometric constraints 
•  Each agent can only be at one specific location 
(w.r.t. a frame attached with the formation) 

Why rigidity matters
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•  Bar-and-joint framework: let                     be a graph and                    a function 
mapping each vertex to a point in  

•  Just the usual graph structure + a “position” associated to each node 

•  One could also consider mappings to full “poses” 

•  For each edge                consider a constraint function 

•  In most (but not all) cases, the constraint only depends on the relative positions/
poses 

•  Example: in case of distances, one can take 

•  Let then                                                  be the cumulative constraint function over 
all the edges in  
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G = (V , E) p : V ! Rd

Rd

p : V ! SE(d)

(i, j) 2 E

gij(pi � pj)

gij(pi, pj)

gij(pi � pj) = kpi � pjk2

gG = {. . . gij . . .} : RNd ! R|E|

G



•  A framework is rigid (w.r.t. the chosen constraint function) if there exists a 
neighborhood                 of    such that  
 
 
where       is the complete graph 

•  In short: a framework                   is rigid if the only allowed motions preserving the 
constraints are those of the complete graph 

•  i.e., removing some edges w.r.t.       “does not matter” for maintaining the shape 
•  the value of the constraints for the “missing edges” w.r.t.       is univocally 
determined (and it is what one would have had with              ) 

•  Framework equivalency: two frameworks            and            are equivalent if  
                             (the constraints are satisfied over all the edges in    ) 

•  Framework congruency: two frameworks            and            are congruent if  
                             (the constraints are satisfied over all the possible edges) 

Definitions

52
Robuffo Giordano P., Multi-Robot Systems: Elements of Graph Theory

U ⇢ RNd
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gG(p1) = gG(p2) E
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•  Alternative definition of rigidity: a framework           is rigid if all the frameworks  
            ,                  , which are equivalent to            are also congruent to  

•  In all the above, a framework is globally rigid if  

•  Finally, a framework is minimally rigid if the removal of any edge yields a non-rigid 
framework 

•  Now some examples: 
 
 
 
 
 
 
 
           is not rigid because one can find a framework             which is equivalent but not 
congruent: the constraints are met over the edges of     but not over all the possible edges in  
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•  This framework is minimally rigid: by removing any edge, one gets a non-rigid 
framework 

 

•  However, the framework is not globally rigid: these two frameworks are equivalent 
but not congruent 

•  Note that no “smooth” motions could take the first framework to the second one. 
Indeed the two frameworks are (locally) rigid. Two “isolated” solutions exist for the 
given distance constraints 
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•  Infinitesimal rigidity: study the flexibility of a framework under instantaneous 
motions of its nodes 

•  Assume a smooth time dependence              : what are the instantaneous motions of 
         which preserve the constraints                             ? 

•                                                           and using the chain rule 

•  Matrix                             is known as the rigidity matrix 

•  The infinitesimal motions consistent with the constraints are then  

•  A framework is infinitesimally rigid if                                          or, equivalently, 

•  Usual definition involving the complete graph  
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gG(p(t)) = const

p = p(t)

gG(p(t)) = const =) ġG(p(t)) = 0

RG(p) 2 R|E|⇥Nd

ġG(p(t)) = 0 =) @gG(p)

@p
ṗ = RG(p)ṗ = 0

ṗ 2 ker(RG(p))

ker(RG(p)) = ker(RK(p))
rank(RG(p)) = rank(RK(p))

p(t)

KN



•  Infinitesimal rigidity implies rigidity, but the converse is not always true 

•  Indeed, the rigidity matrix can lose rank because of “non-generic” agent positions 
that involve special alignments 

•             is infinitesimally rigid, and therefore rigid. However,            is not 
infinitesimally rigid, but it is rigid (same set of constraints over the edges) 

•  the problem is the alignment of agents                 which causes the rigidity 
matrix to (point-wise) lose rank. Any perturbation of this alignment would allow to 
regain infinitesimal rigidity 

•  A point    is a regular point if  
•  Infinitesimal rigidity = rigidity +    is a regular point (~ no special alignments) 
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rank(RG(p̄)) = max

p
(rank(RG(p)))

(G, p1) (G, p2)

(G, p1) (G, p2)

p̄
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v1
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v3

v3

v1
v2

v4

v1
v2

v5

v3

v3

v1
v2

(a) Two equivalent minimally rigid frameworks in R3. The framework on the
right side is obtained by the reflection of the position of v5 with respect to
the plane characterized by the positions of v1, v2, and v3 (as illustrated in
grey).

v4

v1
v2

v5

v3

v3

v1
v2

(b) An infinitesimally and globally
rigid framework in R3.

v1
v2

v3
{v1, v2} {v2, v3}

{v1, v3}

(c) A non-infinitesimally rigid frame-
work (note that vertexes v1 and v3 are
connected).

Fig. 1. Examples of rigid and infinitesimally rigid frameworks in R3. Notice
that in Figs. (a) and (b) the 3D points associated to each vertex do not lie on
the same plane, while in Fig. (c) the 3D points are aligned.

set of trajectories that are edge-length preserving, in the sense
that for each time t � t0, the framework (G, p, t) is equivalent
to the framework (G, p, t0). More formally, an edge-length
preserving framework must satisfy the constraint

kp(v, t) � p(u, t)k = kp(v, t0) � p(u, t0)k = `

vu

, 8t � t0 (1)

and for all {v, u} 2 E .
One can similarly assign velocity vectors ⇠(u, t) 2 R3 to

each vertex u 2 V for each point in the configuration space
such that

(⇠(u, t) � ⇠(v, t))

T

(p(u, t) � p(v, t)) = 0, 8 {u, v} 2 E . (2)

Note that this relation can be obtained by time-differentiation
of the length constraint described in (1). These motions are
referred to as infinitesimal motions of the mapped vertices
p(u, t), and one has

ṗ(u, t) = ⇠(u, t). (3)

For the remainder of this paper, we drop the explicit inclusion
of time for frameworks and simply write (G, p) and p(u)

and ⇠(u) for the time-varying positions and velocities. The
velocity vector ⇠(u) will be treated as the agent velocity input
throughout the rest of the paper (see Section III).

Infinitesimal motions of a framework can be used to define
a stronger notion of rigidity.

Definition II.5. A framework is called infinitesimally rigid if
every possible motion that satisfies (2) is trivial (i.e., consists
of only global rotations and translations of the whole set of
points in the framework).

An example of an infinitesimally rigid graph in R3 is shown
in Figure 1(b). Furthermore, note that infinitesimal rigidity
implies rigidity, but the converse is not true (Tay and Whiteley,
1985), see Figure 1(c) for a rigid graph in R3 that is not
infinitesimally rigid.

The infinitesimal motions in (2) define a system of m

linear equations in the vector of unknown velocities ⇠ =

[⇠

T

(v1) . . . ⇠

T

(v

n

)]

T

2 R3n. This system can be equivalently
written as the linear matrix equation

R(p)⇠ = 0,

where R(p) 2 Rm⇥3n is called rigidity matrix (Tay and
Whiteley, 1985). Each row of R(p) corresponds to an edge
e = {u, v} and the quantity (p(u) � p(v)) represents the
nonzero coefficients for that row. For example, the row corre-
sponding to edge e has the form


�0� (p(u) � p(v))

T

| {z }

vertex u

�0� (p(v) � p(u))

T

| {z }

vertex v

�0�

�

.

The definition of infinitesimal rigidity can then be restated in
the following form:

Lemma II.6 (Tay and Whiteley (1985)). A framework (G, p)

in R3 is infinitesimally rigid if and only if rk[R(p)] = 3n�6.

Note that, as expected from Definition II.5, the six-
dimensional kernel of R(p) for an infinitesimally rigid graph
only allows for six independent feasible framework motions,
that is, the above-mentioned collective roto-translations in R3

space. Note also that, despite its name, the rigidity matrix is
actually characterizing infinitesimal rigidity rather than rigidity
of a framework.

B. Rigidity of Weighted Frameworks

We now introduce an important generalization to the con-
cept of rigidity and the rigidity matrix by introducing weights
to the framework. Indeed, as discussed in the introduction,
our aim is to propose a control law able to not only maintain
infinitesimal rigidity of the formation as per Definition II.5, but
to also concurrently manage additional constraints typical of
multi-robot applications such as collision avoidance and lim-
ited sensing and communication.This latter objective will be
accomplished via the introduction of suitable state-dependent
weights, thus requiring an extension of the traditional results
on rigidity to a weighted case.

Definition II.7. A d-dimensional weighted framework is the
triple (G, p, W), where G = (V, E) is a graph, p : V ! Rd

is a function mapping each vertex to a point in Rd, and W :

(G, p) ! Rm is a function of the framework that assigns a
scalar value to each edge in the graph.

Using this definition, we can also define the corresponding
weighted rigidity matrix, R(p, W) as

R(p, W) = W (G, p)R(p), (4)

where W (G, p) 2 Rm⇥m is a diagonal matrix containing the
elements of the vector W(G, p) on the diagonal. Often we

v1

v2

v3

v1, v2, v3

p̄



•  The Rigidity matrix is a fundamental tool for control and estimation purposes 
•  It establishes a link between agent motion and constraint variations 
•  Its null-space                   describes all the motions preserving the constraints 
•  Rigidity of a framework is equivalent to a rank condition on          . This allows to 
exploit spectral tools (e.g., eigenvalues, singular values) for checking or enforcing 
rigidity) 

•  The rank condition allows to also determine the minimum number of edges in a 
graph     for being rigid 

•  Let                                         . A framework is rigid if  

•  Since                            , this implies presence of at least            in the edge set of  
•  However, not any collection of             edges would be good ! One needs the 
“right ones” 
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ker(RG(p))
RG(p)

RG(p) 2 R|E|⇥Nd

G

G|E| = r

|E| = r

rank(RKN (p)) = r < Nd rank(RG(p)) = rank(RKN (p))



•  For distance constraints in      the complete graph allows 3 collective motions: 2 
translations on the plane + 1 rotation (those of a rigid body on the plane) 

•  Therefore, for a rigid graph,                                 and 

•  One needs at least              edges (connecting the “correct” agent pairs) 
•  Note the linearity w.r.t.     (instead of            as in the complete graph) 

•  Similar arguments hold for embeddings in     ,            and 
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•   Let us consider this graph 

•  What is the associated rigidity matrix ? 

•  Start with the constraint function 

•  Being                             one obtains 
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•   At generic positions (i.e., without “special” alignments), one has  
                                               (the framework is rigid) 

•  What is a basis for the (3-dimensional)                   ? 

•  Two vectors can be identified as                        : these represent the two planar 
translations along the x and y directions 

•  A third vector can be identified as                                      with                           
and     an arbitrary point on the plane 

•  This represents a collective rotation around the “pivot point” 

•  Proof: the k-th element of                 is just  

•  the k-th element of               is 
                                       since 

Infinitesimal Rigidity

60
Robuffo Giordano P., Multi-Robot Systems: Elements of Graph Theory

rank(RG(p)) = 5 = 2N � 3

ker(RG(p))
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
0 �1
1 0

�

p⇤

p⇤

(pTi � pTj )� (pTi � pTj ) = 0

S = �ST

(pTi � pTj )S(pi � p⇤)� (pTi � pTj )S(pj � p⇤) =
= pTj Spi + pTi Spj = 0

n1,2 = 1n ⌦ I2
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•  Note: any other linear combination of the three vectors                    would also be a 
valid solution for 
•  However, the set                    has a clear geometrical interpretation 

•  by, e.g., setting                                          one could steer the whole formation 
by individually actuating the three dofs: 2D translation and rotation around  

•  By embedding in       one obtains                                  for a rigid graph 
•  The constraint-preserving motions are the 3 translations and 3 rotations around 
an arbitrary      (the motions of a rigid body in 3D space) 

•  Note: so far we have dealt with distance constraints. However, another very popular 
application of rigidity theory is in the case of bearing constraints 

•  Bearing vector: unit vector (direction) from one agent to another 
•  Interesting because it is what can be measured from, e.g., perspective cameras 
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•  Bearing constraint: keep a desired bearing vector (i.e., a “set of angles”) w.r.t. 
neighboring pairs 

•  Note: the distance constraint is a scalar constraint in any dimension 
•  The bearing constraint is a            -dimensional constraint in      (more stringent 
constraint) 

•  Examples of relative bearings: 
•  Absolute bearing:                                       pointing vector expressed in a 
common frame 

•  Body-frame bearing:                                           pointing vector expressed in the 
local frame of agent  

•  The analysis becomes slightly more complex than for the distance case. However, 
the same general reasoning applies 

Bearing Rigidity

62
Robuffo Giordano P., Multi-Robot Systems: Elements of Graph Theory

�ij =
pj � pi
kpj � pik

2 Sn�1

�ij = Ri pj � pi
kpj � pik

2 Sn�1

Rn

i

(n� 1)



•  For instance, in case of absolute bearings                                       one talks about 
“parallel rigidity” 

•  The only allowed motions of the complete graph        on the plane are the usual 2D 
translations and an expansion/retraction (but no rotation!) 

•  Thus, in      one has                                     . Same rank as for the previous distance 
constraints, but different kernel !! (in particular,     is different) 

•  When dealing with bearing constraints, the scale is never fixed. Not surprising since 
we are constraining “relative angles” between pairs of agents 
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•  We will quickly review why rigidity (and, in particular, the rigidity matrix) are 
important for formation control and localization 

•  We will only consider the case of distance constraints (however, similar ideas apply, 
mutatis mutandis, for the bearing case) 

•  Assume that we want to stabilize the pose               of     agents to a pose congruent 
with a desired      

•  in other words, we only care about the final shape, and not of where the shape 
will be placed on the plane 

•  Neighboring agent pairs can only sense the constraint value           (i.e., they can 
only measure their relative distance) 

•  Let                     be the constraint value at the desired pose: find a feedback 
controller which zeros the “constraint error” 

•  If the framework is rigid, we are guaranteed that                  implies congruency 
with the desired 
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•  Define the usual scalar error function 
•  sum over the edges of the squared constraint violations 

•  What is       ?  

•  The error function can be minimized by following its negative gradient, i.e., 
 
                                                                                (!) 

•  This is a nice result because (!) is inherently decentralized. This is because of the 
decentralized structure of the rigidity matrix 

•  Indeed, the explicit expression of (!) for the i-th agent is 
where                      and 

•  Additional feature: the centroid                        is invariant under (!), i.e., 
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•  Recall the example 

•  The i-th column of           (associated to agent i) only depends on     and 

•  The rigidity matrix has a decentralized structure 

•  Conceptually analogous results can be obtained for the bearing-rigidity case  

Rigidity-based control and localization

66
Robuffo Giordano P., Multi-Robot Systems: Elements of Graph Theory

v1

v2

v3v4

RG(p) =

2

66664

pT1 � pT2 pT2 � pT1 0 0
pT1 � pT4 0 0 pT4 � pT1

0 pT2 � pT3 pT3 � pT2 0
0 pT2 � pT4 0 pT4 � pT2
0 0 pT3 � pT4 pT4 � pT3

3

77775

RG(p) pi pj , j 2 Ni

Agent 3



•  A similar reasoning can be applied to the (dual) localization problem 

•  Assume     agents can measure a set of relative distances according to some 
measurement graph 

•  Is it possible to univocally localize the agent positions from the measured 
distances ?  Localize = find correct agent positions in some “common frame” 

•  Assume           is a rigid framework and let    an estimation of the agent positions 

•  Because of the framework rigidity, if    agrees with the measurements, i.e., if  
                        , then    can only be a rigid rototranslation of the real 

•  Therefore,   represents a correct localization of the agents in “some frame” (which 
can be different from the frame where    is expressed!). However: 

•  all the agents will obtain an estimation of their position w.r.t. a unique common 
frame 
•  and, this is achieved by only exploiting measured distances ! 
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•  The localization problem can be solved as before: define                                      . 
Note that we now consider                  and minimize w.r.t. 

•  One has                                                . Therefore, an update law for    is 

•  As before, decentralized structure…. 

•  It is also possible to enforce additional constraints on the estimated positions    for 
fixing the final roto-translation ambiguity 

•  For instance, one could add constraints to fix the origin of the underlying common 
frame by fixing the estimated position of one of the agents 

•  If, for instance, one sets           , then all the remaining     will represent relative 
positions w.r.t. the position of agent 1 

•  This essentially removes the translational ambiguity in 
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•  Similarly, one could fix the orientation of the common frame by fixing the direction 
of one of its edges connecting two agents 
•  For instance, one can enforce                              with             . Force     to lie on 
the direction of the real  
•  This removes the last rotational ambiguity in  

•  All these constraints can be embedded in a single cost function 
 
 
 
which leads to the update law 
 
 
 
where     is the Kroenecker delta 

•  This law is, again, decentralized 
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•  Consider the case of body-frame bearings 

•  Set of relative angles expressed in the local frame of sensing agents 
•  What one can retrieve from onboard cameras 

•  We consider a planar problem in which the vertexes 
of graph    are mapped to a pose  

•  Each node consists of a position on the plane and an orientation w.r.t. some global 
frame 

•  The configuration space                                 has then dimension  

•  The associated bearing-rigidity matrix will then have dimensions 
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Fig. 1. An SE(2) framework with relative bearing measurement from
point �(v) to point �(u).
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of the point b

K|V|(�(V)) under the directed bearing rigidity
map.

The SE(2) framework (G, p, ) is roto-flexible in SE(2)

if there exists an analytic path ⌘ : [0, 1] ! SE(2)

|V| such
that ⌘(0) = �(V) and

⌘(t) 2 b

�1
G (bG(�(V))) � b

�1
K|V|

(b

K|V|(�(V)))

for all t 2 (0, 1].

This definition states that an SE(2) framework (G, p, )

is rigid if and only if for any point q 2 SE(2) sufficiently
close to �(V) with bG(�(V)) = bG(q), that there exists a
local bearing preserving map of SE(2) taking �(V) to q.
The term roto-flexible is used to emphasize that an analytic
path in SE(2) can consist of motions in the plane in addition
to angular rotations about the body axis of each point.

Definition III.3 (Equivalent and Congruent SE(2) Frameworks).
Frameworks (G, p, ) and (G, q,�) are bearing equivalent if

T ( (u))

T

p

uv

= T (�(u))

T

q

uv

, (5)

for all (u, v) 2 E and are bearing congruent if

T ( (u))

T

p

uv

= T (�(u))

T

q

uv

and
T ( (v))

T

p

vu

= T (�(v))

T

q

vu

,

for all u, v 2 V .

Definition III.4 (Global rigidity of SE(2) Frameworks). A
framework (G, p, ) is globally rigid in SE(2) if every
framework which is bearing equivalent to (G, p, ) is also
bearing congruent to (G, p, ).

It is now worth mentioning a few key distinctions between
global rigidity in SE(2) with parallel rigidity in R2. First,
parallel rigidity is built on frameworks where the underlying
graph is undirected. Rigidity in SE(2), however, is explicitly
defined for directed graphs. As an example, consider the
framework in SE(2) shown in Figures 2(a) and 2(b). Both
frameworks are parallel rigid in R2 since the internal angles
are the same for all agent pairs. These frameworks, however,
are not globally rigid in SE(2). It can be verified that the
two frameworks are equivalent in SE(2) since agent 3 does
not actually have any bearing measurements to maintain
(the directed graph contains no edges from agent 3 to other
agents). Consequently, agent 3 is free to rotate about its axis
without affecting the bearing measurements from the other
agents, as shown in Figure 2(b), showing that the frameworks

are not congruent. Observe that adding another directed edge
from agent 3 to either agent 1 or 2 will constrain the attitude
of agent 3 and the framework will become globally rigid in
SE(2).

Motivated by the above example, we now define a corre-
sponding notion of infinitesimal rigidity for SE(2) frame-
works. Using the language introduced in Definition III.2, we
consider a smooth motion along the path ⌘ with ⌘(0) = �(V)

such that the initial rate of change of the directed bearing
rigidity function is zero. All such paths satisfying this prop-
erty are the infinitesimal motions of the SE(2) framework,
and are characterized by the null-space of the Jacobian of
the directed bearing rigidity function, r

�

bG(�(V)), as can
be seen by examining the first-order Taylor series expansion
of the directed bearing rigidity function,

bG(�(V) + ��) = bG(�(V)) + (r

�

bG(�(V))) ��+ h.o.t. ,

with �(V) + �� a point along the path defined by ⌘.
In this venue, we introduce the directed bearing rigidity

matrix, BG(�(V)) as the Jacobian of the directed bearing
rigidity function,

BG(�(V)) := r

�

bG(�(V)) 2 R|E|⇥3|V|
. (6)

If a path ⌘ is contained entirely in b

�1
K|V|

(b

K|V|(�(V))) for
all t 2 [0, 1], then the infinitesimal motions are entirely
described by the tangent space to b

�1
K|V|

(b

K|V|(�(V))), that
we denote by T

p

. Furthermore, the space T

p

must therefore
be a subspace of the kernel of the directed bearing rigidity
matrix for any other graph G, i.e. T

p

✓ N [BG(�(V))]; this
follows from the definition of roto-flexible frameworks given
in Definition III.2. This leads us to a formal definition for
infinitesimal rigidity of frameworks in SE(2).

Definition III.5 (Infinitesimal Rigidity in SE(2)). An
SE(2) framework (G, p, ) is infinitesimally rigid if
N [BG(�(V))] = N

⇥
B

K|V|(�(V))

⇤
. Otherwise, it is in-

finitesimally roto-flexible in SE(2).

Definition III.5 leads to the main result of this section
which relates the infinitesimal rigidity of an SE(2) frame-
work to the rank of the directed bearing rigidity matrix.

Theorem III.6. An SE(2) framework is infinitesimally rigid
if and only if

rk[BG(�(V))] = 3|V|� 4.

Before proceeding with the proof of Theorem III.6, we
first examine certain structural properties of N [BG(�(V))].
First, we observe that the infinitesimal motions of an SE(2)

framework are composed of motions in R2 with motions
in S

1 for each point. For an infinitesimal motion �� 2

N [BG(�(V))], let ��
p

denote the velocity component of ��
in R2|V| and ��

 

be the angular velocity component in R|V|.

Proposition III.7. Every infinitesimal motion �� 2

N [BG(�(V))] satisfies

Rk,G(�

p

)��

p

= �R

 

(�

p

)��

 

(7)
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�ij = Ri pj � pi
kpj � pik

2 Sn�1

G (pi,  i) 2 SE(2)

RG 2 R|E|⇥3N

(p1,  1, . . . pN ,  N ) 3N



•  For the complete graph        there exist 4 allowed motions: 
•  2D translation 
•  expansion/contraction 
•  coordinated rotation about a pivot point 

•  Therefore, for an infinitesimally rigid framework one has  
•  Need of at least              edges in the edge set    for being bearing-rigid 

•  Let us consider the case of formation control and of localization 

•  Note that, because of the structure of               these two problems can only be 
solved up to a global roto-translation and scaling on the plane 
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KN

p⇤

rank(RG) = 3N � 4

3N � 4 E

ker(RG)



•  Let us consider the case of bearing formation control 

 
•              agents and               edges (bearing measurements/constraints) 
•  The framework is minimally infinitesimally rigid 
•  The “usual” gradient controller steers the formation to a configuration congruent 
with the desired one 

•  Features of the controller: the centroid                    and “scale” 
are invariant 
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Fig. 1: First case study: |V| = 6 agents and a minimally rigid sensing graph G with |E| = 14 edges shown in (a). (b):
behavior of e(t) (blue solid line – the bearing error vector associated to graph G) and of e

total

(t) (red solid line – the bearing
error vector associated to the complete graph KV ). Note how both error quantities correctly converge to zero owing to the
rigidity of the framework. (c): agent trajectories while converging to the final configuraion. Grey dashed arrows indicate the
initia/final agent poses, and solid black arrows depict a desired configuration matching the final pose of agent 1 and the
final distance between agents 1 and 2. (d) behavior of �5(t), i.e., a measure of the framework rigidity
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Fig. 2: Second case study: |V| = 6 agents and a non-minimally rigid sensing graph G with |E| = 22 edges. In this case,
convergence is reached faster (by starting from the same initial conditions and by using the same control gains) thanks to
the additional measurements available among the agents
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Fig. 3: Third case study: |V| = 6 agents and a non-rigid sensing graph G with |E| = 13 edges (the edge (4, 1) is missing
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•  By removing one edge (edge         ) bearing rigidity is lost 

•  The agents converge to a formation equivalent but not congruent with the desired 
on 
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[18] D. Zelazo, A. Franchi, F. Allgöwer, H. H. Bülthoff, and P. Robuffo
Giordano, “Rigidity maintenance control for multi-robot systems,” in
2012 Robotics: Science and Systems, Sydney, Australia, Jul. 2012.

[19] D. Zelazo, A. Franchi, H. H. Bülthoff, and P. Robuffo Giordano, “De-
centralized Rigidity Maintenance Control with Range-only Measure-
ments for Multi-Robot Systems,” International Journal of Robotics
Research (submitted), pp. 1–17, 2013.

[20] A. N. Bishop, I. Shames, and B. D. Anderson, “Stabilization of rigid
formations with direction-only constraints,” in IEEE Conference on

Decision and Control and European Control Conference, vol. 746,
no. 1. IEEE, Dec. 2011, pp. 746–752.

[21] T. Eren, “Formation shape control based on bearing rigidity,” Interna-
tional Journal of Control, vol. 85, no. 9, pp. 1361–1379, Sept. 2012.

[22] A. Franchi and P. Robuffo Giordano, “Decentralized control of parallel
rigid formations with direction constraints and bearing measurements,”
in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).
IEEE, Dec. 2012, pp. 5310–5317.

[23] T. Eren, “Using Angle of Arrival (Bearing) Information for Localiza-
tion in Robot Networks,” Turkish Journal of Electrical Engineering &
Computer Science, vol. 15, pp. 169–186, 2007.

[24] P. Stegagno, M. Cognetti, A. Franchi, and G. Oriolo, “Mutual local-
ization using anonymous bearing-only measures,” in 2011 IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, San Francisco, CA, Sep.
2011, pp. 469–474.

[25] M. Cognetti, P. Stegagno, A. Franchi, G. Oriolo, and H. H. Bülthoff,
“3-D mutual localization with anonymous bearing measurements,” in
2012 IEEE Int. Conf. on Robotics and Automation, St. Paul, MN, May
2012, pp. 791–798.

[26] T. Eren, W. Whiteley, A. S. Morse, P. N. Belhumeur, and B. D. Ander-
son, “Sensor and Network Topologies of Formations with Direction,
Bearing, and Angle Information between Angents,” in Proceedings of
the 42nd IEEE Conference on Decision and Control, 2003., 2003, pp.
3064–3069.

[27] L. Asimow and B. Roth, “The Rigidity of Graphs, II,” Journal of
Mathematical Analysis and Applications, vol. 68, pp. 171–190, 1979.

[28] R. Horn and C. Johnson, Topics in Matrix Analysis. New York, NY:
Cambridge University Press, 1991.

[29] C. D. Godsil and G. Royle, Algebraic Graph Theory. Springer, 2001.
[30] B. Jackson, “Notes on the Rigidity of Graphs,” in Levico Conference

Notes, 2007.
[31] T. Eren, W. Whiteley, A. S. Morse, P. N. Belhumeur, and B. D. O.

Anderson, “Sensor and network topologies of formations with direc-
tion, bearing, and angle information between agents,” in 42th IEEE
Conf. on Decision and Control, Maui, HI, Dec. 2003, pp. 3064–3069.

[32] L. Krick, M. E. Broucke, and B. A. Francis, “Stabilisation of infinitesi-
mally rigid formations of multi-robot networks,” International Journal
of Control, vol. 82, no. 3, pp. 423–439, Mar. 2009.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to European Control Conference 2014.
Received October 21, 2013.

v1

v2

v3 v5

v4

v6

(a) The directed graph used in the first simulation asso-
ciated with an SE(2) infinitesimally rigid framework.

0 1 2 3 4 5 6 7 8 9 10
−6

−5

−4

−3

−2

−1

0

1

2

time [s]

e
(b)

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

time [s]

e
p

(c)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

3

pxi (t)i∈V

p
y i
(t
) i
∈
V

(d)

v1

v2

v3 v5

v4

v6

(e) The directed graph used in the second simulation
associated with an SE(2) infinitesimally roto-flexible
framework.
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Fig. 3. Results for the two simulation case studies. Top row: the case of an infinitesimally rigid framework. Bottom row: the case of a non-rigid framework.
Note how in the first case (top) the bearing error vector e(t) (Fig. (b)) and the cumulative position estimation error ep(t) (Fig. (d)) correctly converge to
0. This can also be appreciated in Fig. (d) where the trajectories of the estimated positions and orientations are shown superimposed to their true values.
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(e) The directed graph used in the second simulation
associated with an SE(2) infinitesimally roto-flexible
framework.
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Fig. 3. Results for the two simulation case studies. Top row: the case of an infinitesimally rigid framework. Bottom row: the case of a non-rigid framework.
Note how in the first case (top) the bearing error vector e(t) (Fig. (b)) and the cumulative position estimation error ep(t) (Fig. (d)) correctly converge to
0. This can also be appreciated in Fig. (d) where the trajectories of the estimated positions and orientations are shown superimposed to their true values.
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employed framework
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(e) The directed graph used in the second simulation
associated with an SE(2) infinitesimally roto-flexible
framework.
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Fig. 3. Results for the two simulation case studies. Top row: the case of an infinitesimally rigid framework. Bottom row: the case of a non-rigid framework.
Note how in the first case (top) the bearing error vector e(t) (Fig. (b)) and the cumulative position estimation error ep(t) (Fig. (d)) correctly converge to
0. This can also be appreciated in Fig. (d) where the trajectories of the estimated positions and orientations are shown superimposed to their true values.
The results are of course completely different for case II (bottom) where the estimation errors do not converge to 0 because of the non-rigidity of the
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(e) The directed graph used in the second simulation
associated with an SE(2) infinitesimally roto-flexible
framework.
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Fig. 3. Results for the two simulation case studies. Top row: the case of an infinitesimally rigid framework. Bottom row: the case of a non-rigid framework.
Note how in the first case (top) the bearing error vector e(t) (Fig. (b)) and the cumulative position estimation error ep(t) (Fig. (d)) correctly converge to
0. This can also be appreciated in Fig. (d) where the trajectories of the estimated positions and orientations are shown superimposed to their true values.
The results are of course completely different for case II (bottom) where the estimation errors do not converge to 0 because of the non-rigidity of the
employed framework
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(e) The directed graph used in the second simulation
associated with an SE(2) infinitesimally roto-flexible
framework.
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Fig. 3. Results for the two simulation case studies. Top row: the case of an infinitesimally rigid framework. Bottom row: the case of a non-rigid framework.
Note how in the first case (top) the bearing error vector e(t) (Fig. (b)) and the cumulative position estimation error ep(t) (Fig. (d)) correctly converge to
0. This can also be appreciated in Fig. (d) where the trajectories of the estimated positions and orientations are shown superimposed to their true values.
The results are of course completely different for case II (bottom) where the estimation errors do not converge to 0 because of the non-rigidity of the
employed framework
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Bearing Formation Control for Quadrotors 

•  Use relative bearings (unit vectors in 3D) for 
formation control 

•  Relative bearings can be directly retrieved 
from onboard cameras 

•  Lack of metric (distance) measurements 

•  The spatial formation is defined up to 5 

dofs: 
•  Collective translation vel. 

•  Synchronized expansion rate 

•  Synchronized rotation rate 

•  The human operator controls these 5 dofs 
with 2 haptic devices 

•  Force feedback: mismatch between the 
desired and actual commands 
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•  The free dofs of a formation of UAVs are controlled by a human operator 
•  The instantaneous mismatch between commands (in terms of changes in formation 
shape) and actual motion becomes a force cue 

Bearing Formation Control for Quadrotors 
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Rigidity Maintenance with Distance Constraints
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Rigidity Maintenance with Distance Constraints

D. Zelazo 
Technion, 

Isreal 

In collaboration with 
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•  The quadrotors are maintaining formation rigidity
•  This allows them to run a decentralized estimator able to obtain relative 

positions out of measured relative distances 
•  Relative positions are then needed by the rigidity controller
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•  Many more extensions to the rigidity theory 

•  Here, only a sketch of the basics 

•  For instance: 
•  How to maintain rigidity in a robust way (possibility to lose/regain links) 
•  How to determine, in a decentralized way, whether a given framework is rigid 
•  How to characterize rigidity in a pure combinatorial way (i.e., only looking at the 
graph   ) 
•  How to characterize the stability and equilibria of the proposed control/
localization schemes based on the Rigidity Matrix 
•  How to grow rigid framework from a starting rigid framework 
•  How to split a rigid framework into two rigid frameworks 
•  How to join two rigid frameworks into a single rigid framework (with the 
minimum  
•  And so on 

Final remarks
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