Autonomous and Mobile Robotics

Prof. Giuseppe Oriolo

Wheeled Mobile Robots Motion Control: Regulation

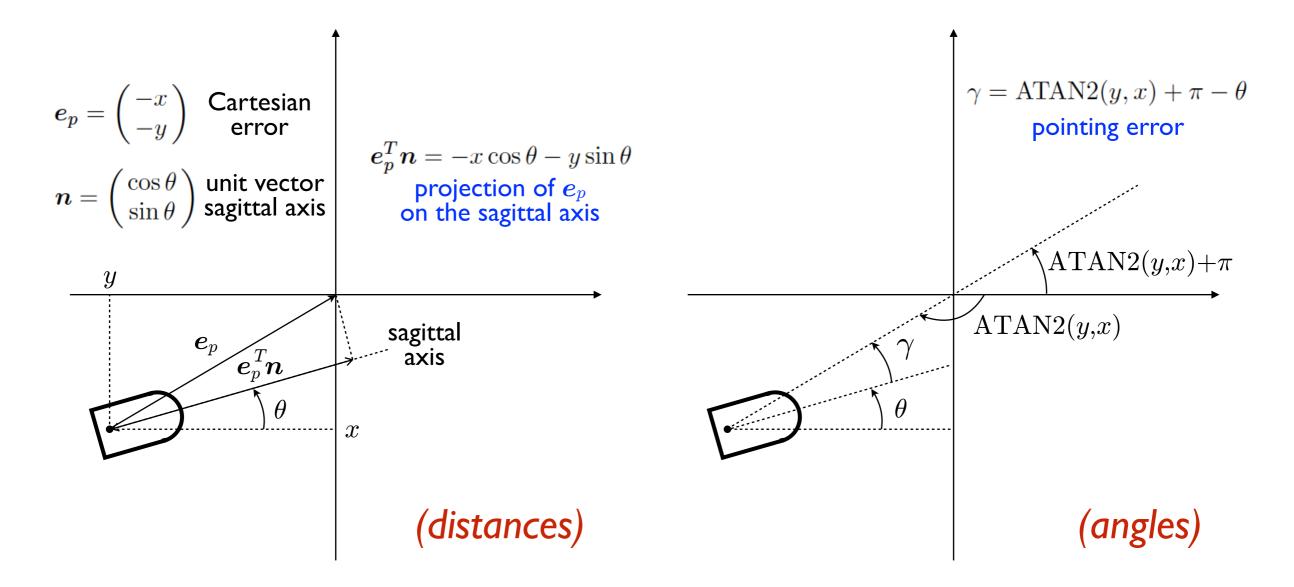
Dipartimento di Ingegneria Informatica Automatica e Gestionale Antonio Ruberti

regulation

- drive the unicycle to a desired configuration $oldsymbol{q}_d$
- the obvious approach (choose a path/trajectory that stops in q_d , then track it via feedback) does not work:
 - the controller based on approximate linearization requires persistent trajectories
 - i/o linearization via static feedback would lead point B to the destination rather than the wheel contact point
 - i/o linearization via dynamic feedback requires persistent trajectories
- being nonholonomic, WMRs (unlike manipulators) do not admit universal controllers, i.e., controllers that can stabilize arbitrary trajectories, persistent or not

Cartesian regulation

- drive the unicycle to a given Cartesian position (w.l.o.g., the origin $(0 \ 0)$), regardless of orientation
- geometry:



Cartesian regulation

• consider this feedback control law

$$v = -k_1(x\cos\theta + y\sin\theta)$$
$$\omega = k_2(\operatorname{Atan2}(y, x) - \theta + \pi)$$

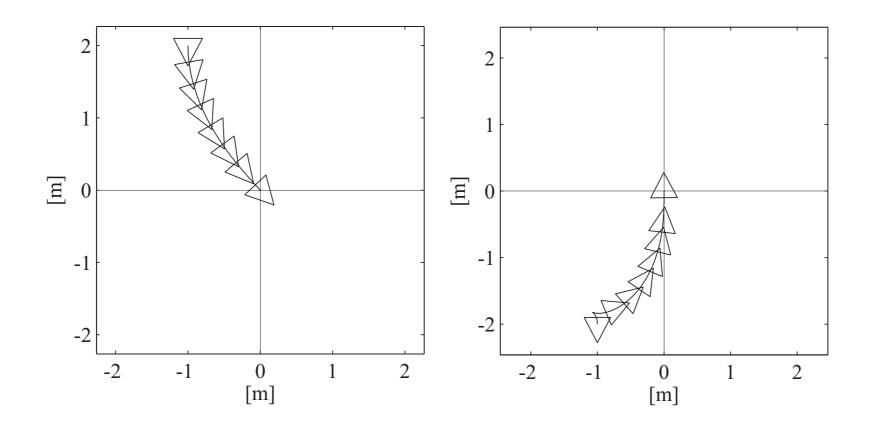
- geometrical interpretation:
 - v is proportional to the orthogonal projection of the Cartesian error e_p on the sagittal axis
 - ω is proportional to the pointing error (i.e., the difference between the orientation of e_p and that of the unicycle)

- does it work? consider the Lyapunov-like function
 - $V = \frac{1}{2}(x^2 + y^2)$ positive semidefinite (PSD)
 - $\dot{V} = -k_1 (x \cos \theta + y \sin \theta)^2$ negative semidefinite (NSD)
- cannot use LaSalle theorem, but being VPSD, VNSD and \ddot{V} bounded (can be shown) we can use Barbalat lemma to infer that \dot{V} tends to zero, i.e.

 $\lim_{t \to \infty} (x \cos \theta + y \sin \theta) = 0$

• this implies that the Cartesian error goes to zero (the other possibility would be e_p becoming orthogonal to n, but this cannot be steady-state since in such configuration it would be v=0 and $\omega = k_2 \pi/2$)

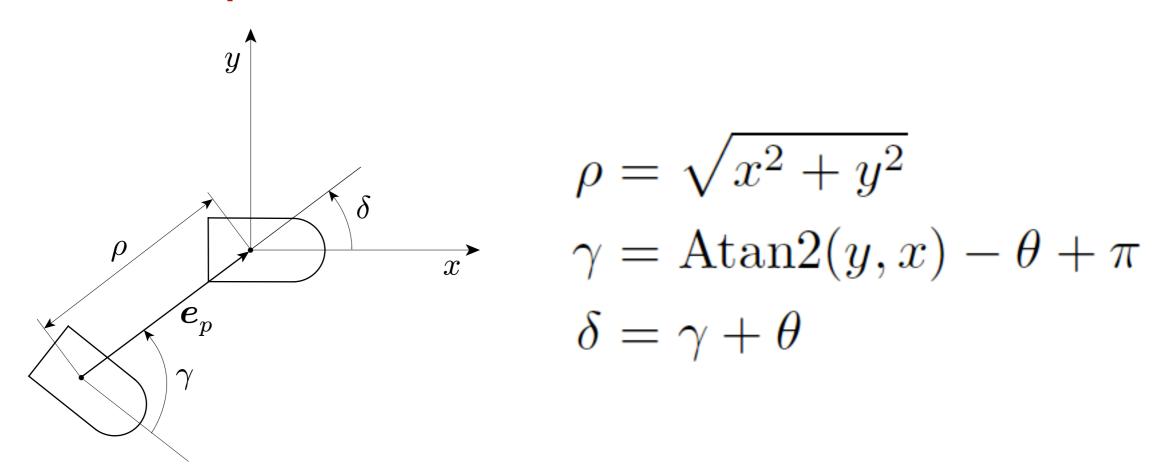
simulation



- final orientation is not controlled
- at most one **backup** maneuver

posture regulation

- drive the unicycle to a given configuration (w.l.o.g., the origin $(0 \ 0 \ 0)$)
- convert to polar coordinates



• γ and δ are undefined at the Cartesian origin; however, if ρ , γ and δ converge to zero so do x, y and θ

• kinematic model in polar coordinates

$$\dot{\rho} = -v\cos\gamma$$
$$\dot{\gamma} = \frac{\sin\gamma}{\rho}v - \omega$$
$$\dot{\delta} = \frac{\sin\gamma}{\rho}v$$

note the potential singularity when $\rho \!=\! 0$

• consider this control law (compare with previous)

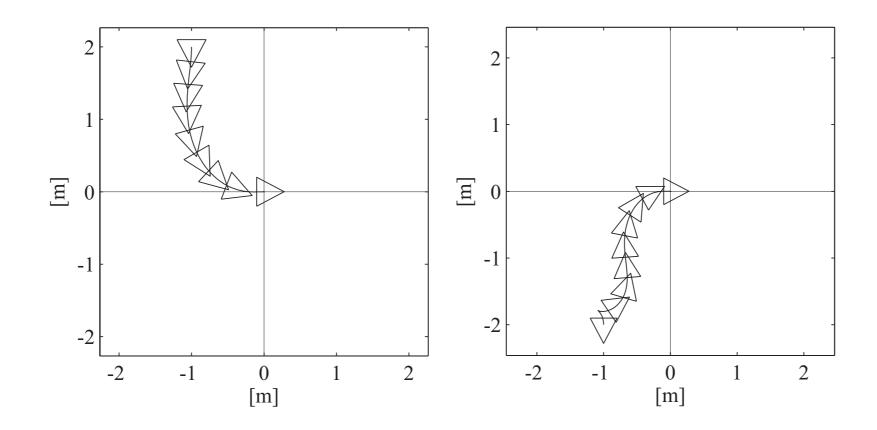
$$v = k_1 \rho \cos \gamma \qquad \text{new term}$$
$$\omega = k_2 \gamma + k_1 \frac{\sin \gamma \cos \gamma}{\gamma} (\gamma + \delta)$$

does it work? consider the Lyapunov candidate

$$V = rac{1}{2} \left(
ho^2 + \gamma^2 + \delta^2
ight)$$
 positive definite $\dot{V} = -k_1 \cos^2 \gamma \,
ho^2 - k_2 \, \gamma^2$ negative semidefinite

- Barbalat lemma implies that \dot{V} goes to zero, i.e., both ρ and γ go to zero; in turn, this can be shown to imply that also δ goes to zero
- the above control law, once mapped back to the original coordinates, is discontinuous at the origin
- it can be shown that, due to the nonholonomy, all posture stabilizers must be discontinuous w.r.t. the state or time-varying (Brockett theorem)

simulation



- final orientation is **zeroed** as well
- at most one **backup** maneuver