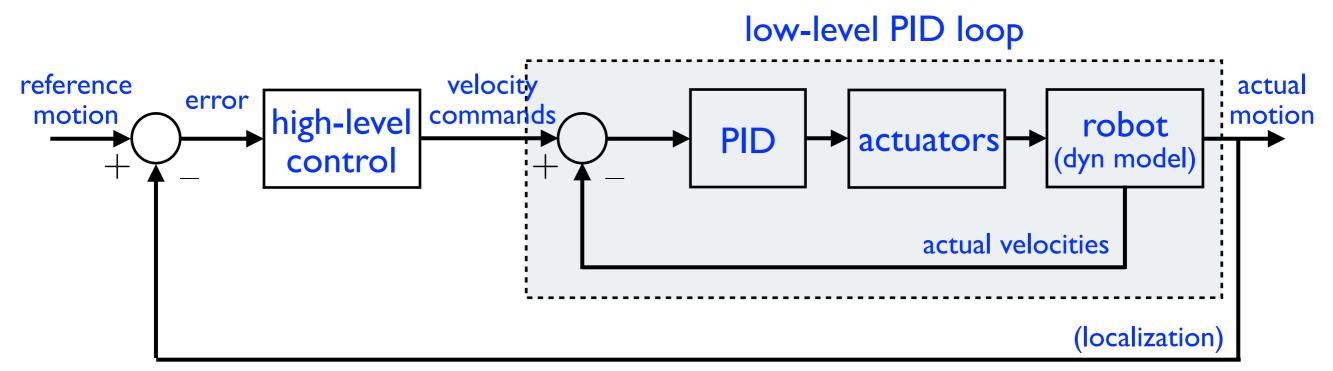
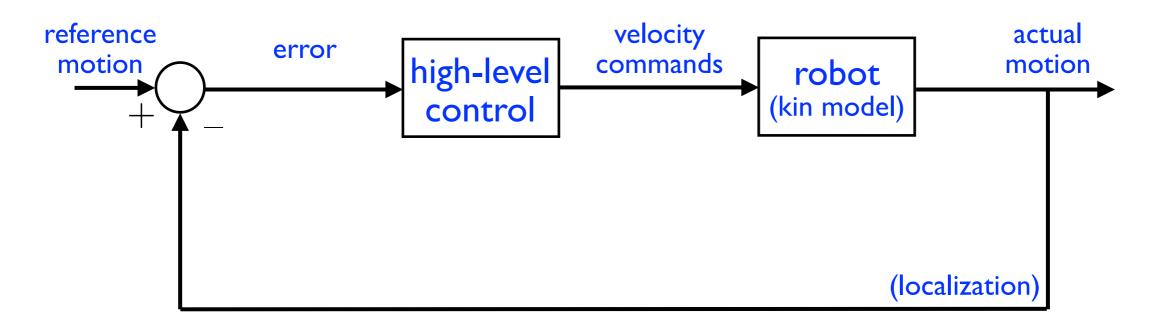
Autonomous and Mobile Robotics

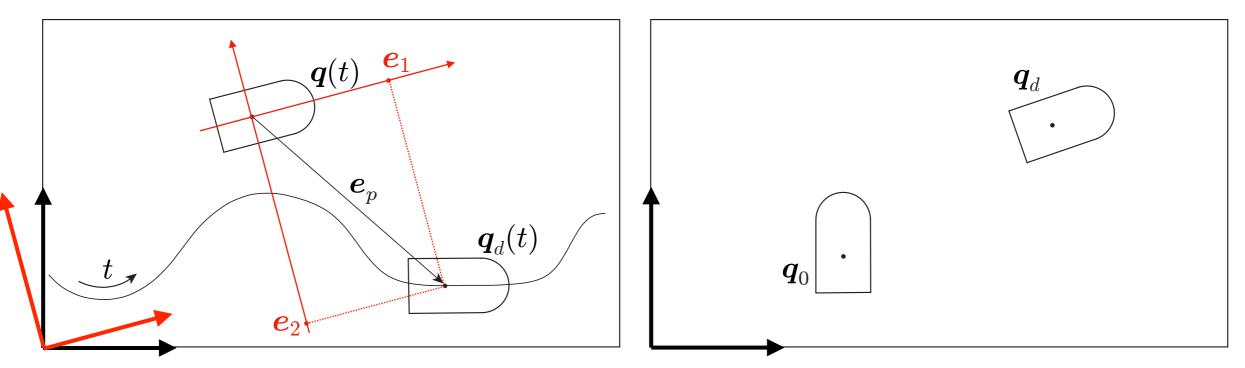
Prof. Giuseppe Oriolo

Wheeled Mobile Robots Motion Control: Introduction and Trajectory Tracking


DIPARTIMENTO DI INGEGNERIA INFORMATICA Automatica e Gestionale Antonio Ruberti


motion control

- a desired motion is assigned for the WMR, and the associated nominal inputs have been computed
- to execute the desired motion, we need feedback control because the application of nominal inputs in open-loop would lead to very poor performance
- in manipulators, we use dynamic models to compute commands at the generalized force level
- in WMRs, we use kinematic models because (1) wheels are equipped with low-level PID loops that accept velocities as reference (2) dynamics is simpler and can be mostly canceled via feedback


actual control scheme

• equivalent control scheme (for design)

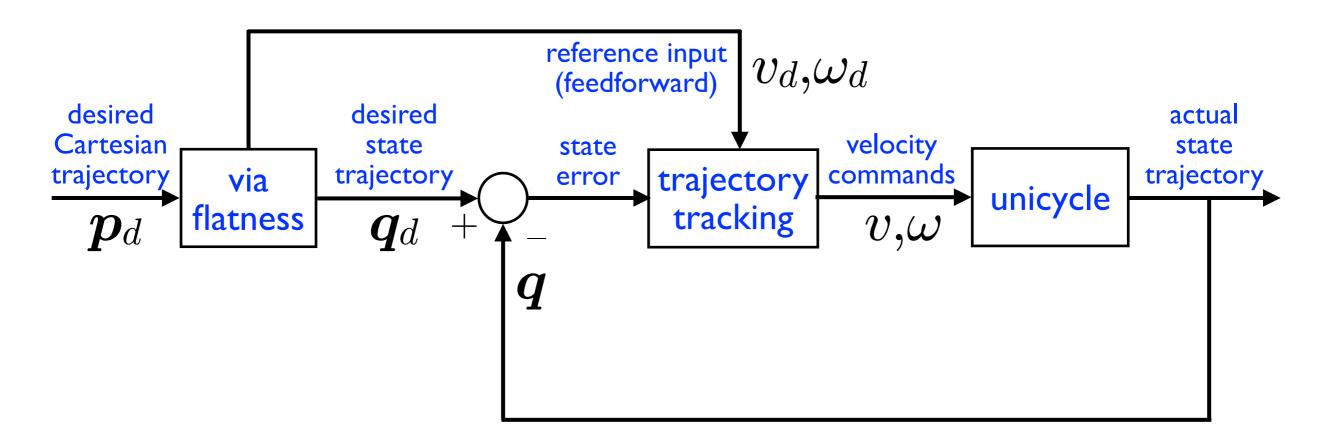
motion control problems

trajectory tracking (predictable transients) posture regulation (no prior planning)

- other problems of interest
 - -path tracking (only geometric motion)
 - Cartesian regulation (final orientation is free)
- w.l.o.g., we consider a unicycle in the following

trajectory tracking: state error feedback

• the unicycle must track a Cartesian desired trajectory $(x_d(t), y_d(t))$ that is admissible, i.e., there exist v_d and ω_d such that


 $\dot{x}_d = v_d \cos \theta_d$ $\dot{y}_d = v_d \sin \theta_d$ $\dot{\theta}_d = \omega_d$

• thanks to flatness, from $(x_d(t), y_d(t))$ we can compute

$$\theta_d(t) = \operatorname{Atan2}\left(\dot{y}_d(t), \dot{x}_d(t)\right) + k\pi \qquad k = 0, 1$$

$$v_d(t) = \pm \sqrt{\dot{x}_d^2(t) + \dot{y}_d^2(t)}$$
$$\omega_d(t) = \frac{\ddot{y}_d(t)\dot{x}_d(t) - \ddot{x}_d(t)\dot{y}_d(t)}{\dot{x}_d^2(t) + \dot{y}_d^2(t)}$$

- the desired state trajectory can be used to compute the state error, from which the feedback action is generated; whereas the nominal input can be used as a feedforward term
- the resulting block scheme will be

• rather than using directly the state error $q_d - q$, use its rotated version defined as

$$\boldsymbol{e} = \begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_d - x \\ y_d - y \\ \theta_d - \theta \end{pmatrix}$$

 (e_1,e_2) is the Cartesian error e_p in a frame rotated by θ (in red in slide 4)

• the error dynamics is nonlinear and time-varying

$$\dot{e}_1 = v_d \cos e_3 - v + e_2 \omega$$
$$\dot{e}_2 = v_d \sin e_3 - e_1 \omega$$
$$\dot{e}_3 = \omega_d - \omega$$

approximate linearization: brush-up

- idea: to stabilize a nonlinear system at an equilibrium, stabilize its approximate linearization around it
- for a generic nonlinear system

 $\dot{x} = \varphi(x, u) = f(x) + G(x)u$ $x \in \mathbb{R}^n, u \in \mathbb{R}^m$ assume the origin (w.l.o.g.) is the desired unforced equilibrium, so that

 $oldsymbol{arphi}(\mathbf{0},\mathbf{0})=\mathbf{0}$ or equivalently $oldsymbol{f}(\mathbf{0})=\mathbf{0}$

ullet the Taylor expansion of arphi around x=0, u=0 gives

$$\varphi(\boldsymbol{x},\boldsymbol{u}) \approx \varphi(\boldsymbol{0},\boldsymbol{0}) + \frac{\partial \varphi}{\partial \boldsymbol{x}} \bigg|_{\substack{\boldsymbol{x} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0}}} \frac{\boldsymbol{x} + \frac{\partial \varphi}{\partial \boldsymbol{u}}} \bigg|_{\substack{\boldsymbol{x} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0}}} \frac{\boldsymbol{u}}{\partial \boldsymbol{u}} \bigg|_{\substack{\boldsymbol{x} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0}}} \frac{\boldsymbol{u}}{\partial \boldsymbol{u}} \bigg|_{\substack{\boldsymbol{x} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0}}} \frac{\boldsymbol{u}}{\partial \boldsymbol{u}} \bigg|_{\substack{\boldsymbol{x} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0}}} \frac{\boldsymbol{u}}{\partial \boldsymbol{u}} \bigg|_{\substack{\boldsymbol{x} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0}}} \frac{\boldsymbol{u}}{\partial \boldsymbol{u}} \bigg|_{\substack{\boldsymbol{x} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0}}} \frac{\boldsymbol{u}}{\partial \boldsymbol{u}} \bigg|_{\substack{\boldsymbol{x} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0}}} \frac{\boldsymbol{u}}{\partial \boldsymbol{u}} \bigg|_{\substack{\boldsymbol{x} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0}}} \frac{\boldsymbol{u}}{\partial \boldsymbol{u}} \bigg|_{\substack{\boldsymbol{x} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0}}} \frac{\boldsymbol{u}}{\partial \boldsymbol{u}} \bigg|_{\substack{\boldsymbol{x} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0}}} \frac{\boldsymbol{u}}{\partial \boldsymbol{u}} \bigg|_{\substack{\boldsymbol{x} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0}}} \frac{\boldsymbol{u}}{\partial \boldsymbol{u}} \bigg|_{\substack{\boldsymbol{x} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0}}} \frac{\boldsymbol{u}}{\partial \boldsymbol{u}} \bigg|_{\substack{\boldsymbol{x} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0}}} \frac{\boldsymbol{u}}{\partial \boldsymbol{u}} \bigg|_{\substack{\boldsymbol{u} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0}}} \frac{\boldsymbol{u}}{\partial \boldsymbol{u}} \bigg|_{\substack{\boldsymbol{u} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0}}} \frac{\boldsymbol{u}}{\partial \boldsymbol{u}} \bigg|_{\substack{\boldsymbol{u} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0}}} \frac{\boldsymbol{u}}{\partial \boldsymbol{u}} \bigg|_{\substack{\boldsymbol{u} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0}}} \frac{\boldsymbol{u}}{\partial \boldsymbol{u}} \bigg|_{\substack{\boldsymbol{u} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0}}} \frac{\boldsymbol{u}}{\partial \boldsymbol{u}} \bigg|_{\substack{\boldsymbol{u} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0}}} \frac{\boldsymbol{u}}{\partial \boldsymbol{u}} \bigg|_{\substack{\boldsymbol{u} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0}}} \frac{\boldsymbol{u}}{\partial \boldsymbol{u}}} \bigg|_{\substack{\boldsymbol{u} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0}}} \frac{\boldsymbol{u}}{\partial \boldsymbol{u}}} \bigg|_{\substack{\boldsymbol{u} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0}}} \frac{\boldsymbol{u}}{\partial \boldsymbol{u}} \bigg|_{\substack{\boldsymbol{u} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0}}} \frac{\boldsymbol{u}}{\partial \boldsymbol{u}} \bigg|_{\substack{\boldsymbol{u} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0}}} \frac{\boldsymbol{u}}{\partial \boldsymbol{u}} \bigg|_{\substack{\boldsymbol{u} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0}}} \frac{\boldsymbol{u}}{\partial \boldsymbol{u}} \bigg|_{\substack{\boldsymbol{u} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0}}} \frac{\boldsymbol{u}}{\partial \boldsymbol{u}} \bigg|_{\substack{\boldsymbol{u} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0}}} \frac{\boldsymbol{u}}{\partial \boldsymbol{u}} \bigg|_{\substack{\boldsymbol{u} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0}}} \frac{\boldsymbol{u}}{\partial \boldsymbol{u}} \bigg|_{\substack{\boldsymbol{u} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0}}} \frac{\boldsymbol{u}}{\partial \boldsymbol{u}} \bigg|_{\substack{\boldsymbol{u} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0}} \boldsymbol{u}} \bigg|_{\substack{\boldsymbol{u} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0}}} \frac{\boldsymbol{u}}{\partial \boldsymbol{u}} \bigg|_{\substack{\boldsymbol{u} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0}} \boldsymbol{u}} \bigg|_{\substack{\boldsymbol{u} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0}} \boldsymbol{u}} \bigg|_{\substack{\boldsymbol{u} = \boldsymbol{u} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{0}} \boldsymbol{u}} \bigg|_{\substack{\boldsymbol{u} = \boldsymbol{u} = \boldsymbol{0} \\ \boldsymbol{u} = \boldsymbol{u} \\ \boldsymbol{u} = \boldsymbol{u}} \big|_{\boldsymbol{u} = \boldsymbol{u} = \boldsymbol{u} \\ \boldsymbol{u} = \boldsymbol{u} \\$$

• the approximate linearization of the nonlinear system at the origin is then defined as

$$\dot{x} = rac{\partial arphi}{\partial x} igg|_{oldsymbol{x} \, = \, oldsymbol{0}} oldsymbol{x} + rac{\partial arphi}{\partial u} igg|_{oldsymbol{u} \, = \, oldsymbol{0}} oldsymbol{u} = oldsymbol{A} x + Bu \ oldsymbol{u} \, = \, oldsymbol{0} \ oldsymbol{u} \, oldsymbol{u} \, = \, oldsymbol{0} \ oldsymbol{u} \, = \, oldsymbol{0} \ oldsymbol{u} \, oldsymbol{u} \, = \, oldsymbol{0} \ oldsymbol{u} \, = \, oldsymbol{0} \ oldsymbol{u} \ oldsymbol{u} \, = \, oldsymbol{u} \ oldsymbol{u} \, = \, oldsymbol{0} \ oldsymbol{u} \, = \, oldsymbol{0} \ oldsymbol{u} \, = \, oldsymbol{u} \ oldsymbol{u} \, = \, oldsymbol{0} \ oldsymbol{u} \, = \, oldsymbol{u} \ oldsymbol{u} \, = \, oldsymbol{u} \, oldsymbol{u} \, = \, oldsymbol{0} \ oldsymbol$$

ullet now let u=Kx, so that

$$\dot{x} = Ax + BKx = (A + BK)x$$

if K is chosen in such a way that A+BK is Hurwitz (certainly possible if (A,B) is controllable), then the approximate linearization is asymptotically stable

 by Lyapunov indirect method, this ensures the origin is locally asymptotically stable for the nonlinear system

via approximate linearization

• apply the approximate linearization approach to stabilize the previous error dynamics

$$\dot{e}_1 = v_d \cos e_3 - v + e_2 \omega$$
$$\dot{e}_2 = v_d \sin e_3 - e_1 \omega$$
$$\dot{e}_3 = \omega_d - \omega$$

 in this form, the origin is not an unforced equilibrium; however, this is easily rectified by using the following (invertible) input transformation

$$u_1 = v_d \cos e_3 - v$$

$$u_2 = \omega_d - \omega$$

• we obtain

$$\dot{e}_1 = \omega_d \, e_2 + u_1 - e_2 \, u_2$$

$$\dot{e}_2 = -\omega_d \, e_1 + v_d \sin e_3 + e_1 \, u_2$$

$$\dot{e}_3 = u_2$$
that is, $\dot{e} = \varphi(e, u)$ with $\varphi(0, 0) = 0$
note that
$$f(e) \qquad \qquad G(e)u$$

$$\varphi(e, u) = \begin{pmatrix} u_d \, e_1 \\ -\omega_d \, e_1 + v_d \sin e_3 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 & -e_2 \\ 0 & e_1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$

• the linear approximation of the error dynamics is

$$\dot{e} = rac{\partial arphi}{\partial e} igg|_{egin{array}{c} e + rac{\partial arphi}{\partial u} \\ e = 0 \ u = 0 \ \end{array}} iggin{array}{c} u = Ae + Bu \\ e = 0 \\ u = 0 \ \end{array}$$

• one easily finds

$$\frac{\partial \varphi}{\partial e} = \begin{pmatrix} 0 & \omega_d - u_2 & 0 \\ -\omega_d + u_2 & 0 & v_d \cos e_3 \\ 0 & 0 & 0 \end{pmatrix} \quad \frac{\partial \varphi}{\partial u} = \begin{pmatrix} 1 & -e_2 \\ 0 & e_1 \\ 0 & 1 \end{pmatrix}$$

ullet letting e=0, u=0 gives

$$\boldsymbol{A} = \begin{pmatrix} 0 & \omega_d & 0 \\ -\omega_d & 0 & v_d \\ 0 & 0 & 0 \end{pmatrix} \qquad \boldsymbol{B} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}$$

note that A is actually A(t) due to the dependence of the references inputs v_d and ω_d on time \Rightarrow the linear approximation will be a time-varying system! wrapping up, the linearized approximation of the error dynamics around the reference trajectory is

$$\dot{\boldsymbol{e}} = \begin{pmatrix} 0 & \omega_d & 0 \\ -\omega_d & 0 & v_d \\ 0 & 0 & 0 \end{pmatrix} \boldsymbol{e} + \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$

now define the linear feedback

$$\boldsymbol{u} = \boldsymbol{K}\boldsymbol{e} = \begin{pmatrix} -k_1 & 0 & 0\\ 0 & -k_2 & -k_3 \end{pmatrix} \begin{pmatrix} e_1\\ e_2\\ e_3 \end{pmatrix}$$

the closed-loop error dynamics is still time-varying!

$$\dot{\boldsymbol{e}} = (\boldsymbol{A}(t) + \boldsymbol{B}\boldsymbol{K})\boldsymbol{e} = \boldsymbol{A}_{cl}(t)\boldsymbol{e} = \begin{pmatrix} -k_1 & \omega_d & 0 \\ -\omega_d & 0 & v_d \\ 0 & -k_2 & -k_3 \end{pmatrix} \boldsymbol{e}$$

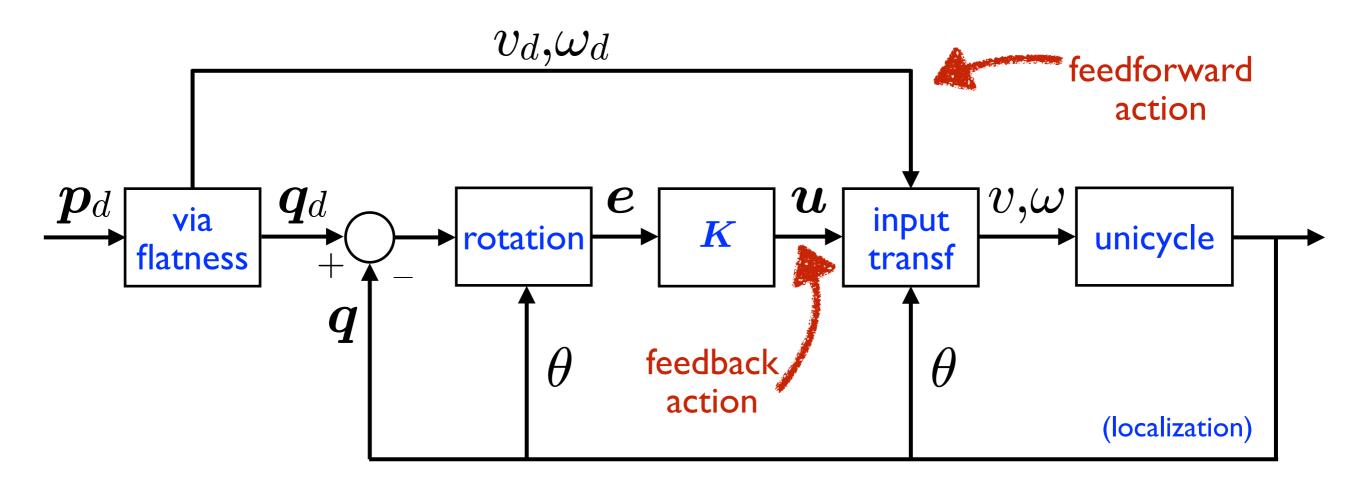
letting

$$k_1 = k_3 = 2\zeta a \qquad k_2 = \frac{a^2 - \omega_d^2}{v_d}$$

with $a>0, \zeta \in (0,1)$, the characteristic polynomial of A(t) becomes time-invariant and Hurwitz

$$p(\lambda) = (\lambda + 2\zeta a)(\lambda^2 + 2\zeta a\lambda + a^2)$$

real pair of complex
negative eigenvalues with
eigenvalue negative real part

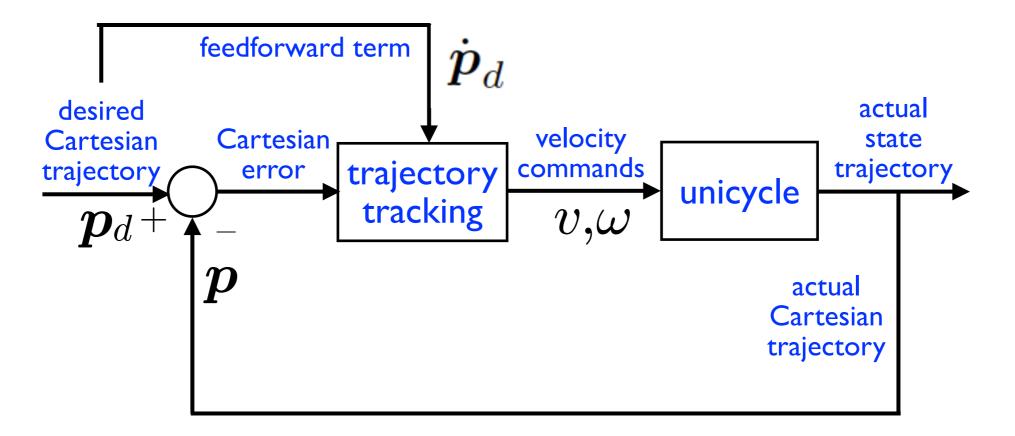

• caveat: this does not guarantee asymptotic stability, unless v_d and ω_d are constant (rectilinear and circular trajectories); even in this case, asymptotic stability of the unicycle is not global (indirect Lyapunov method)

- the actual velocity inputs v, ω are obtained plugging the feedback controls u_1, u_2 in the input transformation
- note: $(v,\omega)
 ightarrow (v_d,\omega_d)$ as e
 ightarrow 0 (pure feedforward)
- note: $k_2 \rightarrow \infty$ as $v_d \rightarrow 0$, hence this controller can only be used with persistent Cartesian trajectories (stops are not allowed)
- global stability is guaranteed by a nonlinear version

$$u_1 = -k_1(v_d, \omega_d) e_1$$

$$u_2 = -k_2 v_d \frac{\sin e_3}{e_3} e_2 - k_3(v_d, \omega_d) e_3$$

if k_1, k_3 bounded, positive, with bounded derivatives


• the final block scheme for trajectory tracking via state error feedback and approximate linearization is

- a static controller based on state error
- needs v_d, ω_d
- needs θ also for error rotation + input transformation

trajectory tracking: output error feedback

- another approach: develop the feedback action from the output (Cartesian) error only, without computing a desired state trajectory, while the feedforward term is the velocity along the reference trajectory
- the resulting block scheme will be

exact i/o linearization: brush-up

• consider a driftless nonlinear system

being

$$\dot{x} = G(x)u$$

 $y = h(x)$ $x \in \mathbb{R}^n, u \in \mathbb{R}^m, y \in \mathbb{R}^m$

$$\dot{oldsymbol{y}} = rac{\partial oldsymbol{h}}{\partial oldsymbol{x}} \dot{oldsymbol{x}} = rac{\partial oldsymbol{h}}{\partial oldsymbol{x}} G(oldsymbol{x})oldsymbol{u} = oldsymbol{T}(oldsymbol{x})oldsymbol{u}$$

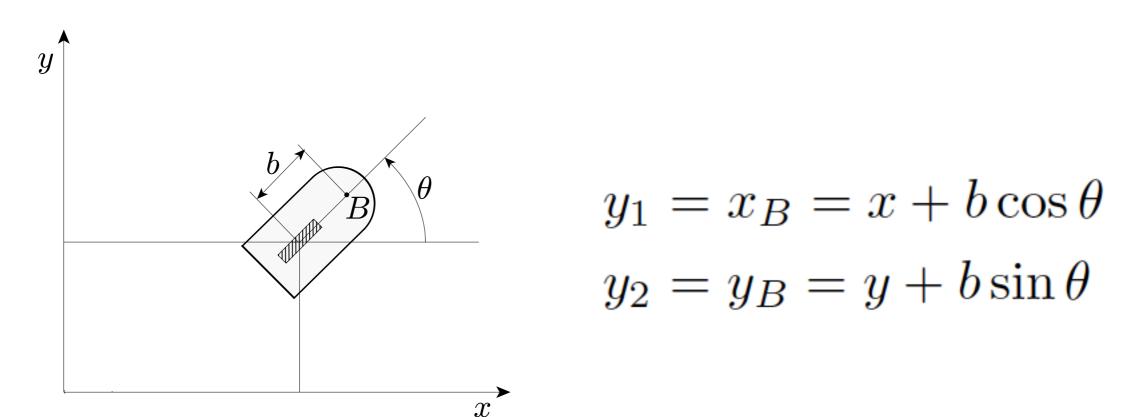
if the m imes m decoupling matrix $oldsymbol{T}$ is invertible we set

$$oldsymbol{u} = oldsymbol{T}^{-1}(oldsymbol{x})oldsymbol{v}$$
 obtaining $\dot{oldsymbol{y}} = oldsymbol{T}(oldsymbol{x})oldsymbol{T}^{-1}(oldsymbol{x})oldsymbol{v} = oldsymbol{v}$

i.e., an exactly linear map between the new inputs v and (the time derivative of) the outputs

• in pictures

- given a reference output $y_d(t)$, the dynamics of the output error $e = y_d y$ is $\dot{e} = \dot{y}_d \dot{y} = \dot{y}_d v$
- let $v = \dot{y}_d + Ke$ (feedforward+proportional feedback) to obtain $\dot{e} = -Ke$, i.e., global exponential stability provided that the eigenvalues of K are in the rhp
- the final control law is $oldsymbol{u} = oldsymbol{T}^{-1}(oldsymbol{x})(\dot{oldsymbol{y}}_d + oldsymbol{K} oldsymbol{e})$


via i/o linearization (static feedback)

- let us adopt the exact i/o linearization approach to design a Cartesian trajectory tracking controller for the unicycle
- however, in this case the decoupling matrix associated to the Cartesian position turns out to be singular

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} \cos \theta & 0 \\ \sin \theta & 0 \end{pmatrix} \begin{pmatrix} v \\ \omega \end{pmatrix}$$

as a consequence, exact input-output linearization is not possible for the output (x, y)

- solution: change slightly the output so that the new input-output map is invertible and exact linearization becomes possible
- displace the output from the contact point of the wheel to point B along the sagittal axis

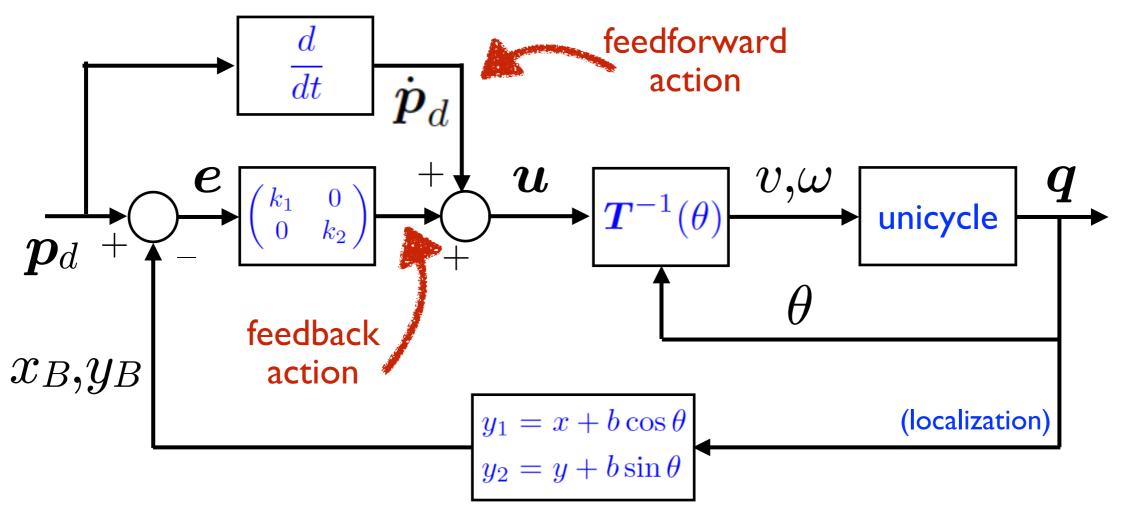
• differentiating wrt time

$$\begin{pmatrix} \dot{y}_1 \\ \dot{y}_2 \end{pmatrix} = \begin{pmatrix} \cos\theta & -b\sin\theta \\ \sin\theta & b\cos\theta \end{pmatrix} \begin{pmatrix} v \\ \omega \end{pmatrix} = \mathbf{T}(\theta) \begin{pmatrix} v \\ \omega \end{pmatrix}$$
$$\mathbf{det} = \mathbf{b}$$

• if $b \neq 0$, we may set

$$\begin{pmatrix} v \\ \omega \end{pmatrix} = \mathbf{T}^{-1}(\theta) \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta/b & \cos \theta/b \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$

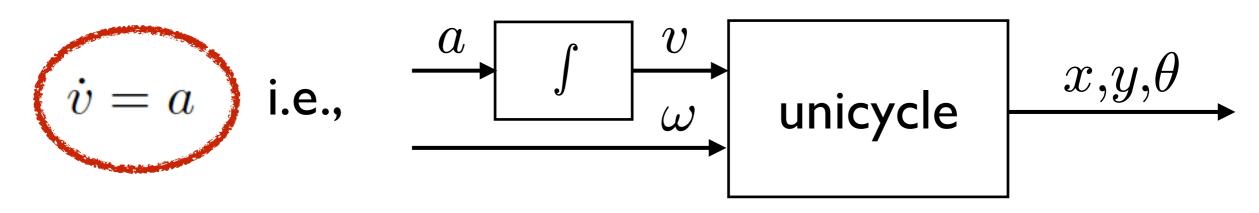
obtaining an input-output linearized system


$$\dot{y}_1 = u_1$$
$$\dot{y}_2 = u_2$$
$$\dot{\theta} = \frac{u_2 \cos \theta - u_1 \sin \theta}{b}$$

• achieve global exponential convergence of x_B , y_B to the desired trajectory by letting

 $u_1 = \dot{x}_d + k_1(x_d - x_B)$ $u_2 = \dot{y}_d + k_2(y_d - y_B)$ with $k_1, k_2 \! > \! 0$

- θ is not controlled with this scheme, which is based on output error feedback (there is a zero dynamics); still, it must evolve as dictated by flatness...
- the desired trajectory for B can be arbitrary; in particular, square corners may be included


• the final block scheme for trajectory tracking via output error feedback + static i/o linearization is

- a static controller based on output error
- needs \dot{p}_d
- needs x, y, θ for output reconstruction and θ also for input transformation

via i/o linearization (dynamic feedback)

- rather than displacing the controlled output to B, we can keep the (flat) output (x,y) and achieve exact linearization by using a dynamic compensator
- to do this, perform a dynamic extension on the driving velocity channel (`slow down' the input)

• we can now differentiate further the output

$$\ddot{x} = a\cos\theta - v\sin\theta\omega$$
$$\ddot{y} = a\sin\theta + v\cos\theta\omega$$

• the new decoupling matrix is nonsingular if $v \neq 0$

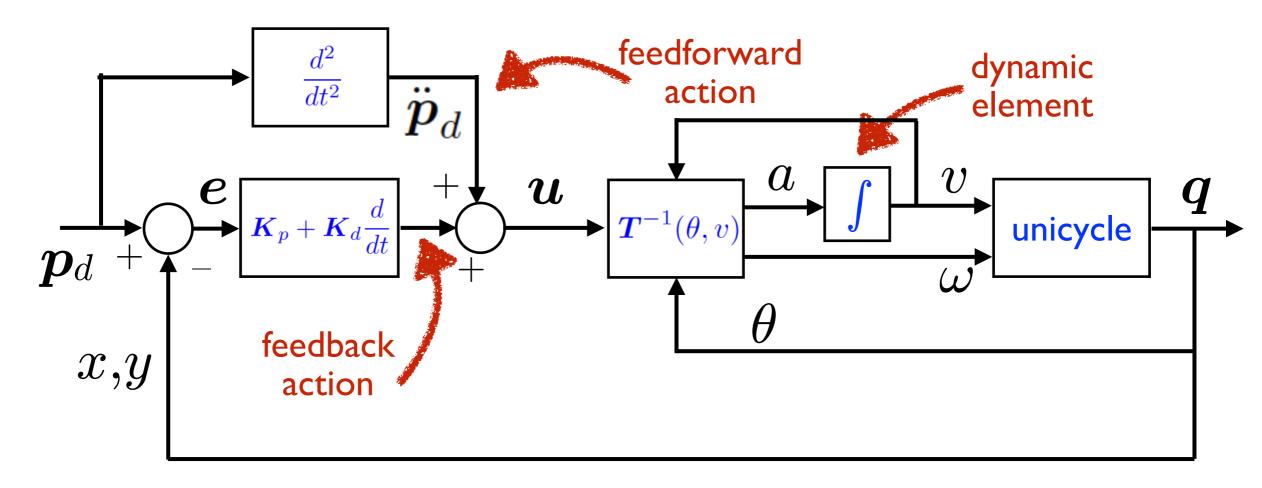
$$\begin{pmatrix} \ddot{x} \\ \ddot{y} \end{pmatrix} = \begin{pmatrix} \cos \theta & -v \sin \theta \\ \sin \theta & v \cos \theta \end{pmatrix} \begin{pmatrix} a \\ \omega \end{pmatrix} = \mathbf{T}(v, \theta) \begin{pmatrix} a \\ \omega \end{pmatrix}$$
$$\mathbf{det} = v$$

• under this assumption, we may set

$$\begin{pmatrix} a \\ \omega \end{pmatrix} = \mathbf{T}^{-1}(v,\theta) \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\frac{\sin\theta}{v} & \frac{\cos\theta}{v} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$

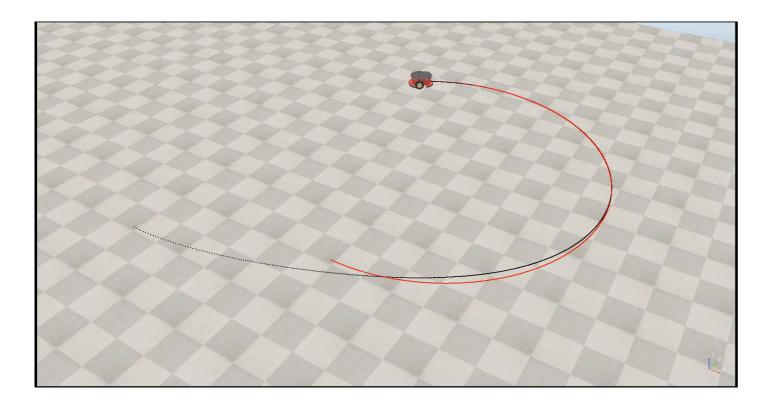
obtaining a fully linearized system

$$\ddot{x} = u_1$$
$$\ddot{y} = u_2$$

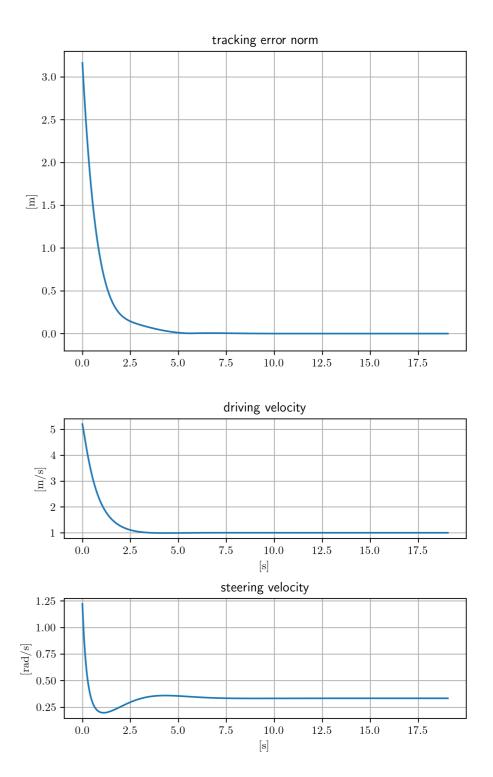

 achieve global exponential convergence of x, y to the desired trajectory by letting

$$u_1 = \ddot{x}_d + k_{p1}(x_d - x) + k_{d1}(\dot{x}_d - \dot{x})$$
$$u_2 = \ddot{y}_d + k_{p2}(y_d - y) + k_{d2}(\dot{y}_d - \dot{y})$$

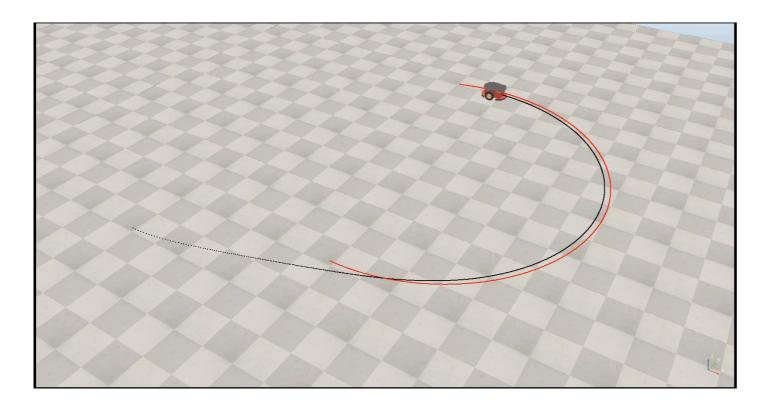
with k_{p1} , k_{p2} , k_{d1} , $k_{d2} > 0$


- since we are controlling the original flat output, there is no zero dynamics with this approach
- the desired trajectory must be twice differentiable and persistent, i.e., it must be $v_d \neq 0$ always (this singularity is structural in nonholonomic systems)

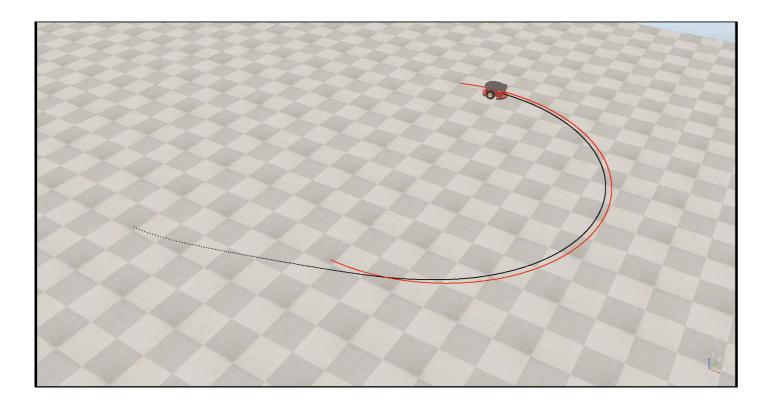
 the final block scheme for trajectory tracking via output error feedback + dynamic i/o linearization is

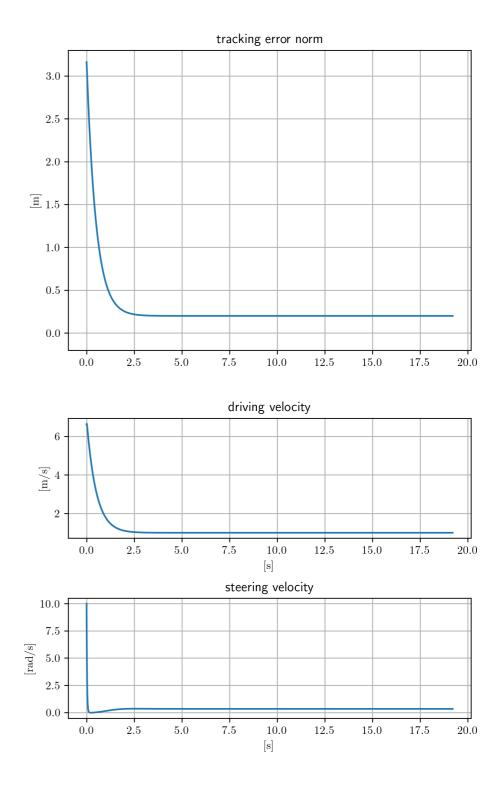


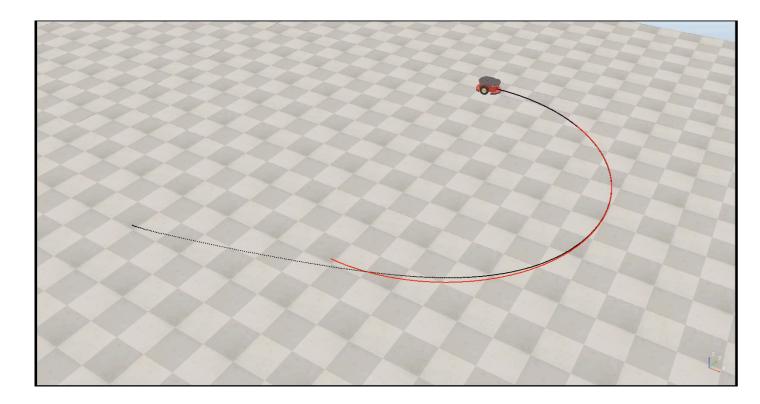
- a dynamic controller based on output error
- needs \dot{p}_d and \ddot{p}_d
- needs x, y for error computation and θ for input transformation

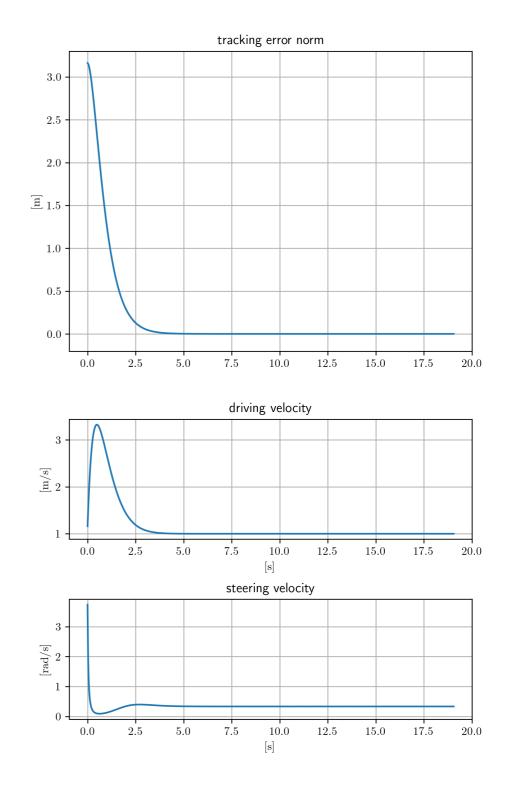

tracking a circle via approximate linearization

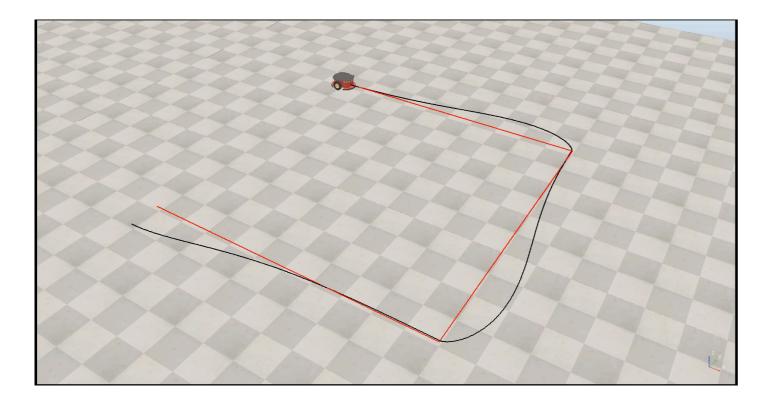

• only local stability is guaranteed

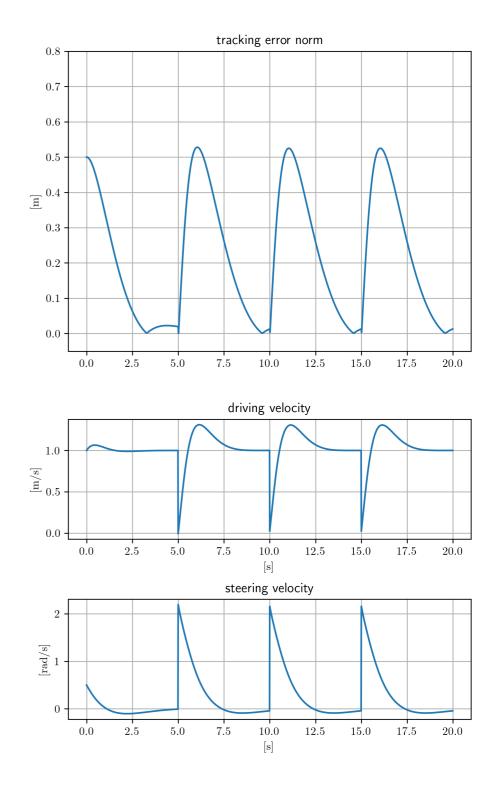

tracking a circle via static i/o linearization (b=0.75)

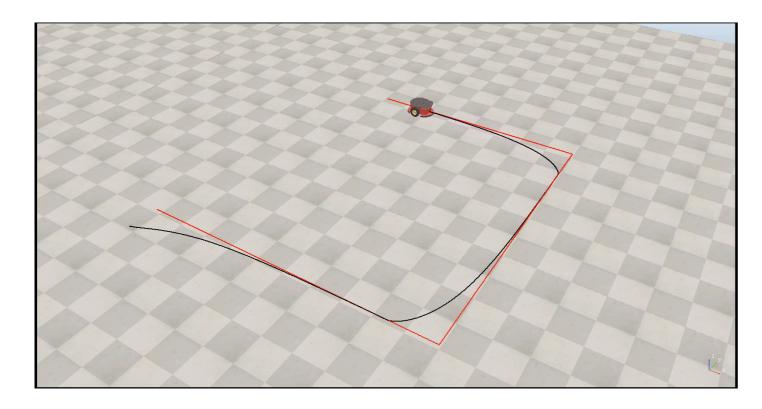

• steady-state error = b

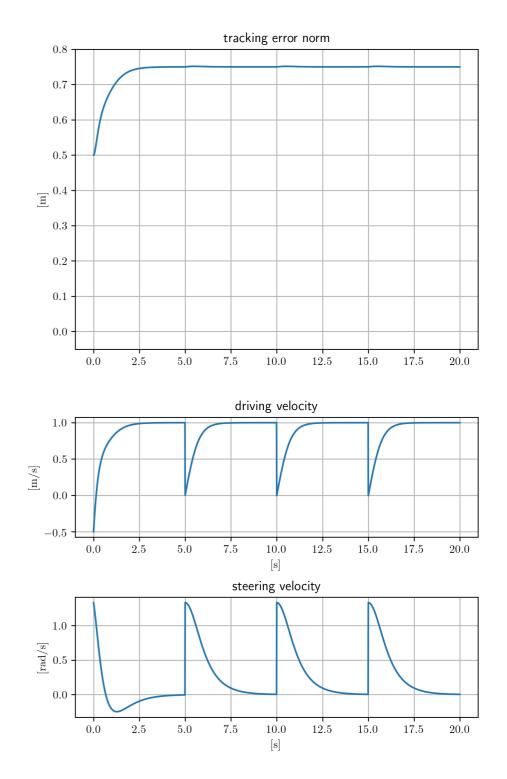

tracking a circle via static i/o linearization (b=0.2)

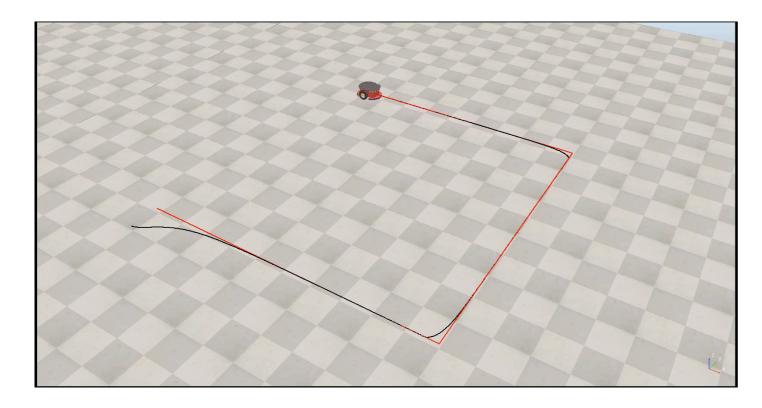

 steady-state error is now reduced but steering velocity increases

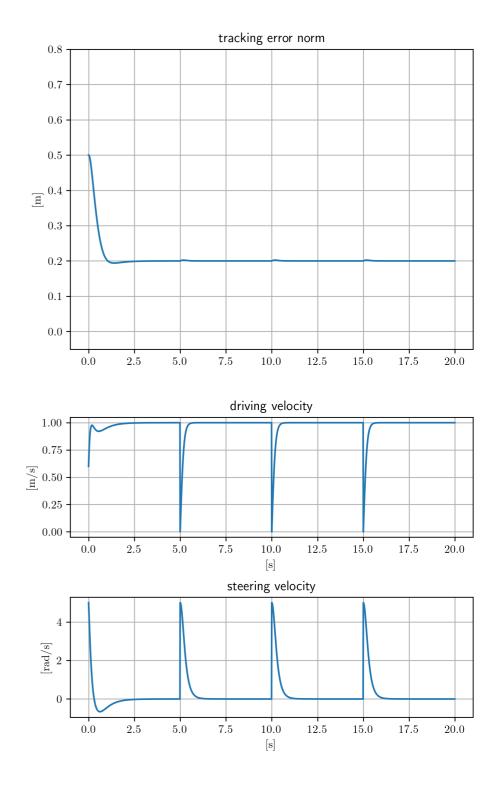

tracking a circle via dynamic i/o linearization

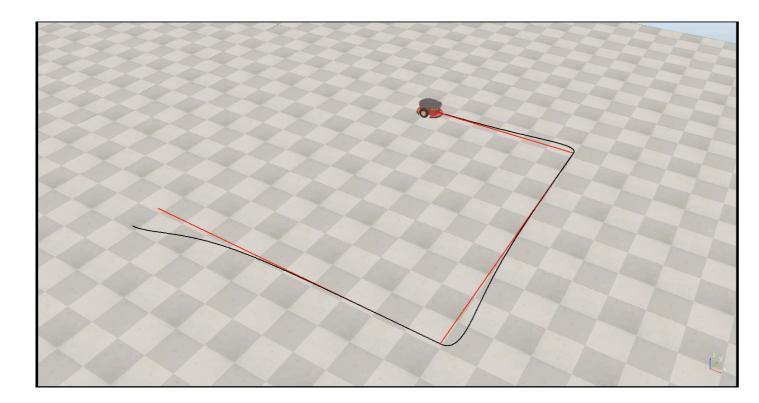

zero steady-state error and reasonable velocities

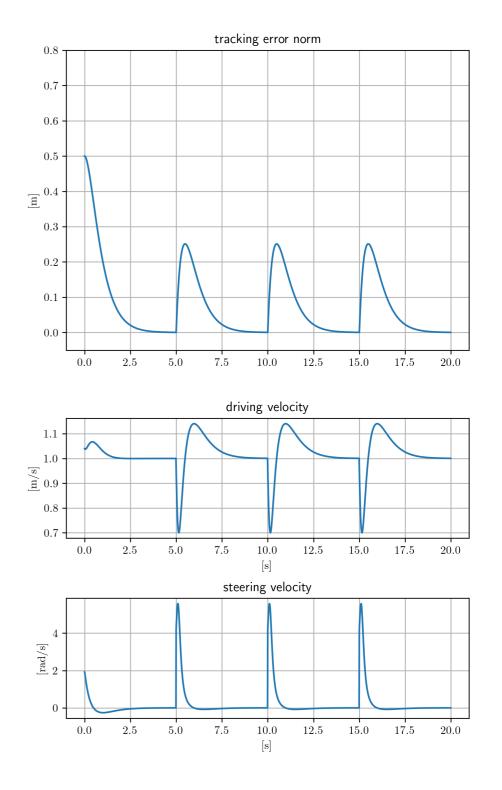

tracking a square via approximate linearization

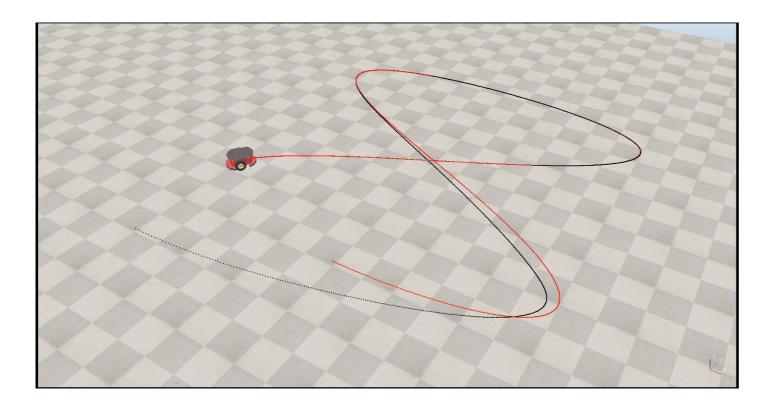

- only local stability is guaranteed
- a new transient at each corner


tracking a square via static i/o linearization (b=0.75)

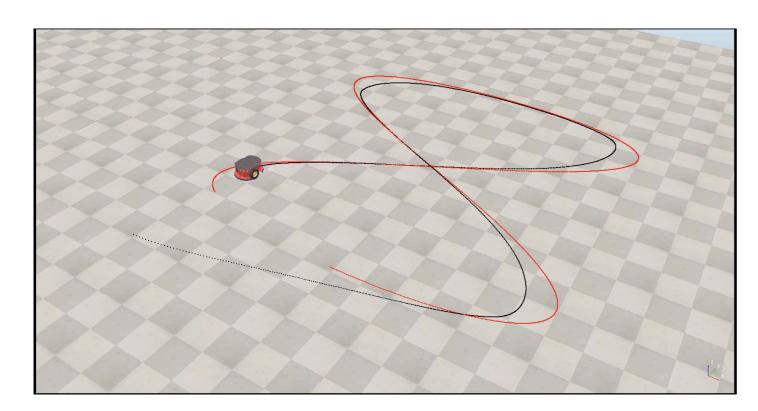

- steady-state error = b
- the displaced output provides a lookahead behavior

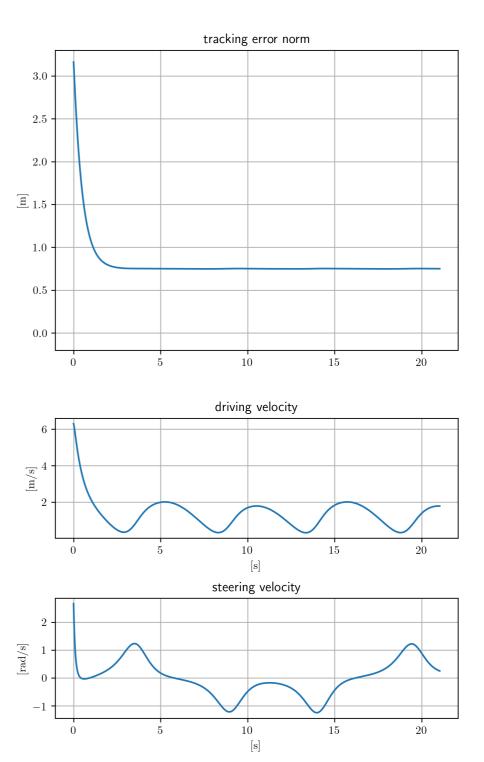

tracking a square via static i/o linearization (b=0.2)

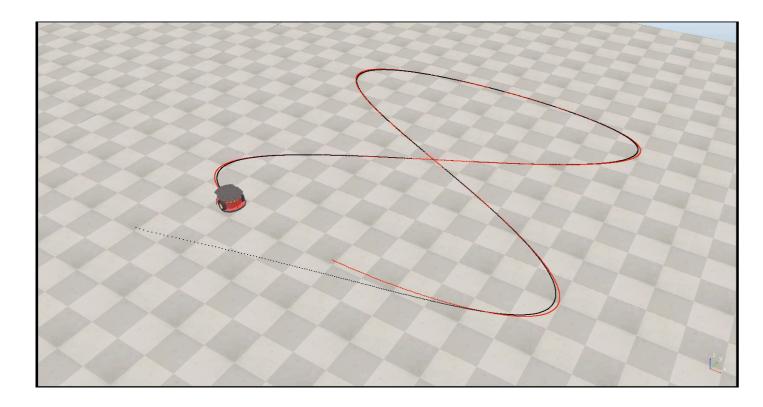

 steady-state error is now reduced but steering velocity increases

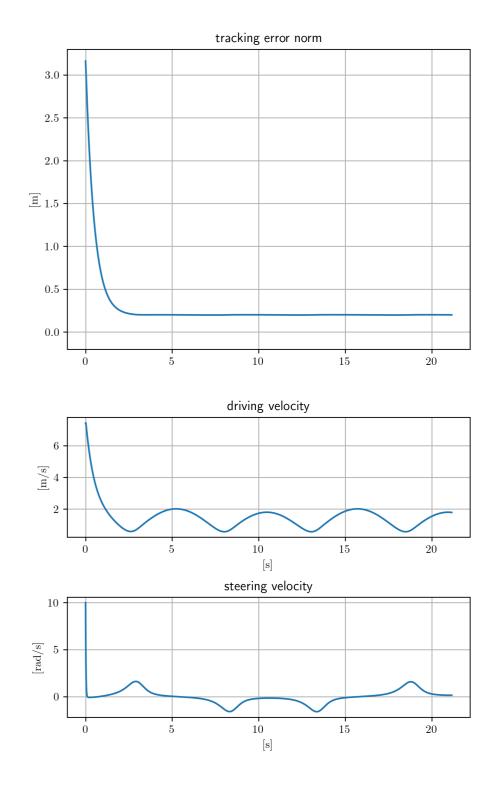

tracking a square via dynamic i/o linearization

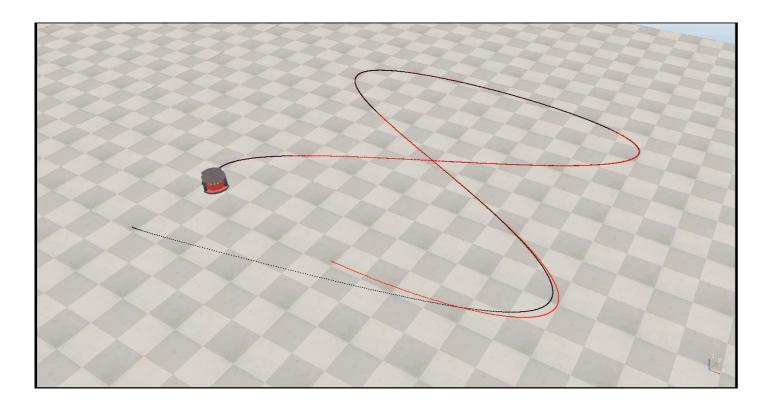

faster transients and reasonable velocities

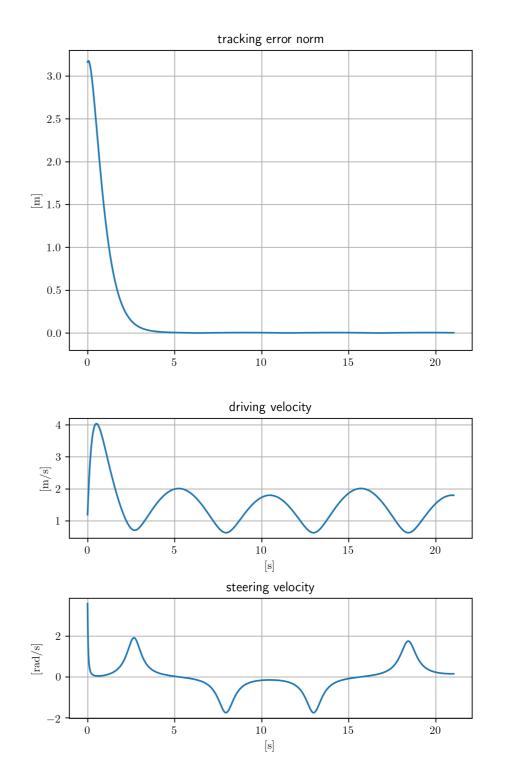

tracking a figure 8 via approximate linearization


 local stability is not guaranteed, but performance is good


tracking a figure 8 via static i/o linearization (b=0.75)


• steady-state error = b


tracking a figure 8 via static i/o linearization (b=0.2)


 steady-state error is now reduced but steering velocity increases

tracking a figure 8 via dynamic i/o linearization

zero steady-state error and reasonable velocities

