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motion control

e a desired motion is assigned for the WMR, and the
associated nominal inputs have been computed

e to execute the desired motion, we need feedback
control because the application of nominal inputs in
open-loop would lead to very poor performance

e in manipulators, we use dynamic models to compute
commands at the generalized force level

e in WMRs, we use kinematic models because (1) wheels
are equipped with low-level PID loops that accept
velocities as reference (2) dynamics is simpler and can
be mostly canceled via feedback
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e actual control scheme
low-level PID loop

reference error velocitéy : actual
motion hish-leve| | commarids motion
5 : PID [ actuatorsf= robot | TPy
1N control Ny (dyn model)| ;

actual velocities

(localization)

e equivalent control scheme (for design)

reference orror velocity actual
motion S high-level commands . robot motion .
N control (kin model)

(localization)
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motion control problems

q,

o

A

>
trajectory tracking posture regulation

(predictable transients) (no prior planning)

e other problems of interest
-path tracking (only geometric motion)
- Cartesian regulation (final orientation is free)

e w.l.o.g., we consider a unicycle in the following
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trajectory tracking: state error feedback

e the unicycle must track a Cartesian desired trajectory
(xd(t),ya(t)) that is admissible, i.e., there exist vg

and wg such that
g =— Ugq COS Qd

jé/d — U( SiIl 6)(1

6)(1 — Wd

N—"

e thanks to flatness, from (x4(t),y4(t)) we can compute
0q(t) = Atan2 (yq(t). zq(t)) + km k=01

valt) = F£/33(t) + 531

w[(t) _ @./.d.(t)l?d(t) — Id(t)yd(t)
) 2 (1) + 12 (1)
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e the desired state trajectory can be used to compute
the state error, from which the feedback action is
generated; whereas the nominal input can be used as
a feedforward term

e the resulting block scheme will be

desired
Cartesian

trajectory
>

Dd

via
flatness

reference input
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trajectory
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desired
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trajectory error >traject.ory commamds>
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e rather than using directly the state error qgq—q, use its
rotated version defined as

e1 cosd sinf 0O Tg — T
e=|e | = | —sinf cosf 0O Yd — Y
e 0 0 1 0, — 6

(e1,e2) is the Cartesian error e, in a frame rotated by ¢
(in red in slide 4)

e the error dynamics is nonlinear and time-varying
él = Vg COS €3 — UV + €9 W
€9 = VgsSllez — €] W
é:% — W — W
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approximate linearization: brush-up

e idea: to stabilize a nonlinear system at an equilibrium,
stabilize its approximate linearization around it

e for a generic nonlinear system
r=oe(xu)=fx)+Gx)u =xzeR", uelR™

assume the origin (w.l.o.g.) is the desired unforced
equilibrium, so that

©(0,0) =0 orequivalently  f(0)=0
e the Taylor expansion of ¢ around £ = 0, u = 0 gives

9, 9,
go(azu)::ﬁgo/(O,/O) | (”)SO T - 890 u
Lig=0 YUiz=0
— 0

T
U u =20
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e the approximate linearization of the nonlinear system
at the origin is then defined as
.0 0
= 2| | w= Az + Bu
Ox ou 0
0

£
u

0) T

0 U

e now let u = Kz, so that
r=Ax+ BKx = (A+ BK)x

if K is chosen in such a way that A+ B K is Hurwitz

(certainly possible if (A,B) is controllable), then the
approximate linearization is asymptotically stable

e by Lyapunov indirect method, this ensures the origin is
locally asymptotically stable for the nonlinear system
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via approximate linearization

e apply the approximate linearization approach to
stabilize the previous error dynamics

e1 ={vgcose3 — U3+ esw
éQ — Ud Sll — €1 W
é3 — d. —

e in this form, the origin is not an unforced equilibrium;
however, this is easily rectified by using the following
(invertible) input transformation

U1 = Vg COSe3 — VU

Uy = WG — W
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e we obtain
€] = Wq €a T U] — €2 U

€o = —Wyg €1 + vgSin esg + e1 us
6’3 — U9
that is, e = p(e, u) with ¢©(0,0) =0
e note that f(e) . Gleu
W €9 1 —es
: Uy
ple,u)=| —wge; +vgsineg |+ 0 e (u )
0 0 1 :
e the linear approximation of the error dynamics is
.0 0
e:a—cp e \SO u= Ae + Bu
€le=0 0“ — 0
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e one easily finds

0 Wqg — U 0 1 —e
O d 2 O 2
a—()o: —Wg + U9 0 V4 COS €3 0—(’0: 0 e
€ 0 0 0 “N0 1
¢ letting e = 0, u = O gives
0 wyg O 1 0
A = —Wd 0 Uq B = 0 0O
O O O 0 1

note that A is actually A(t¢) due to the dependence of

the references inputs vqs and wq on time = the linear
approximation will be a time-varying system!
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e wrapping up, the linearized approximation of the error
dynamics around the reference trajectory is

0 wqg O 1o\ ,
e=|-ws 0 wilet+ |0 0 (‘”)
0 0 0 ) 1

e how define the linear feedback

€1

B =k 0 0
u—Ke—( 0 ke —kg) €9
€3

e the closed-loop error dynamics is still time-varying!

—/Cl W 0
e = (A(t) -+ BK)e — Acl(t)e = | —wg 0 vy e
0 —ko —kq
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¢ letting

:lCl — kg — 2(:(1 ]{?2 — | d

Ud
with a>0, (€(0,1), the characteristic polynomial of
A(t) becomes time-invariant and Hurwitz
p(A) = (A +2Ca)(N\* + 2CaX + a?)

real pair of complex
negative  eigenvalues with
eigenvalue negative real part

e caveat: this does not guarantee asymptotic stability,
unless v4 and wq are constant (rectilinear and circular
trajectories); even in this case, asymptotic stability of
the unicycle is not global (indirect Lyapunov method)
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e the actual velocity inputs v,w are obtained plugging the
feedback controls w1, u2 in the input transformation

e note: (v,w) — (v4,wq) as e — 0 (pure feedforward)

e note: k2 — oo as vg — 0, hence this controller can
only be used with persistent Cartesian trajectories

(stops are not allowed)

e global stability is guaranteed by a nonlinear version

ur = —k1(va, wa) e1
SIn €5
Uo = —AQ Ud ) €o — kg (’Ud, wd) €3
>3

if £1,k3 bounded, positive, with bounded derivatives
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e the final block scheme for trajectory tracking via state
error feedback and approximate linearization is

UVd.W .
dyd " feedforward
action
4
Dd : dd & uIi . v.W
— 7 = rotation—» K input —’> unicycle >
flatness e B | transf
Y Y
q
O feedback / 6
action
(localization)

e a static controller based on state error
e needs V4, Wd
e needs ¢ also for error rotation + input transformation
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trajectory tracking: output error feedback

e another approach: develop the feedback action from
the output (Cartesian) error only, without computing
a desired state trajectory, while the feedforward term
is the velocity along the reference trajectory

e the resulting block scheme will be

feedforward term | >
‘ Paq
desired
Cartesian Cartesian v velocity
trajectory error ) trajectory commands
Dd+ tracking V,Ww

>

actual
state

trajectory

unicycle

actual

Cartesian

trajecto

>

ry
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exact i/o linearization: brush-up

e consider a driftless nonlinear system

dj — G(CE)’U, T e e
relR",uelR", yelR
y = h(x)
e being
— 6h . ——
J = c%zw N

if the m xm decoupling matrix Tis invertible we set
u =T "(x)v obtaining y =T ()T '(x)v = v

i.e., an exactly linear map between the new inputs
v and (the time derivative of) the outputs
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*in plctures

v 1 U X Y under the action
— T () —|x = G(x)u— h(x) ——> of the linearizing feedback
: u="Tx)v...
:U: the system behaves as
v Yy
— f — ...a simple (vector) integrator
fromvtoy

e given a reference output yq4(t), the dynamics of the
output errore = Yyq —Yyis e =Y, — Y =Y, ; — v

e let v =y, + K e (feedforward+proportional feedback)

to obtain e = — Ke,i.e., global exponential stability
provided that the eigenvalues of K are in the rhp

e the final control law is w = T *(z)(y,; + Ke)
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via i/o linearization (static feedback)

e let us adopt the exact i/o linearization approach to
design a Cartesian trajectory tracking controller for
the unicycle

e however, in this case the decoupling matrix associated
to the Cartesian position turns out to be singular

r\ [cosf O v
y ) \sinf O W

as a consequence, exact input-output linearization
is not possible for the output (z, y)
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e solution: change slightly the output so that the new
input-output map is invertible and exact linearization
becomes possible

e displace the output from the contact point of the
wheel to point B along the sagittal axis

A
Y

b

B y1 = xg = x + bcos b
N Yo = yg = y + bsin 6
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e differentiating wrt time

y1\ [ cos —bsind v\ v
(Qg) N (Sin@ bcos 6 ) (w) = T(0) (w)

det = b
e if b~ 0, we may set

v\ et up '\ cos sin ¢ U
(w) =T (0) (u2> N (—sin@/b c:os@/b) (UQ)

obtaining an input-output linearized system

Yy — ujy
Y2 = U2
) Uo cOSH — uqsin b

b
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e achieve global exponential convergence of x, yB to
the desired trajectory by letting

Uy = Tq+ ki (zg —xp)
us = Ya + k2(ya — yB)
with k1, ko>0

e # is not controlled with this scheme, which is based on
output error feedback (there is a zero dynamics); still,
it must evolve as dictated by flatness...

e the desired trajectory for B can be arbitrary;in
particular, square corners may be included
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e the final block scheme for trajectory tracking via
output error feedback + static i/o linearization is

. d e, feedforward
dt .1 * action

1 py

_:Q (kOl £2> T_l(e) > unicycle >

Pd
T 0

y1 = x + bcosb (localization)

feedback
I'B,YB action 7

Yo = y + bsin 0

e a static controller based on output error

e needs Py

e needs z,y,0 for output reconstruction and ¢ also
for input transformation
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via i/o linearization (dynamic feedback)

e rather than displacing the controlled output to B,
we can keep the (flat) output (x,y) and achieve
exact linearization by using a dynamic compensator

e to do this, perform a dynamic extension on the driving
velocity channel (' slow down’ the input)

—1 z,Y,0
w | unicycle

e we can now differentiate further the output
T = acosf —wvsinfw

J = asinf + v cosw
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e the new decoupling matrix is nonsingular if v£0

€ cos) —wvsinb a a
(y) o (sin@ v cos 0 > (w) =T(v,0) (w)

det = v

* under this assumption, we may set

cosfl sinf
a _ Uq U1
(w) =T 1(%9)(“2) — sinf) cosb (u2>
v v
obtaining a fully linearized system

i.);“:ul
Y = U
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e achieve global exponential convergence of z, y to the
desired trajectory by letting

U1 = g + kpl(xd — I) -+ kdl(id — I)
Uy = Zjd + k’pg(yd — y) + de(yd - y)
with kp1, kp2, ka1, ka2>0

e since we are controlling the original flat output, there
is no zero dynamics with this approach

e the desired trajectory must be twice differentiable and
persistent, i.e., it must be v4£0 always (this singularity

is structural in nonholonomic systems)
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e the final block scheme for trajectory tracking via
output error feedback + dynamic i/o linearization is

d? i, fE€dfOrward dynamic
g 1“9(1 - Ttion , " element
___:Q_' Ky + Ka T (0,v) R unicycle >
Pd - |+ =
feedback T 0
LY action 7

e a2 dynamic controller based on output error

e needs pg and py

e needs z,y for error computation and ¢ for input
transformation
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simulations

tracking a circle via approximate linearization

tracking error norm

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

driving velocity
5 -
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&3
g3
I3 27
1
T T T T T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

steering velocity

1.25 A

e only local stability is guaranteed . L

0.50 1

0.25

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
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simulations

tracking a circle via static i/o linearization (b=0.75)

tracking error norm

3.0 1
2.5
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E15
1.0 1
0.5 1
0.0 1
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driving velocity
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4 -
E
£.31
b 27
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e steady-state error = b
2 .
E
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«
=Ty
O L T T T T T T T T
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simulations

tracking a circle via static i/o linearization (b=0.2)

tracking error norm

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[%]
—+

eering velocity

e steady-state error is now reduced .
but steering velocity increases

0.0 2.5 5.0 7.5 100 125 150 175 200
[s]
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simulations

tracking a circle via dynamic i/o linearization

e Zero steady-state error and
reasonable velocities

racking error norm

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
driving velocity
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simulations

tracking a square via approximate linearization

tracking error norm
0.8
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N
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simulations

tracking a square via static i/o linearization (b=0.75)

tracking error norm

& = 0.0 1 ( lf M \[
e steady-state error = b | et
e the displaced output provides a Tu M
I O O I(a h ead b e h aVi O r - O.IO 2:5 5‘I0 7.l5 10I.0 12I.5 15I‘0 17I.5 20(0

[s]
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simulations

tracking a square via static i/o linearization (b=0.2)

e steady-state error is how reduced
but steering velocity increases
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simulations

tracking a square via dynamic i/o linearization

tracking error norm
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simulations

tracking a figure 8 via approximate linearization

tracking error norm

o
wt
=
=
—
[\
o

e local stability is not guaranteed, L
but performance is good i
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simulations

tracking a figure 8 via static i/o linearization (b=0.75)

tracking error norm

/i
[m/s]

[rad/s]

o steady-state error = b s W
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simulations

tracking a figure 8 via static i/o linearization (b=0.2)

tracking error norm

driving velocity

6_
£
L 2 1

0 5 10 15 20
[s]

steering velocity

e steady-state error is now reduced
but steering velocity increases -

0 5 10 15 20
[s]

[rad/s]
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simulations

tracking a figure 8 via dynamic i/o linearization

tracking error norm

o
wt
—
o
=
(@28
[\
o

e Zero steady-state error and |
reasonable velocities i,
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