Autonomous and Mobile Robotics

Prof. Giuseppe Oriolo

Motion Planning 3 Artificial Potential Fields

Dipartimento di Ingegneria Informatica Automatica e Gestionale Antonio Ruberti

on-line planning

- autonomous robots must be able to plan on line, i.e, using partial workspace information collected during the motion via the robot sensors
- incremental workspace information may be integrated in a map and used in a sense-plan-move paradigm (deliberative navigation)
- alternatively, incremental workspace information may be used to plan motions following a memoryless stimulus-response paradigm (reactive navigation)

artificial potential fields

• idea: build potential fields in C so that the point that represents the robot is attracted by the goal q_g and repelled by the C-obstacle region CO

• the total potential U is the sum of an attractive and a repulsive potential, whose negative gradient $-\nabla U(q)$ indicates the most promising local direction of motion

 \bullet the chosen metric in ${\mathcal C}$ plays a role

attractive potential

- objective: to guide the robot to the goal $oldsymbol{q}_g$
- two possibilities; e.g., in $\mathcal{C} = \mathbb{R}^2$

Oriolo: AMR - Motion Planning: Artificial Potential Fields

- paraboloidal: let $e = q_g q$ and choose $k_a > 0$ $U_{a1}(q) = \frac{1}{2} k_a e^T(q) e(q) = \frac{1}{2} k_a ||e(q)||^2$
- \bullet the resulting attractive force is linear in e

$$\boldsymbol{f}_{a1}(\boldsymbol{q}) = -\nabla U_{a1}(\boldsymbol{q}) = k_a \boldsymbol{e}(\boldsymbol{q})$$

• conical:

$$U_{a2}(\boldsymbol{q}) = k_a \|\boldsymbol{e}(\boldsymbol{q})\|$$

• the resulting attractive force is constant

$$\boldsymbol{f}_{a2}(\boldsymbol{q}) = -\nabla U_{a2}(\boldsymbol{q}) = k_a \frac{\boldsymbol{e}(\boldsymbol{q})}{\|\boldsymbol{e}(\boldsymbol{q})\|}$$

- f_{a1} behaves better than f_{a2} in the vicinity of q_g but increases indefinitely with e
- a convenient solution is to combine the two profiles: conical away from q_g and paraboloidal close to q_g

$$U_a(\boldsymbol{q}) = \begin{cases} \frac{1}{2} k_a \|\boldsymbol{e}(\boldsymbol{q})\|^2 & \text{if } \|\boldsymbol{e}(\boldsymbol{q})\| \le \rho \\ k_b \|\boldsymbol{e}(\boldsymbol{q})\| & \text{if } \|\boldsymbol{e}(\boldsymbol{q})\| > \rho \end{cases}$$

continuity of $oldsymbol{f}_a$ at the transition requires

$$k_a \boldsymbol{e}(\boldsymbol{q}) = k_b \frac{\boldsymbol{e}(\boldsymbol{q})}{\|\boldsymbol{e}(\boldsymbol{q})\|} \quad \text{for} \quad \|\boldsymbol{e}(\boldsymbol{q})\| = \rho$$

i.e., $k_b = \rho k_a$

repulsive potential

- \bullet objective: keep the robot away from \mathcal{CO}
- assume that CO has been partitioned in advance in convex components CO_i (otherwise...)
- for each \mathcal{CO}_i define a repulsive field

$$U_{r,i}(\boldsymbol{q}) = \begin{cases} \frac{k_{r,i}}{\gamma} \left(\frac{1}{\eta_i(\boldsymbol{q})} - \frac{1}{\eta_{0,i}} \right)^{\gamma} & \text{if } \eta_i(\boldsymbol{q}) \le \eta_{0,i} \\ 0 & \text{if } \eta_i(\boldsymbol{q}) > \eta_{0,i} \end{cases}$$

where $k_{r,i} > 0$; $\gamma = 2,3,...$; $\eta_{0,i}$ is the range of influence of \mathcal{CO}_i ; and $\eta_i(q)$ is the clearance

$$\eta_i(\boldsymbol{q}) = \min_{\boldsymbol{q}' \in \mathcal{CO}_i} \|\boldsymbol{q} - \boldsymbol{q}'\|$$

• in fact, the resulting repulsive force is

$$\boldsymbol{f}_{r,i}(\boldsymbol{q}) = -\nabla U_{r,i}(\boldsymbol{q}) = \begin{cases} \frac{k_{r,i}}{\eta_i^2(\boldsymbol{q})} \left(\frac{1}{\eta_i(\boldsymbol{q})} - \frac{1}{\eta_{0,i}}\right)^{\gamma-1} \nabla \eta_i(\boldsymbol{q}) & \text{if } \eta_i(\boldsymbol{q}) \le \eta_{0,i} \\ \\ 0 & \text{if } \eta_i(\boldsymbol{q}) > \eta_{0,i} \end{cases}$$

- $f_{r,i}$ is orthogonal to the equipotential contour passing through q and points away from the obstacle
- $f_{r,i}$ is continuous everywhere thanks to the convex decomposition of \mathcal{CO}
- \bullet aggregate repulsive potential of \mathcal{CO}

$$U_r(\boldsymbol{q}) = \sum_{i=1}^p U_{r,i}(\boldsymbol{q})$$

total potential

Oriolo: AMR - Motion Planning: Artificial Potential Fields

planning techniques

- three techniques for planning on the basis of f_t
 - I. consider f_t as generalized forces: $\tau = f_t(q)$ the effect on the robot is filtered by its dynamics (generalized accelerations are scaled) and `slow'
 - 2. consider f_t as generalized accelerations: $\ddot{q} = f_t(q)$ the effect on the robot is independent on its dynamics (generalized forces are scaled) and `slow'
 - 3. consider f_t as generalized velocities: $\dot{q} = f_t(q)$ the effect on the robot is independent on its dynamics (generalized forces are scaled) and `fast'

 technique I generates smoother movements, while technique 3 is faster (irrespective of robot dynamics) in realizing motion corrections; technique 2 gives intermediate results

• strictly speaking, only technique 3 guarantees (in the absence of local minima) asymptotic stability of q_g ; velocity damping is necessary to achieve the same with techniques 1 and 2

• off-line planning

paths in C are generated by numerical integration of the dynamic model (if technique 1), of $\ddot{q} = f_t(q)$ (if technique 2), of $\dot{q} = f_t(q)$ (if technique 3)

the most popular choice is 3 and in particular

$$\boldsymbol{q}_{k+1} = \boldsymbol{q}_k + T\boldsymbol{f}_t(\boldsymbol{q}_k)$$

i.e., the algorithm of steepest descent

on-line planning (is actually feedback!)
 technique I directly provides control inputs, technique
 2 too (via inverse dynamics), technique 3 provides
 reference velocities for low-level control loops

the most popular choice is 3

on-line implementation (disk robot + laser rangefinder)

- attractive potential (requires that the robot is localized)
- repulsive potentials only for obstacles that are currently perceived, with range of influence smaller than the maximum sensor range
- only the clearance w.r.t. the i-th obstacle is needed to compute $\boldsymbol{f}_{r,i}$

local minima: a complication

- if a planned path enters the basin of attraction of a local minimum *q_m* of *U_t*, it will reach *q_m* and stop there, because *f_t*(*q_m*) = −∇*U_t*(*q_m*) = 0; whereas saddle points are not an issue
- repulsive fields generally create local minima, hence motion planning based on artificial potential fields is not complete (the path may not reach q_g even if a solution exists)
- workarounds exist but keep in mind that artificial potential fields are mainly used for on-line motion planning, where completeness may not be required

workaround no. I: best-first algorithm

- build a discretized representation (by defect) of C_{free} using a regular grid, and associate to each free cell of the grid the value of U_t at its centroid
- build a tree T rooted at q_s : at each iteration, select the leaf of T with the minimum value of U_t and add as children its adjacent free cells that are not in T
- planning stops when q_g is reached (success) or no further cells can be added to T (failure)
- in case of success, build a solution path by tracing back the arcs from q_g to q_s

- best-first evolves as a grid-discretized version of steepest descent until a local minimum is met
- at a local minimum, best-first will "fill" its basin of attraction until it finds a way out
- the best-first algorithm is resolution complete
- its complexity is exponential in the dimension of C, hence it is only applicable in low-dimensional spaces
- efficiency improves if random walks are alternated with basin-filling iterations (randomized best-first)

workaround no. 2: navigation functions

- paths generated by the best-first algorithm are not efficient (local minima are not avoided)
- a different approach: build navigation functions, i.e., potentials without local minima
- if the C-obstacles are star-shaped, one can map \mathcal{CO} to a collection of spheres via a diffeomorphism, build a potential in transformed space and map it back to \mathcal{C}
- another possibility is to define the potential as an harmonic function (solution of Laplace's equation)
- all these techniques require complete knowledge of the environment: only suitable for off-line planning

- easy to build: numerical navigation function
- with C_{free} represented as a gridmap, assign 0 to goal cell, 1 to cells adjacent to the 0-cell, 2 to unvisited cells adjacent to 1-cells, ... (wavefront expansion)

Oriolo: AMR - Motion Planning: Artificial Potential Fields

workaround no. 3: vortex fields

- an alternative to navigation functions in which one directly assigns a force field (rather than a potential)
- the idea is to replace the repulsive action (which is responsible for appearance of local minima) with an action forcing the robot to go around the C-obstacle
- e.g., assume $C = \mathbb{R}^2$ and define the vortex field for CO_i as $\sqrt{\partial U_{r,i}}$

$$\boldsymbol{f}_{v} = \pm \left(egin{array}{c} rac{\partial U_{r,i}}{\partial y} \\ -rac{\partial U_{r,i}}{\partial x} \end{array}
ight)$$

i.e., a vector which is tangent (rather than normal) to the equipotential contours

- the intensity of the two fields is the same, only the direction changes
- if CO_i is convex, the vortex sense (CW or CCW) can be always chosen in such a way that the total field (attractive+vortex) has no local minima

- in particular, the vortex sense (CW or CCW) should be chosen depending on the entrance point of the robot in the area of influence of the C-obstacle
- vortex relaxation must be performed so as to avoid orbiting around the obstacle
- both these procedures can be easily performed at runtime based on local sensor measurements
- complete knowledge of the environment is not required: also suitable for on-line planning

artificial potentials for wheeled robots

- since WMRs are typically described by kinematic models, artificial potential fields for these robots are used at the velocity level
- however, robots subject to nonholonomic constraints violate the free-flying assumption
- as a consequence, the artificial force f_t cannot be directly imposed as a generalized velocity \dot{q}
- a possible approach: use f_t to generate a feasible \dot{q} via pseudoinversion

• the kinematic model of a WMR is expressed as

$$\dot{\boldsymbol{q}} = \boldsymbol{G}(\boldsymbol{q})\boldsymbol{u}$$

- since G is $n \times m$, with n > m, it is in general impossible to compute u so as to realize exactly a desired \dot{q}_{des}
- however, a least-squares solution can be used

$$\boldsymbol{u} = \boldsymbol{G}^{\dagger}(\boldsymbol{q}) \dot{\boldsymbol{q}}_{\mathrm{des}} = \boldsymbol{G}^{\dagger}(\boldsymbol{q}) \boldsymbol{f}_{t}$$

where

$$\boldsymbol{G}^{\dagger}(\boldsymbol{q}) = (\boldsymbol{G}^{T}(\boldsymbol{q})\boldsymbol{G}(\boldsymbol{q}))^{-1}\boldsymbol{G}^{T}(\boldsymbol{q})$$

 as an application, consider the case of a unicycle robot moving in a planar workspace; we have

$$\boldsymbol{G}(\boldsymbol{q}) = \begin{pmatrix} \cos\theta & 0\\ \sin\theta & 0\\ 0 & 1 \end{pmatrix} \Rightarrow \boldsymbol{G}^{\dagger}(\boldsymbol{q}) = \begin{pmatrix} \cos\theta & \sin\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

the least-squares solution corresponding to an artificial force $f_t = (f_{t,x} \ f_{t,y} \ f_{t,\theta})^T$ is then

$$v = f_{t,x} \cos \theta + f_{t,y} \sin \theta$$
$$\omega = f_{t,\theta}$$

v may be interpreted as the orthogonal projection of the cartesian force $(f_{t,x} \ f_{t,y})^T$ on the sagittal axis

- assume that the unicycle robot has a circular shape, so that its orientation is irrelevant for collision; and that the obstacles are polygonal
- one may build artificial potentials in a reduced $C' = \mathbb{R}^2$ with C'-obstacles simply obtained by growing the workspace obstacles by the robot radius
- in C', the attractive field pulls the robot towards (x_{g}, y_{g}) while repulsive fields push it away from the C'-obstacles (generalized polygons)
- since C' does not contain the orientation, the total field will not include a component $f_{t,\theta}$

• this degree of freedom can be exploited by letting

$$\omega = f_{t,\theta} = k_{\theta} \left(\operatorname{atan2}(f_{t,y}, f_{t,x}) - \theta \right)$$

whose rationale is to force the unicycle to align with the total field, so that f_t can be better reproduced

- overall, a feedback control scheme is obtained where v and ω are computed in real time from f_t
- assume w.l.o.g. $(x_g, y_g) = (0,0)$; close to the goal, where $f_t = f_a$, the controls become

$$v = -k_a(x\cos\theta + y\sin\theta)$$
$$\omega = k_\theta \left(\operatorname{Atan2}(-y, -x) - \theta\right)$$

i.e., a cartesian regulator! (see slides Wheeled Mobile Robots 5)

• results on unicycle (using vortex fields)

• can be applied to robots moving unicycle-like

motion planning for robot manipulators

- complexity of motion planning is high, because the configuration space has dimension typically $\geq\!\!4$
- try to reduce dimensionality: e.g., in 6-dof robots, replace the wrist with the total volume it can sweep (a conservative approximation)
- both the construction and the shape of \mathcal{CO} are complicated by the presence of revolute joints
- off-line planning: probabilistic methods are the best choice (although collision checking is heavy)
- on-line planning: adaptation of artificial potential fields

artificial potentials for robot manipulators

- to avoid the computation of CO and the "curse of dimensionality", the potential is built in W (rather than in C) and acts on a set of control points p₁,...,p_P distributed on the robot body
- in general, control points include one point per link $(p_1,...,p_{P-1})$ and the end-effector (to which the goal is typically assigned) as p_P
- the attractive potential U_a acts on p_P only, while the repulsive potential U_r acts on the whole set $p_1,...,p_P$; hence, p_P is subject to the total $U_t = U_a + U_r$

- two techniques for planning with control points:
 - I. impose to the robot joints the generalized forces resulting from the combined action of force fields

$$\boldsymbol{\tau} = -\sum_{i=1}^{P-1} \boldsymbol{J}_i^T(\boldsymbol{q}) \nabla U_r(\boldsymbol{p}_i) - \boldsymbol{J}_P^T(\boldsymbol{q}) \nabla U_t(\boldsymbol{p}_P)$$

where $J_i(q)$, i=1,...,P, is the Jacobian matrix of the direct kinematics function associated to $p_i(q)$

2. use the above expression as reference velocities to be fed to the low-level control loops

$$\dot{\boldsymbol{q}} = -\sum_{i=1}^{P-1} \boldsymbol{J}_i^T(\boldsymbol{q}) \nabla U_r(\boldsymbol{p}_i) - \boldsymbol{J}_P^T(\boldsymbol{q}) \nabla U_t(\boldsymbol{p}_P)$$

• technique 2 is actually a gradient-based minimization step in \mathcal{C} of a combined potential in \mathcal{W} ; in fact

$$\nabla \boldsymbol{q} \, U(\boldsymbol{p}_i) = \left(\frac{\partial U(\boldsymbol{p}_i(\boldsymbol{q}))}{\partial \boldsymbol{q}}\right)^T = \left(\frac{\partial U(\boldsymbol{p}_i)}{\partial \boldsymbol{p}_i}\frac{\partial \boldsymbol{p}_i}{\partial \boldsymbol{q}}\right)^T = \boldsymbol{J}_i^T(\boldsymbol{q})\nabla U(\boldsymbol{p}_i)$$

- technique I generates smoother movements, while technique 2 is faster (irrespective of robot dynamics) in realizing motion corrections
- both can stop at force equilibria, where the various forces balance each other even if the total potential U_t is not at a local minimum; hence, this method should be used in conjunction with some workaround

success

(with vortex field and folding heuristic for cw/ccw sense)

failure (with repulsive field)

