Autonomous and Mobile Robotics Prof. Giuseppe Oriolo

Motion Planning Probabilistic Methods

sampling-based methods

- build a roadmap of the configuration space \mathcal{C} by repeating this basic iteration:
- extract a sample \boldsymbol{q} of \mathcal{C}
- use forward kinematics to compute the volume $\mathcal{B}(\boldsymbol{q})$ occupied by the robot \mathcal{B} at \boldsymbol{q}
- check collision between $\mathcal{B}(\boldsymbol{q})$ and obstacles $\mathcal{O}_{1}, \ldots, \mathcal{O}_{p}$
- if $\boldsymbol{q} \in \mathcal{C}_{\text {free, }}$ add \boldsymbol{q} to the roadmap; else, discard it
- preliminary computation of $\mathcal{C O}$ is completely avoided: an approximate representation of $\mathcal{C}_{\text {free }}$ is directly built as a collection of connected configurations (roadmap)
- different criteria for sampling lead to different methods: in general, randomized outperforms deterministic

PRM (Probabilistic Roadmap)

- basic iteration to build the PRM:
- extract a sample \boldsymbol{q} of \mathcal{C} with uniform probability distribution
- compute $\mathcal{B}(\boldsymbol{q})$ and check for collision
- if $\boldsymbol{q} \in \mathcal{C}_{\text {free }}$, add \boldsymbol{q} to the PRM; else, discard it
- search the PRM for "sufficiently near" configurations $\boldsymbol{q}_{\text {near }}$
- if possible, connect \boldsymbol{q} to $\boldsymbol{q}_{\text {near }}$ with a free local path
- the generation of a free path between \boldsymbol{q} and $\boldsymbol{q}_{\text {near }}$ is delegated to a procedure called local planner: e.g., throw a linear path and check it for collision
- the chosen metric in \mathcal{C} plays a role in identifying $\boldsymbol{q}_{\text {near }}$
disconnected components
narrow passages are scarcely sampled
\mathcal{C}-obstacles are never computed
local
paths

- construction of the PRM is arrested when
I. disconnected components become less than a threshold, or

2. a maximum number of iterations is reached

- if \boldsymbol{q}_{s} and \boldsymbol{q}_{g} can be connected to the same component, a solution can be found by graph search; else, enhance the PRM by performing more iterations
- the PRM method is probabilistically complete, i.e., the probability of finding a solution whenever one exists tends to 1 as the execution time tends to ∞;and is multiple-query (new queries enhance the PRM)
- the main advantage is speed; the time PRM needs to find a solution in high-dimensional spaces can be orders of magnitude smaller than previous planners
- narrow passages are critical; heuristics may be used to design biased (non-uniform) probability distributions aimed at increasing sampling in such areas

RRT (Rapidly-exploring Random Tree)

- basic iteration to build the tree T_{s} rooted at \boldsymbol{q}_{s} :
- generate $\boldsymbol{q}_{\mathrm{rand}}$ in \mathcal{C} with uniform probability distribution
- search the tree for the nearest configuration $\boldsymbol{q}_{\text {near }}$
- choose $\boldsymbol{q}_{\text {new }}$ at a distance δ from $\boldsymbol{q}_{\text {near }}$ in the direction of $\boldsymbol{q}_{\text {rand }}$
- check for collision $\boldsymbol{q}_{\text {new }}$ and the segment from $\boldsymbol{q}_{\text {near }}$ to $\boldsymbol{q}_{\text {new }}$
- if check is negative, add $\boldsymbol{q}_{\text {new }}$ to T_{s} (expansion)
- the chosen metric in \mathcal{C} plays a role in identifying $\boldsymbol{q}_{\text {near }}$
- T_{s} rapidly covers $\mathcal{C}_{\text {free }}$ because the expansion is biased towards unexplored areas (actually, towards larger Voronoi regions)

RRT in empty 2D space

quickly explores all areas, much more efficiently than other simple strategies, e.g., random walks

- to introduce a bias towards \boldsymbol{q}_{g}, one may grow two trees T_{s} and T_{g}, respectively rooted at \boldsymbol{q}_{s} and \boldsymbol{q}_{g} (bidirectional RRT)
- alternate expansion and connection phases: use the last generated $\boldsymbol{q}_{\text {new }}$ of T_{s} as a $\boldsymbol{q}_{\text {rand }}$ for T_{g}, and then repeat switching the roles of T_{s} and T_{g}

- bidirectional RRT is probabilistically complete and single-query (trees are rooted at \boldsymbol{q}_{s} and \boldsymbol{q}_{g}, and in any case new queries may require significant work)
- many variations are possible: e.g., one may use an adaptive stepsize δ to speed up motion in wide open areas (greedy exploration)
- can be modified to address many extensions of the canonical planning problem, e.g., moving obstacles, nonholonomic constraints, manipulation planning

a benchmark problem: the Alpha Puzzle

- 6-dof configuration space + narrow passages
- solved by bidirectional RRT in few mins (average)
- in practice, this problem is not solvable by classical methods such as retraction or cell decomposition

RRT: extension to nonholonomic robots

- motion planning for a unicycle in $\mathcal{C}=\mathrm{R}^{2} \times S O(2)$

$$
\left(\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right)=\left(\begin{array}{c}
\cos \theta \\
\sin \theta \\
0
\end{array}\right) v+\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \omega
$$

- linear paths in \mathcal{C} such as those used to connect $\boldsymbol{q}_{\text {near }}$ to $\boldsymbol{q}_{\text {rand }}$ are not admissible in general
- one possibility is to use motion primitives, i.e., a finite set of admissible local paths, produced by a specific choice of the velocity inputs
- for example, one may use (Dubins car)

$$
v=\bar{v} \quad \omega=\{-\bar{\omega}, 0, \bar{\omega}\} \quad t \in[0, \Delta]
$$

resulting in 3 possible paths in forward motion

- the algorithm is the same with the only difference that $\boldsymbol{q}_{\text {new }}$ is generated from $\boldsymbol{q}_{\text {near }}$ selecting one of the possible paths (either randomly or as the one that leads the unicycle closer to $\boldsymbol{q}_{\text {rand }}$)
- if \boldsymbol{q}_{g} can be reached from \boldsymbol{q}_{s} with a collision-free concatenation of primitives, the probability that a solution is found tends to 1 as the time tends to ∞

solution path made by concatenation

