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EKF localization with landmarks

e assume that a unicycle-like robot is equipped with a
sensor that measures range (relative distance) and
bearing (relative orientation) to certain landmarks

e landmarks may be artificial or natural
e the position of the landmarks is fixed and known

e depending on the robot configuration, only a subset of
the landmarks is actually visible

e suitable sensors are laser rangefinders, depth cameras
or RFID sensors
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e odometric equations can be used as a discrete-time
model of the robot; e.g., using Euler method

Th4+1 = Tk T v scos O + U1 .k

Yk+1 = Yk + vkdsSn O + v i
9A7+1 — 9/{ + w,lﬂ'TS‘ + U3 [

where v = (v v2.x v3%)T is a white gaussian noise
with zero mean and covariance matrix V%

e assume that L landmarks are present, and denote by
(x1,1,y14) the position of the i-th landmark

o let Lrx<L be the number of landmarks that the robot
can actually see at step k
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e each of the L; measurements actually contains two
components, i.e.,a range component and a bearing
component

* assume that for each measurement the identity of
observed landmark is known (landmarks are tagged,
e.g., by shape, color or radio frequency)

e we build the association map of step £

a:{1,2,.... Ly}t — {1,2,..., L}

measurements landmarks

hence, a(7) is the index of the landmark observed by
the :-th measurement
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e the output equation is

hl(qka(1)> W1k
hLAz<qk?a(Lk)> Wy, , k

where |
1-th landmark range

v
\/(xk — gjl,a(i))Q T (yk — yl,a(i)>2

atanz(yl,a(z’) — Yk Lla(i) — r) — Ok

h (qu a(l)> —

1-th landmark bearing

and wi = (wik ... wi, k)T is a white gaussian noise
with zero mean and covariance matrix W
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e we want to maintain an accurate estimate of the
robot configuration in the presence of process and
measurement noise: this is the ideal setting for KF

e actually, since both process and output equations are
nonlinear, we must apply the EKF and, to this end, the

equations must be linearized

* process dynamics linearization

Fk? af

a 8qk

1 0 —vpTssin by
0 1 wpTscosB
0 O 1
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* output equation linearization
Oh+

0q,. A
T 9=y 1)k

Ohp,
aqk quQk—l-llk

Tr41|k—T1,a(s) Uk4+1|k—Yl,a(i) 0
Oh; V @11k —T1,a(i)) 2+ Ort11k—Ya))?  V Ert11k—T1,a0)) >+ Okt 1 1k —Y1,a(:))?
qu qk:qk-l-l[k —(yk-|—12|k—?AJl,a(z’)) 5 fi:k—l—l”gc_mf,a(i) ; 1
(Trt11k—T1,a(i)) T (Uk+1|k—Yi1,a(s)) (Tht116—T1,a(i)) T (U1 —Yi,a(s))

* at this point, just crank the EKF engine
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a typical resuit
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data association

e remove the hypothesis that the identity of each
observed landmark is known: in practice, landmarks
can be undistinguishable by the sensor

e the association map must be estimated as well

¢ basic idea: associate each observation to the landmark
that minimizes the magnitude of the innovation

e at the k+1-th step,consider the 7-th measurement
Y:.r+1 and compute all the candidate innovations

Vij = Yi k1 — hfz.(qAquLl]k::j)

actual expected measurement if y; i+1
measurement  referred to the j-th landmark
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e the smaller the innovation v;;, the more likely that the
1-th measurement corresponds to the j-th landmark

* however, the innovation magnitude must be weighted
with the uncertainty of measurement;in the EKEF this
is encoded in the matrix

Sij=H;(k+1,7)Ppy1.H;(k+ 1g]‘)T + Wikt
/ /

measurement uncertainty = measurement uncertainty
due to prediction uncertainty due to sensor noise

e to determine the association function, let
.. — g1
Xij = ViS5 Vi
and let a(i) = j, where j minimizes Y;
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EKF localization on a map

e assume that a metric map M of the environment is
known to the robot

e this may be a line-based map or an occupancy grid
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(taken from:Arras, “Feature-based robot navigation
in known and unknown environments”, 2003)
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e assume that the robot is equipped with a range finder;
e.g., a laser sensor, whose typical scan looks like this
(note the uncertainty intervals)
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e use the whole scan as output vector: its components
are the range readings in all available directions
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e the innovation is then computed as the difference
between the actual scan and the predicted scan

Vi+1l = Yp41 — h<&k+1\lc= M)

where h( ) computes the predicted scan by placing
the robot at a configuration in the map

e note that no data association is heeded; on the other
hand, aliasing may severely displace the estimate

e both the process dynamics (i.e., the robot kinematic
model) and the output function h are nonlinear, and
therefore the EKF must be used
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a typical resuit
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EKF SLAM

e remove the hypothesis that the environment is known
a priori: as it moves, the robot must use its sensors to
build 2 map and at the same time localize itself

e SLAM: Simultaneous Localization And Map-building

e in probabilistic SLAM, the idea is to estimate the map
features in addition to the robot configuration

e here we discuss a simple landmark-based version of
the problem which can be solved using KF or EKF
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® assumptions:

- the robot is an omnidirectional point-robot, whose
configuration is then a cartesian position

- . landmarks are distributed in the environment
(their position is unknown)

- the robot is equipped with a sensor that can see,
identify and measure the relative position of all
landmarks wrt itself (infinite FOV + no occlusions)

e define an extended state vector to be estimated

Y Y Y T
r=(rxy xnyn ... T YiL)
robot landmark | landmark L
position  position position
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e since the landmarks are fixed, the discrete-time model
of the robot+landmarks system is (15s=1 w.l.o.g.)
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where u; 1 and uy i are the robot velocity inputs while
Vayk = (Vzk Uy k)T is a white gaussian noise with zero
mean and covariance matrix Vi«
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e this is clearly a linear model of the form

Ti+1 = Az + Buy + vy,

where ur = (uzk uy k)T is the input vector while
vr = (Vik U2,k ... V2421.%) T is a white gaussian noise
with zero mean and covariance matrix

V:z?,y,k J ... 0
0 ) ... 0

Vi = |
0 0 ... 0

Oriolo: AMR - Localization - Landmark-based and SLAM 20



e the 7-th measurement contains the relative position of
the 2-th landmark wrt the sensor

[ Llik — Lk
| Ylii.k — Yk

where w; 1 is 2 white gaussian noise with zero mean
and covariance matrix Wi

e it is a linear equation

Yik — C’imk T Wi

-1 0 0 ... 0
C"‘( .0

with

0 0 ... 0
0 —1 0 I 0 ... 0

h column

>O =

(2i+1)-
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e stack all measurements to create the output vector

Y — ka. + W
where

CL Wiy, k

and the covariance of the measurement noise is

Wl,ls 0 RPN )
0 W‘Z’A’. . o )
Wk: —
0 0 ... Wp,

* at this point, just crank the KF engine
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how realistic is KF/EKF localization?

e KF/EKF assume that the probability distribution for
the state is unimodal, and in particular a gaussian

e this requires an accurate estimate of the robot initial
configuration and also relatively small uncertainties
(position tracking problem)

e however, if the robot is released at an unknown (or
poorly known) position, the probability distribution
for the state becomes multimodal in the presence of
aliasing (kidnapped robot problem)
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: Bayesian estimators

S s (e.g., particle filters)
must be used
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