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e recall: estimating the robot configuration by iterative
integration of the kinematic model (dead reckoning) is
subject to an error that diverges over time

o effective localization methods use proprioceptive as
well as exteroceptive sensors: if an environment map
is known, compare the actual sensor readings with
those predicted using the current estimate

e probabilistic localization: instead of maintaining a single
hypothesis on the configuration, maintain a probability
distribution over the space of all possible hypotheses

e one possible approach: use a Kalman Filter
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a typical dead reckoning result
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basic concepts

e given a vector random variable X with probability
density function fx(ax), its expected (or mean) value is

EF(X)=X = /ace]R zf x (z)dx

e [tS covariance matrix is
Px =E((X-X)X-X)")

e X has a multivariate gaussian distribution if

1 —l(w—X)TP_l(a:—X)

e 2 X
v (2m)" P x|
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e geometric interpretation
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e the principal axes are directed as the eigenvectors of Px

e their squared relative lengths are given by the corresponding
eigenvalues
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Kalman Filter ..without noise

e consider a linear discrete-time system without noise
Ll+1 — Akwk + Bkukz

e build a recursive observer that computes an estimate
Z )41 of xp+1 from wuk, yr+1 and previous estimate ),

e two steps:

|. prediction: generate an intermediate estimate ;. |, by
propagating ;. using the process dynamics

2. correction (update): correct the prediction on the basis of the
difference between the measured and the predicted output
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e prediction
mkﬁ—f—l\kﬁ — Ak.mk - Bktukt

assuming that we know Aj, Biand us

e correction: to be consistent with the measured value
of the output, i1 must belong to the hyperplane

R={z : Crpiz= ykz+1}
hence the correction Ax must satisfy

Ck,—f—l(:%k—}—llk 1 ACL’) — yk—‘,—l
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e geometric interpretation
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: possible
corrections

“beSt”
correction

intuitively, the “best” correction Ax is the closest to
the prediction, which we believe is accurate
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e Ax is then the solution of an optimization problem
min || Ax||
s.t. Crp1de =y — Crp1@pp

e it is well known that

A\ L "'
Ax = Ck+l(yk+1 CA:+1€L’A:+1|1g) — Ckz+1’/k+1
where

CA+1 CA_H<CA—|—1CA+1) pseudoinverse of C

note that we have assumed C}1 to be full row rank
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e wrapping up, the resulting two-step observer is
Tk = ArTr + Bruy
A i
Lk+1 = LE+1|k T CA3+1VA?+1

e in general, the estimate x;. ;1 will not converge to the

true value x; ., because the correction is naive:
estimation errors directed as {2 are not corrected

e we need to modify the above structure to take into
account the presence of noise;in doing so, we will fix
the above problem
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Kalman Filter ...with process noise only

e now include process noise
T = Apxy + Bruy + vy,

where vy is a white gaussian noise with zero mean
and covariance matrix Vi

e since this is now a random process, we estimate both
the state .1 and the associated covariance P

e we keep the prediction/correction structure
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e state prediction: as before

L1k = Akwkr =+ Bktuk:
because vi has zero mean

e covariance prediction: by definition

o T
Pk = (Tht1 — Thgr 1) (Tht1 — Trg1jr) )

E ((

E ((Ag(zy — ) + vi) (Ag(z) — 23) + ) ")
(AL x), — xp)(T) — ii?k)TAAT) +

(AL () — a:k)vk + VL ((Ek — iA)TAA )) + E (’Uk’UZ)

e now use the linearity of I plus the independence of
vr on i and x,. = the second term in the rhs is zero
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e finally the covariance prediction is
Py = AE ((m, — @) (xp, — 2)" ) Aj, + E (vv))
— A/\PI\A{ Vi

e state correction: we should choose Ax so as to get
the most likely @ in (2, i.e., the & that maximizes the
gaussian distribution defined by x|, and P,

1

" T —1 -
_E(w — $k+1\k) Pk+1\k(w - m’f"HV")

p(x) = —F—— €
\/(277)'2' Pk+1|k|

p(x) is maximized when the exponent is minimized
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e define the (squared) Mahalanobis distance

AmTPA—H\A x = || Az||3,

o Ax is the solution of a new optimization problem
min || Ax|| 5

.t Cr1AT = Ypy ) — Crp1 gtk
e it is well known that
_ - _ T
Ax =C) ) y(Upsr — Copr®ran) = Cloy Vi

where C’,\Jrl 1/ is the weighted pseudoinverse of C' 4

Ck+l M — PA+1|ACA+1(CA—|—1PA+1\LCA—|—1>
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e geometric interpretation

(2
A ellipses: sets of points equidistant
\ f from &) in terms of ||-||u
L1
(‘best”
correction

the “best” correction is the closest to the prediction
according to the current covariance estimate
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e covariance correction: using the covariance matrix
definition and the state correction one obtains

_ i
Pk—l—l — Pl{.—l—l‘k — C]{,_FL]\[Ck—l—lPk—f—lMt

e wrapping up, the resulting two-step filter is

L1k = Akil?k - Bktukt
T
Pli?—I—l“i? — A/-{,Pk.A,l; 1 Vk:

S
+
—
|

Y T
mk‘f‘ﬂk T CA:+1,]\[VA?+1
_ i
Pk—H o Pk""l‘k o CkTJrl,J\[Ck—HPk—i—l\kz

e problem: no measurement noise = the covariance
estimate will become singular (no uncertainty in the
normal direction to the measurement hyperplane)
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Kalman Filter ...full

e finally include also measurement (sensor) noise
L+1 — Akmkz + Bktukt + UV
Y. — Ckmkﬁ + Wi

where v, wi are white gaussian noises with zero
mean and covariance matrices Vi, Wi

e the dynamic equation is unchanged, therefore the
predictions are the same

ajk:—l—l\kt — Ali?','EliT + Bk:uk:
T
Pkﬁ—i—l\k — AA?PA‘,Ak T Vk:
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e state correction: due to the sensor noise, the output
value is no more certain; we only know that yx 1 is
drawn from a gaussian distribution with mean value
Ci+1 xr+1 and covariance matrix Wi

e first we compute the most likely output value y;. . ,
given the predictions and the measured output Y1

e then compute the associated most likely hyperplane

()" = {"L‘ . Ck+1fI5 — y}i+1}

e finally compute the correction Ax as before but using
(2" in place of (2

Oriolo: AMR - Localization - Kalman Filter



e geometric interpretation

. “most likely”
) (2" hyperplane
€9 Q\

“measured”
hyperplane
>

L1

“best”
correction

the “best” correction is still the closest to @, 1|
according to Pi+1k, but now it lies on (2°
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e the resulting Kalman Filter (KF) is
Tk = Arxr + Brug
Piip = Ay P AL + V),
Lh+1 = i%k+1|k + Ry 141
Pk’—l—l — Plc—{—l\k: — Rkﬁ—l—lck’,—l—lpk—{-l\kr
with the Kalman gain matrix
Rii1 = Pr1kChi1(Cri1 Pry1xChrsy + Wiyy) ™!

e matrix IR weighs the accuracy of the prediction vs.
that of the measurements

- R “large”: measurements are more reliable
- R “small”: prediction is more reliable
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e the KF provides an optimal estimate in the sense that
E(xgi1 — xrr1) is minimized for each k

e the KF is also correct, i.e., it provides mean value and
covariance of the posterior gaussian distribution

e if the noises have non-gaussian distributions, the KF is
still the best linear estimator but there might exist
more accurate nonlinear filters

e if the process is observable, the estimate produced by

the KF converges, in the sense that F(xx+1 — Tp11)
is bounded for all £
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Extended Kalman Filter

e consider a nonlinear discrete-time system with noise
Ll+1 — fk:(ajkta uk) + UV
Yy, = hp(xr) + wy

where fi and hi are continuously differentiable for
each £

* one simple way to build a filter is to linearize the
system dynamic equations around the current
estimate and then apply the KF equations to the
resulting linear approximation
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e the resulting Extended Kalman Filter (EKF) is

LE4+1|k = fk(wk’auk)
T
P = FprPpFy, +Vy

Tip+1 = Tp41)k + BtV
Py =P — R Hig 1 P,
with
F. — afk ahk‘l'l
k — am ) Hk+1 — a
Tr=2I, £

and the gain matrix

L=L 11|k

T T 1
R 1 =PrH) (Hp1 Pryy Hy ) +Wiy)
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