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• probabilistic localization: instead of maintaining a single 
hypothesis on the configuration, maintain a probability 
distribution over the space of all possible hypotheses

• recall: estimating the robot configuration by iterative 
integration of the kinematic model (dead reckoning) is 
subject to an error that diverges over time

• effective localization methods use proprioceptive as 
well as exteroceptive sensors: if an environment map 
is known, compare the actual sensor readings with 
those predicted using the current estimate 

• one possible approach: use a Kalman Filter



Oriolo:  AMR - Localization - Kalman Filter 3

a typical dead reckoning result
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basic concepts

• given a vector random variable X   with probability 
density function fX(x), its expected (or mean) value is

• its covariance matrix is

•X    has a multivariate gaussian distribution if
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• geometric interpretation

equidensity contours
are ellipsoids

X
–

• the principal axes are directed as the eigenvectors of PX


• their squared relative lengths are given by the corresponding 
eigenvalues
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Kalman Filter ...without noise

• consider a linear discrete-time system without noise

• build a recursive observer that computes an estimate
        of xk+1 from uk, yk+1 and previous estimate

• two steps:

1. prediction: generate an intermediate estimate            by 
propagating      using the process dynamics

2. correction (update): correct the prediction on the basis of the 
difference between the measured and the predicted output
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• correction: to be consistent with the measured value 
of the output, xk+1 must belong to the hyperplane

hence the correction ¢x must satisfy

• prediction

assuming that we know Ak, Bk and uk
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• geometric interpretation

intuitively, the “best” correction ¢x  is the closest to 
the prediction, which we believe is accurate

possible
corrections

“best”
correction
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• ¢x is then the solution of an optimization problem

• it is well known that

where          

pseudoinverse of

innovation

note that we have assumed Ck+1 to be full row rank          
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• in general, the estimate          will not converge to the 
true value          because the correction is naive: 
estimation errors directed as     are not corrected 
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• wrapping up, the resulting two-step observer is

• we need to modify the above structure to take into 
account the presence of noise; in doing so, we will fix 
the above problem
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Kalman Filter ...with process noise only

• since this is now a random process, we estimate both 
the state xk+1 and the associated covariance Pk+1

• now include process noise

where vk is a white gaussian noise with zero mean 
and covariance matrix Vk

• we keep the prediction/correction structure
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• state prediction: as before

because vk  has zero mean

• covariance prediction: by definition

• now use the linearity of E plus the independence of 
vk  on     and      )  the second term in the rhs is zero     
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• finally the covariance prediction is

p(x) is maximized when the exponent is minimized

• state correction: we should choose ¢x  so as to get 
the most likely x in    , i.e., the x that maximizes the 
gaussian distribution defined by            and  
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• define the (squared) Mahalanobis distance

• ¢x is the solution of a new optimization problem

• it is well known that

where              is the weighted pseudoinverse of 
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• geometric interpretation

the “best” correction is the closest to the prediction 
according to the current covariance estimate

“best”
correction

ellipses: sets of points equidistant
from            in terms of ||·||M      
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• covariance correction: using the covariance matrix 
definition and the state correction one obtains

• wrapping up, the resulting two-step filter is

• problem: no measurement noise )  the covariance
estimate will become singular (no uncertainty in the 
normal direction to the measurement hyperplane)
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Kalman Filter ...full

• finally include also measurement (sensor) noise

where vk, wk are white gaussian noises with zero 
mean and covariance matrices Vk, Wk

• the dynamic equation is unchanged, therefore the 
predictions are the same
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• state correction: due to the sensor noise, the output 
value is no more certain; we only know that yk+1 is 
drawn from a gaussian distribution with mean value 
Ck+1 xk+1 and covariance matrix Wk+1

18

• first we compute the most likely output value      
given the predictions and the measured output yk+1 

• then compute the associated most likely hyperplane

• finally compute the correction ¢x      as before but using 
in place of
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• geometric interpretation

“best”
correction

“most likely”
hyperplane

“measured”
hyperplane

the “best” correction is still the closest to 
according to Pk+1|k, but now it lies on 
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• matrix R weighs the accuracy of the prediction vs. 
that of the measurements

- R  “large”: measurements are more reliable
- R  “small”: prediction is more reliable

• the resulting Kalman Filter (KF) is

with the Kalman gain matrix 
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• the KF is also correct, i.e., it provides mean value and 
covariance of the posterior gaussian distribution

• the KF provides an optimal estimate in the sense that 
                          is minimized for each k 

• if the noises have non-gaussian distributions, the KF is 
still the best linear estimator but there might exist 
more accurate nonlinear filters

• if the process is observable, the estimate produced by 
the KF converges, in the sense that                                
is bounded for all k
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Extended Kalman Filter

• consider a nonlinear discrete-time system with noise

• one simple way to build a filter is to linearize the 
system dynamic equations around the current 
estimate and then apply the KF equations to the 
resulting linear approximation

where fk and hk are continuously differentiable for 
each k
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with

• the resulting Extended Kalman Filter (EKF) is

and the gain matrix 


