
Autonomous and Mobile Robotics
Solution of Midterm Class Test, 2016/2017

Solution of Problem 1

1. The augmented configuration vector is q = (x y θ φ)T , with the usual meaning for
x, y, θ. The configuration space is IR2 × SO(2)× SO(2) and has dimension n = 4.

2. Since the wheel rotation φ is a generalized coordinate, the driving angular velocity
ωφ = φ̇ can be directly taken as the first velocity input in place of v. The latter will
then be obtained as v = Rωφ, where R is the wheel radius. As usual, the second
velocity input will be the steering angular velocity ωθ = θ̇. This leads to the following
kinematic model:

ẋ = Rωφ cos θ
ẏ = Rωφ sin θ

θ̇ = ωθ
φ̇ = ωφ

i.e., q̇ =


R cos θ
R sin θ

0
1

ωφ +


0
0
1
0

ωθ = g1(q)ωφ + g2(q)ωθ

The same model could have been obtained by the classical approach, i.e., writing down
the kinematic constraints and solving for the generalized velocities q̇. In this case,
there are two such constraints: one is pure rolling, and the other is the relationship
v = Rωφ, which can be indeed rewritten as a kinematic constraint as follows√

ẋ2 + ẏ2 −R φ̇ = 0 (∗)

However, this constraint is not linear in q̇; therefore, the usual procedure (find a basis
for the null space of the constraint matrix) cannot be applied. One should first solve
the pure rolling constraint (which is linear) and then use (∗) in the partial solution.
This is equivalent to the direct augmentation procedure illustrated above.

As an alternative, one may note that v = v (cos2 θ + sin2 θ) = ẋ cos θ + ẏ sin θ, so that
v = Rωφ can be rewritten as

ẋ cos θ + ẏ sin θ −R φ̇ = 0 (∗∗)

which is linear in q̇. Correspondingly, the constraint matrix accounting for pure rolling
and (∗∗) becomes (

sin θ − cos θ 0 0
cos θ sin θ 0 −R

)
whose null space is spanned by the above vector fields g1 and g2.

3. To study controllability, we use the accessibility rank condition. One easily obtains

[g1, g2] =


R sin θ
−R cos θ

0
0

 ∆
= g3 [g1, g3] =


0
0
0
0

 [g2, g3] =


R cos θ
R sin θ

0
0

 ∆
= g4



Controllability is then proven by noting that

rank
(
g1 g2 g3 g4

)
= rank

(
g3 g4 g1 g2

)
= rank


R sin θ R cos θ R cos θ 0
−R cos θ R sin θ R sin θ 0

0 0 0 1
0 0 1 0

 = 4

because the determinant of the last matrix is −R2 (the determinant of a block trian-
gular matrix is the product of the determinants of the block on the diagonal).

4. To move the robot from qs = (xs, ys, θs, φs) to qg = (xg, yg, θg, φg), first take care of
x, y, θ as follows: (1) rotate the wheel around the vertical axis until sagittal axis goes
through (xg, yg); (2) drive the contact point in a straight line from (xs, ys) to (xg, yg);
and (3) rotate the wheel around the vertical axis so as to achieve the desired orientation
θg. The final step is to change the wheel angle from φ3 (its value at the end of step
3) to φg. This may be obtained by (4) moving the contact point along a circle, so
that x, y, θ will go back to xg, yg, θg. In particular, the wheel angle variation along
the full circle must match ∆φ = φg − φ3; denoting by r the circle radius, this requires
2π r = R∆φ, from which we get r = R∆φ/2π.



Solution of Problem 2

The (2,3) chained form is

z′1 = ṽ1

z′2 = ṽ2

z′3 = z2 ṽ1

Note the use of the geometric version of the kinematic model (derivatives w.r.t. s and ge-
ometric inputs) because we are assigned a path planning problem. The problem may be
solved by using either flat outputs or parameterized inputs; for a (2,3) chained form, the
resulting path will be the same (see “Robotics: Modelling, Planning and Control”, Problem
11.12). Let us choose the first route because it provides the required configuration space
path without integration.

The flat outputs are z1, z3. Using the third and the first equation, the remaining state
variable can be reconstructed as z2 = z′3/z

′
1. We must therefore choose z1(s) and z3(s),

s ∈ [si, sf ], so as to satisfy their endpoint conditions

z1(si) = z3(si) = 0 z1(sf ) = z3(sf ) = 1

as well as the boundary conditions on z2

z′3(si)

z′1(si)
= 0

z′3(sf )

z′1(sf )
= 1

Several choices are possible. For example, letting s ∈ [0, 1], we can use a 1st-order polynomial
for z1 and a 3rd-order polynomial for z3

z1(s) = a1s+ b1

z3(s) = a2s
3 + b2s

2 + c2s+ d2

whose derivatives w.r.t. to s are

z′1(s) = a1

z′3(s) = 3 a2s
2 + 2 b2s+ c2

By imposing the previous conditions, one finds

z1(s) = s

z3(s) = −s3 + 2s2

and correspondingly

z2(s) =
z′3(s)

z′1(s)
= −3s2 + 4s



Solution of Problem 3

1. The output variable is x. According to the unicycle equations, we have directly

ẋ = v cos θ

This simple, scalar input-output map can be linearized by using the input transforma-
tion v = u/cos θ, where u is the new input. This leads to

ẋ = u

and therefore it is sufficient to set u = kx(xd − x) (i.e., v = kx(xd − x)/ cos θ) to drive
exponentially the output to xd, provided that kx > 0.

So far, the steering velocity ω is free. We can use it to keep the robot parallel to the
corridor, so that it will not collide with the lateral walls. Since we have

θ̇ = ω

the control law ω = −kθ θ, with kθ > 0, will drive the robot orientation θ exponentially
to zero. Assuming1 that |θ(0)| < π/2, this will also guarantee that |θ| < π/2 at
all times, so that the input transformation for v is never affected by the potential
singularity.

2. To implement the previous controller, we need real-time estimates of x and θ, but not
of y. Also, the two sensor measurements (θ and d) do not depend on y. Therefore,
we can restrict our attention to first and third equations of the unicycle, and build a
two-dimensional filter.

Using, e.g., Euler integration, the noise-free discrete-time model (process dynamics) is
easily obtained as

xk+1 = xk + vk Ts cos θk

θk+1 = θk + ωk Ts

where Ts is the sampling interval. As usual, the discrete-time velocity inputs vk and
ωk can be reconstructed from wheel encoder readings (see, e.g., the formulas in the
AMR slides on ‘Odometric Localization’).

The noise-free output equation (measurement model) is

hk =

(
θk

`− xk

)
where we have used the fact that d = `−x thanks to the placement of the world frame.

The rest of the solution is straightforward: linearize the process dynamics (note that
the measurement model is already linear) and then derive the EKF equations.

1This condition can always be achieved by a preliminary rotation on the spot.


