
Autonomous and Mobile Robotics
Solution of Midterm Class Test, 2015/2016

Solution of Problem 1

1. A convenient choice of generalized coordinates is q = (x y θ φ γ)T (see figure). The dimension of the
configuration space is n = 5.

Both two-wheel axles can be assimilated to a single wheel located at the axle midpoint. The equivalent
robot has then two wheels: the front wheel, which can be steered, and the rear wheel, which can be steered
and driven. The k = 2 kinematic constraints acting on the robot are therefore (one pure rolling condition
for each wheel):

ẋ sin(θ + γ)− ẏ cos(θ + γ) = 0 (1)

ẋf sin(θ + φ)− ẏf cos(θ + φ) = 0, (2)

where (xf , yf ) are the Cartesian coordinates of the front axle midpoint. Denoting by ` the distance between
the two axle midpoints, we have xf = x+ ` cos θ and yf = y+ ` sin θ. By using these, constraint (2) can be
rewritten as follows

ẋ sin(θ + φ)− ẏ cos(θ + φ)− θ̇ ` cosφ = 0. (3)

Constraints (1) and (3) can be put in Pfaffian form:

(
sin(θ + γ) − cos(θ + γ) 0 0 0
sin(θ + φ) − cos(θ + φ) −` cosφ 0 0

)
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q̇ = AT (q)q̇ = 0.

Since AT is a 2×5 (k × n) matrix, its null space has dimension 5− 2 = 3. By inspection, a basis of N (AT )
can then be easily written as
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where α in g1(q) must be such that aT2 (q) g1(q) = 0. An easy computation provides

α =
sin(φ− γ)

` cosφ
.

The kinematic control system of the Cycab is then

q̇ = g1(q) v + g2(q)ωf + g3(q)ωr,

where v is the driving1 velocity and ωf , ωr are steering velocities of the front and rear wheels, respectively.
The model can be written in a more explicit format as

ẋ = v cos(θ + γ) (4)

ẏ = v sin(θ + γ) (5)

θ̇ = v
sin(φ− γ)

` cosφ
(6)

φ̇ = ωf (7)

γ̇ = ωr. (8)

2. Controllability of the Cycab can be established by computing Lie Brackets of the input vector fields and
using the accessibility rank condition. Alternatively, one may prove controllability of the Cycab constructively
relying on controllability of the car-like robot. In fact, the following maneuver can be used to steer the Cycab
between two arbitrary configurations q1 = (x1 y1 θ1 φ1 γ1)T and q2 = (x2 y2 θ2 φ2 γ2)T :

1. rotate the rear wheels from γ1 to zero using the ωr command;

2. drive the Cycab from (x1 y1 θ1 φ1 0)T to (x2 y2 θ2 φ2 0)T keeping γ ≡ 0 by setting ωr to zero
(a trajectory for doing this certainly exists, because the Cycab with γ ≡ 0 becomes a car-like robot,
which is controllable);

3. rotate the rear wheels from zero to γ2 using the ωr command.

Solution of Problem 2

Since we are only interested in controlling θ, we may take it as output and try to perform input-output
linearization. The time derivative of θ is directly given by (6)

θ̇ = v
sin(φ− γ)

` cosφ
.

Only one input appears (the driving velocity v) but this is sufficient because the output is scalar. In fact,
by using the input transformation

v =
` cosφ

sin(φ− γ)
u, (9)

we obtain a linear map between the derivative of the output and the new input u:

θ̇ = u.

This simple integrator dynamics can be made globally asymptotically stable around the desired output
trajectory θd(t) by letting

u = θ̇d + k(θd − θ).
The control law in terms of the original input v is readily obtained by using the last expression of u in (9).

Note that the input transformation (9) becomes singular when φ = γ. This singularity can be easily
avoided by properly choosing the other two control inputs ωf and ωr, which are not used by the input-
output linearization controller. In particular, if at the initial instant t0 we have φ0 6= γ0, it is sufficient to
set ωf = ωr = 0 to guarantee that the singularity is never met. If instead φ0 = γ0, one may perform a brief
burst of duration ε with one of two steering velocities so as to achieve φε 6= γε; and then set ωf = ωr = 0.

1In fact, one may verify that ẋ2 + ẏ2 = v2. Other kinematic models can be written choosing a different g1, but this is the
only choice appropriate for rear-wheel drive.
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Solution of Problem 3

A straightforward approach for designing the required localization system is to use an Extended Kalman
Filter.

The discrete-time nonlinear model of the Cycab (process dynamics) is easily obtained from (4–8) using
Euler integration

xk+1 = xk + vk Ts cos(θk + γk)

yk+1 = yk + vk Ts sin(θk + γk)

θk+1 = θk + vk Ts
sin(φk − γk)

` cosφk
φk+1 = φk + ωf,kTs

γk+1 = γk + ωr,kTs.

where Ts is the sampling interval. As usual, the discrete-time velocity inputs vk and ωk can be reconstructed
from wheel encoder readings (see, e.g., the formulas in the AMR slides ‘Odometric Localization’).

Denote by (xc, yc) the Cartesian coordinates of the charging station, which represents the landmark
used by our localization system. Since at time tk the sensor is located at (xk, yk), the output equation
(measurement model) is

hk =
√

(xk − xc)2 + (yk − yc)2.

The rest of the solution is trivial: linearize the process dynamics and measurement model and then derive
the EKF equations.
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