
Autonomous and Mobile Robotics
Solution of Final Class Test, 2013/2014

Solution of Problem 1

Substituting the first and second model equations into the third, one immediately obtains the underlying
differential constraint

x2ẋ1 − x1ẋ2 + ẋ3 = 0 or
(
x2 −x1 1

) ẋ1
ẋ2
ẋ3

 = 0

As for system controllability, calling g1 = (1 0 − x2)T and g2 = (0 1 x1)T the two input vector fields,
their Lie Bracket is easily obtained as

[g1, g2] =

 0
0
2

 .

Since [g1, g2] is always linearly independent on g1 and g2, the accessibility rank condition is satisfied and
the system is controllable. This also means that the above differential constraint is nonholonomic.

Coming to the last question, a Lie Bracket control maneuver consists in the following control sequence

u(t) =


u1(t) = +1, u2(t) = 0 t ∈ [0, ε)
u1(t) = 0, u2(t) = +1 t ∈ [ε, 2ε)
u1(t) = −1, u2(t) = 0 t ∈ [2ε, 3ε)
u1(t) = 0, u2(t) = −1 t ∈ [3ε, 4ε),

where ε is a small time interval. Denoting by (x10 x20 x30)T the initial system state, integration of the
system equations over the first time interval [0, ε] easily gives

x1(ε) = x10 + ε

x2(ε) = x20

x3(ε) = x30 − ε x20.

Similarly, integrating over the second time interval [ε, 2ε] we get

x1(2ε) = x10 + ε

x2(2ε) = x20 + ε

x3(2ε) = x30 − ε x20 + (x10 + ε)ε.

After similar computations for the third and fourth time intervals, one obtains

x1(4ε) = x10

x2(4ε) = x20

x3(4ε) = x30 + 2 ε2.

so that the final state displacement is exactly equal to ε2 [g1, g2]. Note that this result is stronger than the
theoretical result provided by Taylor expansion for general drifless systems: in fact, it shows that for the
considered system the O(ε3) terms are identically zero.



Solution of Problem 2

• C = SE(2)× SE(2), dim C = 6.

• C is a subset of SE(2) × SE(2) (for each position of the first robot, the position of the second robot
must be within a circle centered at the first robot), dim C = 6 (the constraint entailed by the rope is
an inequality constraint and therefore it does not decrease the dimension of C).

• C = SE(2) × SO(2) × SO(2) (one possible choice of configuration is: position and orientation of the
first robot, orientation of the bar, orientation of the second robot), dim C = 5 .

• C = SE(3) × (SO(2))6 (need 3D position and orientation for the spacecraft, plus six joint angles for
the robot), dim C = 12.

• C = SE(3) (the last link of the robot is a rigid body which can be arbitrarily positioned and oriented
in space by moving the spacecraft and/or the robot arm), dim C = 6 .

Solution of Problem 3

Since the position of the beacons is unknown, this is a SLAM problem. Define the extended state vector to
be estimated as χ = (x y ψ φ x1 y1 x2 y2)T , where (xi, yi), for i = 1, 2, are the cartesian coordinates
of the two beacons (the z coordinate of the beacon is known to be zero). The nonlinear discrete-time model
describing the motion of the extended UAV+beacons system is then

χk+1 = χk +



vk cosψk Ts
vk sinψk Ts
−g/vk tanφk Ts

uφ,k Ts
0
0
0
0


+



v1,k
v2,k
v3,k
v4,k

0
0
0
0


where vk = (v1,k v2,k v3,k v4,k)T is a white gaussian noise with zero mean and covariance Vk. Note how the
beacons being fixed reflects on the last four rows of the above equation.

As for the measurement model, we have two distance readings coming from the robot sensor. An ele-
mentary geometric construction provides

hk =

( √
(xk − x1,k)2 + (yk − y1,k)2 + z̄2√
(xk − x2,k)2 + (yk − y2,k)2 + z̄2

)
+

(
w1,k

w2,k

)
where wk = (w1,k w2,k)T is a white gaussian noise with zero mean and covariance Wk. Note that the
sensor-beacon distance depends also on z̄, since the beacons are on the ground.

The rest of the problem is trivial: linearize the process and measurement models and then derive the
EKF equations.
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