
Autonomous and Mobile Robotics
Solution of Final Class Test, 2012/2013

Solution of Problem 1
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Refer to the figure for the definition of the relevant variables. The configuration vector of the mobile
manipulator is q = (x y θ q)T . The corresponding kinematic model is

q̇ =


ẋ
ẏ

θ̇
q̇

 =


v cos θ
v sin θ
ω
u


with obvious meaning for v, ω, u. The coordinates of the end-effector are

xee = x+ d cos θ + l cos(θ + q)

yee = y + d sin θ + l sin(θ + q)

To design a trajectory tracking controller for this output, differentiate it w.r.t. time and use the kinematic
model equation:

ẋee = v cos θ − dω sin θ − l sin(θ + q)(ω + u)

ẏee = v sin θ + dω cos θ + l cos(θ + q)(ω + u)

which may be conveniently rewritten as(
ẋee
ẏee

)
=

(
cos θ −d sin θ − l sin(θ + q) −l sin(θ + q)
sin θ d cos θ + l cos(θ + q) l cos(θ + q)

) v
ω
u

 = T (θ, q)

 v
ω
u

 (1)

Matrix T (θ, q) has always full row rank. In fact, its rank does not change if we replace the second column
with the difference of the second and the third column, obtaining

T ′(θ, q) = T (θ, q)

 1 0 0
0 1 0
0 −1 1

 =

(
cos θ −d sin θ −l sin(θ + q)
sin θ d cos θ l cos(θ + q)

)



and this matrix has always rank 2 if d 6= 0 (compute the minor corresponding to the first two columns). We
may therefore define the following input transformation v

ω
u

 = T †(θ, q)

(
w1

w2

)
(2)

where T †(θ, q) = T T (TT T )−1 is the pseudoinverse of T (θ, q). Using this in (1) we get(
ẋee
ẏee

)
= T (θ, q)T †(θ, q)

(
w1

w2

)
=

(
w1

w2

)
The input-output channels (from the new inputs w1, w2 to the outputs xee, yee, respectively) are now simple
integrators. We can then guarantee global exponential convergence of the output to the desired trajectory
by letting

w1 = ẋ∗ee + k1(x∗ee − xee)
w2 = ẏ∗ee + k2(y∗ee − yee)

with k1, k2 positive gains. The actual control law to be implemented is readily obtained by substituting the
latter expressions for w1, w2 in (2).

Finally, equation (1) shows that the end-effector position is not a flat output. In fact, once ẋ∗ee, ẏ
∗
ee are

specified by the assigned trajectory, there exist an infinity of velocity inputs that realize them: v∗

ω∗

u∗

 = T †(θ, q)

(
ẋ∗ee
ẏ∗ee

)
+ (I − T †(θ, q)T (θ, q))z

where z is an arbitrary 3-vector.

Solution of Problem 2
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Consider the initial arrangement shown in figure. Clearly, the only way for the unicycle to avoid collision
with the wall is to turn left (or right) as much as possible, by choosing ω = ω̄ (ω = −ω̄) for as many
consecutive intervals as needed. This obviously corresponds to the robot moving along an arc of circle of
radius R = v̄/ω̄. The desired clearance is therefore r +R = r + v̄/ω̄.

To reduce the clearance, one may either decrease v̄ or increase ω̄. To eliminate it, extend the primitive
set by including v = 0 (this will allow rotation on the spot) or v = −v̄ (this will allow backward motions).
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Solution of Problem 3

Define the extended state vector to be estimated as χ = (x1 y1 x2 y2 xl yl)
T , where (xi, yi) are the cartesian

coordinates of robot i (i = 1, 2) and (xl, yl) are the cartesian coordinates of the landmark. The discrete-time
model describing the motion of the extended robots+landmark system is

χk+1 = χk +


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0




ux1,k
uy1,k
ux2,k
uy2,k

+


v1,k
v2,k
v3,k
v4,k

0
0


where (ux1,k uy1,k ux2,k uy2,k)T collects the robots’ velocity inputs and vi,k is a white gaussian noise with
zero mean and covariance Vi,k (i = 1, . . . , 4). Note how the landmark being fixed reflects on the last two
rows of the above equation. This is clearly a linear model of the form

χk+1 = Aχk +Buk + vk

where A = I, the 6×6 identity matrix, uk is the input vector, and vk is the process noise vector, whose
covariance is

V k =


V1,k 0 0 0 0 0

0 V2,k 0 0 0 0
0 0 V3,k 0 0 0
0 0 0 V4,k 0 0
0 0 0 0 0 0
0 0 0 0 0 0


Coming to the measurement model, we have four measurements coming from the two robot sensors:

hk =


h1(χK)
h2(χK)
h3(χK)
h4(χK)

+


w1,k

w2,k

w3,k

w4,k

 =


√

(x1,k − x2,k)2 + (y1,k − y2,k)2√
(x1,k − xl)2 + (y1,k − yl)2√

(x2,k − x1,k)2 + (y2,k − y1,k)2√
(x2,k − xl)2 + (y2,k − yl)2

+


w1,k

w2,k

w3,k

w4,k


where wi, k is a white gaussian noise with zero mean and covariance Wi,k (i = 1, . . . , 4). Ideally, the first
and third components should be identical; however, since they are measured by two different sensors, their
measured values will in general be different and therefore the entries must be duplicated in the model.

We are now ready to derive the EKF equations. Note that, since the process dynamics is linear, there is
no need to linearize it. As for the linearization of the output equations, we have

Hk+1 =



∂h1
∂χ

∣∣∣∣
χ=χ̂k+1|k

∂h2
∂χ

∣∣∣∣
χ=χ̂k+1|k

∂h3
∂χ

∣∣∣∣
χ=χ̂k+1|k

∂h4
∂χ

∣∣∣∣
χ=χ̂k+1|k


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where

∂h1

∂χ
=

(
x1 − x2
δ(χ)

y1 − y2
δ(χ)

x2 − x1
δ(χ)

y2 − y1
δ(χ)

0 0

)
∂h2

∂χ
=

(
x1 − xl
η1(χ)

y1 − yl
η1(χ)

0 0 0 0

)
∂h3

∂χ
=

(
x1 − x2
δ(χ)

y1 − y2
δ(χ)

x2 − x1
δ(χ)

y2 − y1
δ(χ)

0 0

)
∂h4

∂χ
=

(
0 0

x2 − xl
η2(χ)

y2 − yl
η2(χ)

0 0

)
and

δ(χ) =
√

(x1 − x2)2 + (y1 − y2)2

η1(χ) =
√

(x1 − xl)2 + (y1 − yl)2

η2(χ) =
√

(x2 − xl)2 + (y2 − yl)2

The EKF equations are finally obtained as follows.

1. State and covariance prediction:

χ̂k+1|k = χ̂k +Buk

P k+1|k = P k + V k

2. Correction:

χ̂k+1 = χ̂k+1|k +Rk+1νk+1

P k+1 = P k+1|k −Rk+1Hk+1P k+1|k

where the innovation is
νk+1 = hk+1 − h(χ̂k+1|k)

and the Kalman gain matrix is computed as

Rk+1 = P k+1|kH
T
k+1(Hk+1P k+1|kH

T
k+1 +W k+1)−1

where W k+1 = diag{W1,k+1, . . . ,W4,k+1}.

In these equations, P k obviously denotes the covariance of the estimate, which will be initialized at a
certain value reflecting the uncertainty on the initial estimate χ̂0.
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