
Autonomous and Mobile Robotics
Solution of Final Class Test, 2011/2012

Note: only solutions to Problems 1 and 3 are provided. Problem 2 is actually a discussion and many different
choices are possible.

Solution of Problem 1

The angular momentum conservation constraint is linear in the generalized velocities, and therefore Pfaffian.
In particular, it can be rewritten as

aT (q) q̇ = 0 with aT (q) = (a1(q2) a2(q2))

The corresponding kinematic model describes the admissible velocities as q̇ ∈ N (aT (q)). The number of
generalized coordinates is n = 2 while the number of constraints is k = 1; therefore, the dimension of the
null space of aT (q) is n− k = 1. One possible basis for this null space is clearly given by

g(q) =

(
a2(q2)
−a1(q2)

)
Correspondingly, the kinematic model associated to the conservation of angular momentum is

q̇ = v g(q) = v

(
a2(q2)
−a1(q2)

)
where v ∈ IR is the velocity input for this model (no direct physical meaning).

The controllability of the above kinematic model is characterized by its accessibility distribution ∆A,
i.e., the involutive closure of ∆ = span(g). Since ∆ is generated by a single vector field, it is necessarily
involutive, i.e., ∆A = ∆. Then we have dim ∆A = dim ∆ = 1 < 2 and the system is not controllable.
This means that the angular momentum conservation constraint is holonomic, i.e., it can be written as a
geometric constraint h(q1, q2) = 0. It is therefore impossible to move the coordinates q1 and q2 to arbitrary
values; once one of them is given, the other follows from the constraints.

Note that the angular momentum is conserved only if no external forces act on the system. In the
considered case, this means that the only available input is the torque at the rotational joint between the
two bodies. We may then write a kinematic model whose velocity input is ‘closer’ to the actual input. To
this end, consider the following alternative1 basis for the null space of aT (q)

g′(q) =

 −a2(q2)
a1(q2)

1


and the corresponding kinematic model

q̇ = v2

 −a2(q2)
a1(q2)

1


with the velocity input v2 = q̇2, i.e., the velocity of the actuated rotational joint. Obviously, this model is
also not controllable.
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Solution of Problem 3

Refer to the figure for the definition of the relevant variables and quantities. The configuration vector of the
mobile manipulator is q = (x y θ q1 q2)T . The corresponding kinematic model is

q̇ =


ẋ
ẏ

θ̇
q̇1
q̇2

 =


v cos θ
v sin θ
ω
u1
u2


with obvious meaning for v, ω, u1, u2. Using Euler integration and including noise, a discrete-time nonlinear
model of this system is obtained as

qk+1 =


xk+1

yk+1

θk+1

q1,k+1

q2,k+1

 =


xk + vk Ts cos θk
yk + vk Ts sin θk
θk + ωk Ts
q1,k + u1,k Ts
q2,k + u2,k Ts

+


wp1,k

wp2,k

wp3,k

wp4,k

wp5,k

 = f(qk,uk) + wp,k

where Ts is the sampling interval, uk = (vk ωk u1,k u2,k)
T

is the input vector in [tk, tk+1], and wp,k =

(wp1,k . . . wp5,k)
T

is a white gaussian process noise with zero mean and covariance matrix W p,k. As usual,
vk and ωk will be reconstructed from wheel encoder readings (see, e.g., the formulas in the AMR slides
“Odometric Localization”); whereas u1,k, u2,k will be reconstructed from joint encoder readings, e.g., by
numerical differentiation.

The Cartesian coordinates ps = (xs, ys) of the sensor are expressed as

xs = x+ d cos θ + l1 cos(θ + q1) + l2 cos(θ + q1 + q2)

ys = y + d sin θ + l1 sin(θ + q1) + l2 sin(θ + q1 + q2)

The output equation is therefore

zk =
√

(xs,k − xb)2 + (ys,k − yb)2 + wm,k = h(qk) + wm,k

where wm,k is a white gaussian measurement noise with zero mean and (co)variance Wm,k. Note that zk,
h(qk), wm,k and Wm,k are all scalars.

The linearization of the process and output equations, respectively evaluated at the previous estimate
q̂k and at the prediction q̂k+1|k, gives

F k =
∂f

∂qk

∣∣∣∣
qk=q̂k

=


1 0 −vkTs sin θ̂k 0 0

0 1 vkTs cos θ̂k 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


1We are assuming that a1(q2) 6= 0, ∀q2.
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and

Hk+1 =
∂h

∂qk

∣∣∣∣
qk=q̂k+1|k

=
∂h

∂ps,k

∂ps,k

∂qk

∣∣∣∣
q=q̂k+1|k

=
1√

(x̂s,k+1|k − xb)2 + (ŷs,k+1|k − yb)2
(
x̂s,k+1|k − xb ŷs,k+1|k − yb

) ∂ps,k

∂qk

∣∣∣∣
q=q̂k+1|k

Here, x̂s,k+1|k, ŷs,k+1|k are the sensor coordinates at the predicted configuration q̂k+1|k. The 2× 5 Jacobian

matrix ∂ps,k/∂qk

∣∣
q=q̂k+1|k

is easily computed from the above expressions for xs and ys.

The EKF equations are finally obtained as follows.

1. State and covariance prediction:

q̂k+1|k = f(q̂k,uk)

P k+1|k = F kP kF
T
k + W p,k

2. Correction:

q̂k+1 = q̂k+1|k + Rk+1νk+1

P k+1 = P k+1|k −Rk+1Hk+1P k+1|k

where the innovation

νk+1 = zk+1 −
√

(xs,k+1|k − xb)2 + (ys,k+1|k − yb)2

is a scalar quantity and the Kalman gain matrix

Rk+1 = P k+1|kH
T
k+1(Hk+1P k+1|kH

T
k+1 +Wm,k+1)−1

is a 5×1 matrix (note that Hk+1P k+1|kH
T
k+1 + Wm,k+1 is actually a scalar, so no matrix inverse

computation is required).

In these equations, P k obviously denotes the covariance of the estimate, which will be initialized at a
certain value reflecting the uncertainty on the initial estimate q̂0.
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