
Autonomous and Mobile Robotics
Solution of Class Test no. 2

Solution of Problem 1

To build the C-obstacles, it is necessary to choose a representative point for the robot. For
example, choose the upper right vertex of the square robot (shown by a red circle in the
following figures). The C-obstacle boundaries are obtained by sliding the square robot along
the obstacle boundaries, and keeping track of the associated motion of the representative
point. The result is shown below, with the ”increased” portions of the C-obstacles shown in
dark gray.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

robot

start

goal

Approximate cell decomposition begins by (1) dividing the square configuration space
into four square cells (2) perform collision checking to classify them as free, occupied or
mixed (3) removing occupied cells (4) building a connectivity graph that contains free and
mixed cells as nodes (5) searching the graph for a path (a channel of cells) from the cell
containing the start configuration to the cell containing the goal configuration. If such a
channel exists, its mixed cells are further partitioned, and the above cycle is repeated until
a free channel is found (if possible).

In the present case, one possible solution is shown in the following figure. Here, 1-
adjacency was used for building the connectivity graph1. The final robot path, shown in

1Since the robot can freely translate, the same is true for its representative point; therefore, the latter

dotted red line, was obtained from the free channel in light gray by joining the start to the
goal configuration through a broken line going through the midpoints of common boundaries
between consecutive cells.

robot

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Note that, even if 1-adjacency was used for building connectivity graphs and channels,
the robot does move diagonally in the solution path.

Solution of Problem 2

The kinematic model of a rear-wheel drive car-like robot is

ẋ = v cos θ

ẏ = v sin θ

θ̇ = v tanφ/`

φ̇ = ω

where x, y are the Cartesian coordinates of the rear wheel axle midpoint, θ is the orientation
of the vehicle w.r.t. the x axis, φ is the steering angle, ` is the axle-to-axle distance, v is
the driving velocity and ω is the steering velocity. Using Euler integration, a discrete-time
nonlinear process model is derived as

xk+1 = xk + vkTs cos θk + v1,k

yk+1 = yk + vkTs sin θk + v2,k

θk+1 = θk + vkTs tanφk/`+ v3,k

φk+1 = φk + ωkTs + v4,k

can in principle travel between two cells even if they share only a vertex (as in 2-adjacency). This means
that 2-adjacency could have also been used.

2

where Ts is the sampling interval and vT
k = (v1,k . . . v4,k) is a white gaussian process noise

with zero mean and covariance matrix V k. This model is in the general form

qk+1 = f(qk,uk) + vk

At the k-th step, the Cartesian coordinates ps,k = (xs,k, ys,k) of the sensor are a function of
the robot configuration qk; in particular, one has (xs,k, ys,k) = (xk +` cos θk/2, yk +` sin θk/2).
The output equation, which provides a measure of the distance between the sensor and the
single landmark placed at the origin, is therefore

zk =
√
x2

s,k + y2
s,k + wk = h(qk) + wk

where wk is a white gaussian measurement noise with zero mean and (co)variance Wk. Note
that zk, h(qk), wk and Wk are all scalars.

The linearization of the process and output equations, respectively evaluated at the
previous estimate q̂k and at the prediction q̂k+1|k, gives

F k =
∂f

∂qk

∣∣∣∣
qk=q̂k

=

1 0 −vkTs sin θ̂k 0

0 1 vkTs cos θ̂k 0

0 0 1
vkTs

` cos2 φ̂k

0 0 0 1

and

Hk+1 =
∂h

∂qk

∣∣∣∣
qk=q̂k+1|k

=
∂h

∂ps,k

ps,k

∂qk

∣∣∣∣
q=q̂k+1|k

=
1√

x̂2
s,k+1|k + ŷ2

s,k+1|k

(
x̂s,k+1|k ŷs,k+1|k

`

2
(ŷs,k+1|k cos θ̂k+1|k − x̂s,k+1|k sin θ̂k+1|k) 0

)

Here, x̂s,k+1|k, ŷs,k+1|k are simply the sensor coordinates at the predicted configuration q̂k+1|k.

The EKF equations are therefore obtained as follows.

1. State and covariance prediction:

q̂k+1|k = f(q̂k,uk)

P k+1|k = F kP kF
T
k + V k

2. Correction:

q̂k+1 = q̂k+1|k + Rk+1νk+1

P k+1 = P k+1|k −Rk+1Hk+1P k+1|k

3

where the innovation

νk+1 = zk+1 −
√
x̂2

s,k+1 + ŷ2
s,k+1

is a scalar quantity and the Kalman gain matrix

Rk+1 = P k+1|kH
T
k+1(Hk+1P k+1|kH

T
k+1 +Wk+1)

−1

is a 4×1 matrix (note that Hk+1P k+1|kH
T
k+1 +Wk+1 is actually a scalar, so no matrix

inverse computation is required).

In these equations, P k obviously denotes the covariance of the estimate, which will be
initialized at a certain value reflecting the uncertainty on the initial estimate q̂0.

4

