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Solution of Problem 1

Let the robot configuration be q = (q1, q2), where q1, q2 are the relative joint angles. Define the
following control points:

• p1, located on the first link at a distance α < 1 from the first joint;

• p2, located on the second link at a distance β < 1 from the second joint;

• p3, the manipulator tip.

The required torque will be

τ(q) = −JT1 (q)∇Ur(p1(q))− JT2 (q)∇Ur(p2(q))− JT3 (q)∇Ur(p3(q))− JT3 (q)∇Ua(p3(q)) (1)

where:

• J i(q), i = 1, 2, 3, is the Jacobian matrix of the forward kinematics function associated to the
control point pi;

• Ur(pi), i = 1, 2, 3, is the repulsive potential acting on the control point pi due to the point
obstacle;

• Ua(p3) is the attractive potential acting on the control point p3 (the manipulator tip) due to
the goal.

One easily obtains the coordinates of the control points

p1(q) = (α cos q1, α sin q1) (2)

p2(q) = (cos q1 + β cos(q1 + q2), sin q1 + β sin(q1 + q2)) (3)

p3(q) = (cos q1 + cos(q1 + q2), sin q1 + sin(q1 + q2)) (4)

and the corresponding Jacobian matrices to be used in (1):

J1(q) =
(
−α sin q1 0
α cos q1 0

)
J2(q) =

(
− sin q1 − β sin(q1 + q2) −β sin(q1 + q2)
cos q1 + β cos(q1 + q2) β cos(q1 + q2)

)
J3(q) =

(
− sin q1 − sin(q1 + q2) − sin(q1 + q2)
cos q1 + cos(q1 + q2) cos(q1 + q2)

)



Let us now compute the artificial force fields at the generic Cartesian point p = (x, y). The
repulsive field (γ = 2) generated by the point obstacle at (−1, 0) is

−∇Ur(p) =


kr

η2(x, y)

(
1
η0
− 1
η(x, y)

)
∇η(x, y) if η(x, y) ≤ η0

0 if η(x, y) > η0

(5)

where:

• kr is a positive constant;

• η0 is the obstacle range of influence, chosen to be smaller than 1 to preserve a global minimum
at the assigned goal;

• η(x, y) =
√

(x− 1)2 + y2 is the distance between p and the obstacle in (1, 0), and ∇η(x, y)
is its gradient, readily obtained as

∇η(x, y) =


x− 1√

(x− 1)2 + y2

y√
(x− 1)2 + y2


With the goal at (1,−1), the attractive field at p is

−∇Ua(p) = ka

(
1− x
−1− y

)
(6)

where ka is a positive constant.
At this point, one simply computes the repulsive fields at p1, p2 and p3, using (2–4) in (5), and

the attractive field at p3, using (4) in (6), and finally plugs these expressions in (1).

Solution of Problem 2

Using Euler integration and including noise, a discrete-time nonlinear model of the UAV dynamics
is derived as

qk+1 =


xk+1

yk+1

ψk+1

φk+1

 =


xk + vk Ts cosψk
yk + vk Ts sinψk

ψk −
g

vk
Ts tanφk

φk + uφ,k Ts

+


wp1,k
wp2,k
wp3,k
wp4,k

 = f(qk,uk) +wp,k

where Ts is the sampling interval, uk = (vk uφ,k)
T is the input vector in [tk, tk+1], and wp,k =

(wp1,k . . . wp4,k)
T is a white gaussian process noise with zero mean and covariance matrix W p,k.

At the k-th step, the Cartesian coordinates of the sensor are exactly (xk, yk). The output
equation, which represents a measure of the bearing angle between the sensor and each landmark,
is therefore

zk =

(
atan2(yk − y1, xk − x1)− ψk
atan2(yk − y2, xk − x2)− ψk

)
+

(
wm1,k

wm2,k

)
= h(qk) +wm,k
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where wm,k = (wm1,k wm2,k)
T is a white gaussian measurement noise with zero mean and covari-

ance matrix Wm,k. Note that we have assumed for simplicity an identity association map, i.e.,
that the sensor readings are exactly in the same order of the landmarks.

The linearization of the process and output equations, respectively evaluated at the previous
estimate q̂k and at the prediction q̂k+1|k, gives

F k =
∂f

∂qk

∣∣∣∣
qk=q̂k

=


1 0 −vkTs sin ψ̂k 0

0 1 vkTs cos ψ̂k 0

0 0 1 − g Ts

vk cos2 φ̂k

0 0 0 1


and

Hk+1 =
∂h

∂qk

∣∣∣∣
qk=q̂k+1|k

=


−(ŷk+1|k − y1)

(x̂k+1|k − x1)2 + (ŷk+1|k − y1)2
x̂k+1|k − x1

(x̂k+1|k − x1)2 + (ŷk+1|k − y1)2
−1 0

−(ŷk+1|k − y2)
(x̂k+1|k − x2)2 + (ŷk+1|k − y2)2

x̂k+1|k − x2

(x̂k+1|k − x2)2 + (ŷk+1|k − y2)2
−1 0


The EKF equations are therefore obtained as follows.

1. State and covariance prediction:

q̂k+1|k = f(q̂k,uk)

P k+1|k = F kP kF
T
k +W p,k

2. Correction:

q̂k+1 = q̂k+1|k +Rk+1νk+1

P k+1 = P k+1|k −Rk+1Hk+1P k+1|k

where the innovation is

νk+1 = zk+1 −

(
atan2(ŷk+1|k − y1, x̂k+1|k − x1)− ψ̂k
atan2(ŷk+1|k − y2, x̂k+1|k − x2)− ψ̂k

)

and the Kalman gain matrix

Rk+1 = P k+1|kH
T
k+1(Hk+1P k+1|kH

T
k+1 +Wm,k+1)−1

is a 4×2 matrix.

The covariance of the estimate P k will be initialized at a certain value P 0 reflecting the uncer-
tainty on the initial estimate q̂0.

3


