Autonomous and Mobile Robotics Class Test no. 1, 2010/2011

Problem 1

Consider the tractor-trailer system shown in figure, often referred to as the firetruck in the robotics literature. The tractor is a rear-wheel-drive car-like vehicle, while the trailer is a rigid body with an axle carrying two steering wheels, and is connected to the midpoint of the tractor rear axle through a revolute joint. The fact that the trailer wheels can be steered increases the maneuverability of the vehicle, which can thus negotiate sharp turn in spite of its size.

1. Find a set of generalized coordinates for the robot, and show them on the drawing.
2. Write the Pfaffian kinematic constraints to which the robot is subject (two-wheel axles can be assimilated to a single wheel located at the midpoint of the axle).
3. Derive a kinematic model of the system.

Problem 2

Consider the differential-drive robot shown below, where a passive sphere is used as a caster wheel.

Assume that we want to impose to the caster a velocity V_{c} directed as in figure. Compute the angular speeds ω_{R} and ω_{L} required to achieve this objective, using the following numerical data: $L=0.3 \mathrm{~m}, d=0.4 \mathrm{~m}, r=0.15 \mathrm{~m}, \alpha=45^{\circ},\left\|V_{c}\right\|=0.1 \mathrm{~m} / \mathrm{s}$ [Hint: you need a mapping between the velocity inputs ω_{R}, ω_{L} of the differential-drive robot and the velocity of a point located along the sagittal axis at a distance L from the midpoint between the wheels...].
[1 h 45 mins$]$

