
Autonomous and Mobile Robotics
Solution of Class Test no. 1

Solution of Problem 1

A convenient choice of generalized coordinates is q = (x y θ φ θt)T (see figure), i.e., a set of generalized
coordinates for the tricycle plus an additional coordinate for the trailer. In the following, both two-wheel
axles are assimilated to a single wheel located at the axle midpoint. The robot has then three wheels: the
tricycle front wheel, the tricycle rear wheel, and the trailer wheel.
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The kinematic constraints acting on the robot are therefore three (one “pure rolling” condition for each
wheel):

ẋf sin(θ + φ)− ẏf cos(θ + φ) = 0
ẋ sin θ − ẏ cos θ = 0

ẋt sin θt − ẏt cos θt = 0,

where (xf , yf ) and (xt, yt) are the Cartesian coordinates of Pf (the centre of the tricycle front wheel) and
Pt (the trailer axle midpoint), respectively. Being

xf = x+ ` cos θ
yf = y + ` sin θ

and

xt = x− `t cos θt

yt = y − `t sin θt

it is easy to obtain the following expression for the kinematic constraints

ẋ sin(θ + φ)− ẏ cos(θ + φ)− θ̇ ` cosφ = 0
ẋ sin θ − ẏ cos θ = 0

ẋ sin θt − ẏ cos θt + `t θ̇t = 0,



or, in Pfaffian form

 sin θ − cos θ 0 0 0
sin(θ + φ) − cos(θ + φ) −` cosφ 0 0

sin θt − cos θt 0 0 `t




ẋ
ẏ

θ̇

φ̇

θ̇t

 = AT (q)q̇ = 0.

Note that the submatrix consisting of the first two rows and the first four columns of AT coincides
with the constraint matrix for the bicycle. A basis for the null space of AT can then be easily written by
“completing” the basis found for the bicycle (in particular, the rear-wheel drive version, since we have a
real-wheel drive tricycle here) with a suitable fifth element. One easily obtains

G(q) =


cos θ 0
sin θ 0

tanφ/` 0
0 1

− sin(θt − θ)/`t 0

 =
(

g1(q) g2(q)
)
.

The kinematic control system is then
q̇ = g1(q) v + g2(q)ω,

where v and ω are respectively the driving and the steering velocity of the tricycle.
Clearly, the above kinematic model is associated to the particular choice of q made at the beginning. A

different choice would have led to a different model - although equivalent via a change of coordinates. For
example, choosing q′ = (x y θ φ δ)T , with δ = θ − θt, leads to

q̇′ = g′1(q′) v + g′2(q′)ω,

with

G′(q′) =


cos θ 0
sin θ 0

tanφ/` 0
0 1

tanφ/`− sin δ/`t 0

 =
(

g′1(q′) g′2(q′)
)
.

Solution of Problem 2

Consider the following outputs:

y1 = x+ ` cos θ + b cos(θ + φ)
y2 = y + ` sin θ + b sin(θ + φ)

with b 6= 0. They represent the Cartesian coordinates of a point B lying on the line passing through the
front axle midpoint and oriented as the front wheels; in particular, B is located at a distance b from the
midpoint (see figure).

The time derivatives of y1 and y2 are(
ẏ1
ẏ2

)
=
(

cos θ − tanφ(sin θ + b sin(θ + φ)/`) −b sin(θ + φ)
sin θ + tanφ(cos θ + b cos(θ + φ)/`) b cos(θ + φ)

)(
v
ω

)
=T (θ, φ)

(
v
ω

)
.

Matrix T (θ, φ) has determinant b/ cosφ, and is therefore always invertible under the assumption that b 6= 0
and |φ(t)| ≤ π/2. It is then sufficient to use the following input transformation(

v
ω

)
= T−1(θ, φ)

(
u1

u2

)
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to put the equations of the bicycle in the input-output linearized form:

ẏ1 = u1

ẏ2 = u2

θ̇ = sinφ(cos(θ + φ)u1 + sin(θ + φ)u2)/`
φ̇ = −(cos(θ + φ) sinφ/`+ sin(θ + φ)/b)u1

−(sin(θ + φ) sinφ/`− cos(θ + φ)/b)u2.

At this point, a simple linear controller such as

u1 = ẏ1d + k1(y1d − y1)
u2 = ẏ2d + k2(y2d − y2),

with k1 > 0, k2 > 0, guarantees exponential convergence to zero of the Cartesian tracking error, with decou-
pled dynamics on its two components. Note that the orientation and the steering angle, whose evolutions
are governed by the third and fourth equation, are not controlled.
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