
Autonomous and Mobile Robotics
Solution of Class Test no. 1, 2010/2011

Solution of Problem 1

A convenient choice of generalized coordinates is q = (x y θ φ θt φt)T (see figure), i.e., a set of generalized
coordinates for the car plus two additional coordinates (orientation and steering angle) for the trailer. Hence,
the dimension of the configuration space is n = 6. In the following, all two-wheel axles are assimilated to
a single wheel located at the axle midpoint. The robot has then three wheels: the car front wheel, the car
rear wheel, and the trailer wheel.
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The k = 3 kinematic constraints acting on the robot are therefore (one “pure rolling” condition for each
wheel):

ẋf sin(θ + φ)− ẏf cos(θ + φ) = 0
ẋ sin θ − ẏ cos θ = 0

ẋt sin(θt + φt)− ẏt cos(θt + φt) = 0,

where (xf , yf ) and (xt, yt) are the Cartesian coordinates of Pf (the centre of the tricycle front wheel) and
Pt (the trailer axle midpoint), respectively. Being

xf = x+ ` cos θ
yf = y + ` sin θ

and

xt = x− `t cos θt

yt = y − `t sin θt

it is easy to obtain the following expression for the kinematic constraints

ẋ sin(θ + φ)− ẏ cos(θ + φ)− θ̇ ` cosφ = 0
ẋ sin θ − ẏ cos θ = 0

ẋ sin(θt + φt)− ẏ cos(θt + φt) + `t θ̇t cosφt = 0,



or, in Pfaffian form

 sin θ − cos θ 0 0 0 0
sin(θ + φ) − cos(θ + φ) −` cosφ 0 0 0

sin(θt + φt) − cos(θt + φt) 0 0 `t cosφt 0



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
= AT (q)q̇ = 0.

Since AT is a 3×6 (k × n) matrix, its null-space has dimension 6 − 3 = 3. A basis for this null space
must therefore consist of three linearly independent vectors. Note also that the submatrix consisting of the
first two rows and the first four columns of AT coincides with the constraint matrix for the bicycle. A basis
of N (AT ) can then be easily written by suitably “extending” (from dimension 4 to dimension 6) the two
vectors that provide a basis for the rear-wheel drive bicycle , and adding a third linearly independent vector.

One easily obtains

G(q) =



cos θ 0 0
sin θ 0 0

tanφ/` 0 0
0 1 0

− sin(θt − θ + φt)
`t cosφt

0 0

0 0 1


=
(

g1(q) g2(q) g3(q)
)
.

The kinematic control system is then

q̇ = g1(q) v + g2(q)ω + g3(q)ωt,

where v, ω and ωt are respectively the driving and steering velocity of the car and the steering velocity of
the trailer.

Solution of Problem 2

Denote by Pc = (xc, yc) the contact point between the caster and the ground. To write the velocity of Pc as
a function of the velocity inputs ωR, ωL, one can first consider the robot as a unicycle and find the velocity
inputs v, ω which would result in the required Vc; and then transform v, ω in the equivalent velocity inputs
ωR, ωL of the original differential-drive robot.

We have

xc = x+ L cos θ
yc = y + L sin θ

so that

Vc =
(
ẋc

ẏc

)
=
(

cos θ −L sin θ
sin θ L cos θ

)(
v
ω

)
= T (θ)

(
v
ω

)
.

Note that matrix T (θ) has determinant L and is therefore always invertible. Therefore, the required unicycle
inputs are

(
v
ω

)
= T−1(θ)Vc =

 cos θ sin θ
− sin θ
L

cos θ
L

( ||Vc|| cos(θ − α)
||Vc|| sin(θ − α)

)
= ||Vc||

 cosα
− sinα
L

 .
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Obviously, these inputs do not depend on the configuration of the robot (in fact, one could have let θ = 0
from the beginning to simplify the computations).

The corresponding inputs for the differential-drive robot can be computed by inverting the well-known
formulas

v =
r(ωR + ωL)

2

ω =
r(ωR − ωL)

d
,

obtaining

ωR =
2v + dω

2r

ωL =
2v − dω

2r
.

Plugging the required v and ω in these formulas we finally obtain

ωR =
||Vc||

2r
(2 cosα− d

L
sinα) = 0.157 rad/sec

ωL =
||Vc||

2r
(2 cosα+

d

L
sinα) = 0.785 rad/sec.

3


