Autonomous and Mobile Robotics Solution of Class Test no. 1, 2010/2011

Solution of Problem 1

A convenient choice of generalized coordinates is $\boldsymbol{q}=\left(\begin{array}{lllll}x & y & \theta & \phi & \theta_{t}\end{array} \phi_{t}\right)^{T}$ (see figure), i.e., a set of generalized coordinates for the car plus two additional coordinates (orientation and steering angle) for the trailer. Hence, the dimension of the configuration space is $n=6$. In the following, all two-wheel axles are assimilated to a single wheel located at the axle midpoint. The robot has then three wheels: the car front wheel, the car rear wheel, and the trailer wheel.

The $k=3$ kinematic constraints acting on the robot are therefore (one "pure rolling" condition for each wheel):

$$
\begin{aligned}
\dot{x}_{f} \sin (\theta+\phi)-\dot{y}_{f} \cos (\theta+\phi) & =0 \\
\dot{x} \sin \theta-\dot{y} \cos \theta & =0 \\
\dot{x}_{t} \sin \left(\theta_{t}+\phi_{t}\right)-\dot{y}_{t} \cos \left(\theta_{t}+\phi_{t}\right) & =0,
\end{aligned}
$$

where $\left(x_{f}, y_{f}\right)$ and $\left(x_{t}, y_{t}\right)$ are the Cartesian coordinates of P_{f} (the centre of the tricycle front wheel) and P_{t} (the trailer axle midpoint), respectively. Being

$$
\begin{aligned}
x_{f} & =x+\ell \cos \theta \\
y_{f} & =y+\ell \sin \theta
\end{aligned}
$$

and

$$
\begin{aligned}
x_{t} & =x-\ell_{t} \cos \theta_{t} \\
y_{t} & =y-\ell_{t} \sin \theta_{t}
\end{aligned}
$$

it is easy to obtain the following expression for the kinematic constraints

$$
\begin{aligned}
\dot{x} \sin (\theta+\phi)-\dot{y} \cos (\theta+\phi)-\dot{\theta} \ell \cos \phi & =0 \\
\dot{x} \sin \theta-\dot{y} \cos \theta & =0 \\
\dot{x} \sin \left(\theta_{t}+\phi_{t}\right)-\dot{y} \cos \left(\theta_{t}+\phi_{t}\right)+\ell_{t} \dot{\theta}_{t} \cos \phi_{t} & =0,
\end{aligned}
$$

or, in Pfaffian form

$$
\left(\begin{array}{cccccc}
\sin \theta & -\cos \theta & 0 & 0 & 0 & 0 \\
\sin (\theta+\phi) & -\cos (\theta+\phi) & -\ell \cos \phi & 0 & 0 & 0 \\
\sin \left(\theta_{t}+\phi_{t}\right) & -\cos \left(\theta_{t}+\phi_{t}\right) & 0 & 0 & \ell_{t} \cos \phi_{t} & 0
\end{array}\right)\left(\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\theta} \\
\dot{\phi} \\
\dot{\theta}_{t} \\
\dot{\phi}_{t}
\end{array}\right)=\boldsymbol{A}^{T}(\boldsymbol{q}) \dot{\boldsymbol{q}}=\mathbf{0} .
$$

Since \boldsymbol{A}^{T} is a $3 \times 6(k \times n)$ matrix, its null-space has dimension $6-3=3$. A basis for this null space must therefore consist of three linearly independent vectors. Note also that the submatrix consisting of the first two rows and the first four columns of \boldsymbol{A}^{T} coincides with the constraint matrix for the bicycle. A basis of $\mathcal{N}\left(\boldsymbol{A}^{T}\right)$ can then be easily written by suitably "extending" (from dimension 4 to dimension 6) the two vectors that provide a basis for the rear-wheel drive bicycle , and adding a third linearly independent vector.

One easily obtains

$$
\boldsymbol{G}(\boldsymbol{q})=\left(\begin{array}{ccc}
\cos \theta & 0 & 0 \\
\sin \theta & 0 & 0 \\
\tan \phi / \ell & 0 & 0 \\
0 & 1 & 0 \\
-\frac{\sin \left(\theta_{t}-\theta+\phi_{t}\right)}{\ell_{t} \cos \phi_{t}} & 0 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
\boldsymbol{g}_{1}(\boldsymbol{q}) & \boldsymbol{g}_{2}(\boldsymbol{q}) & \boldsymbol{g}_{3}(\boldsymbol{q})
\end{array}\right) .
$$

The kinematic control system is then

$$
\dot{\boldsymbol{q}}=\boldsymbol{g}_{1}(\boldsymbol{q}) v+\boldsymbol{g}_{2}(\boldsymbol{q}) \omega+\boldsymbol{g}_{3}(\boldsymbol{q}) \omega_{t},
$$

where v, ω and ω_{t} are respectively the driving and steering velocity of the car and the steering velocity of the trailer.

Solution of Problem 2

Denote by $P_{c}=\left(x_{c}, y_{c}\right)$ the contact point between the caster and the ground. To write the velocity of P_{c} as a function of the velocity inputs ω_{R}, ω_{L}, one can first consider the robot as a unicycle and find the velocity inputs v, ω which would result in the required V_{c}; and then transform v, ω in the equivalent velocity inputs ω_{R}, ω_{L} of the original differential-drive robot.

We have

$$
\begin{aligned}
& x_{c}=x+L \cos \theta \\
& y_{c}=y+L \sin \theta
\end{aligned}
$$

so that

$$
V_{c}=\binom{\dot{x}_{c}}{\dot{y}_{c}}=\left(\begin{array}{cc}
\cos \theta & -L \sin \theta \\
\sin \theta & L \cos \theta
\end{array}\right)\binom{v}{\omega}=\boldsymbol{T}(\theta)\binom{v}{\omega} .
$$

Note that matrix $\boldsymbol{T}(\theta)$ has determinant L and is therefore always invertible. Therefore, the required unicycle inputs are

$$
\binom{v}{\omega}=\boldsymbol{T}^{-1}(\theta) V_{c}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\frac{-\sin \theta}{L} & \frac{\cos \theta}{L}
\end{array}\right)\binom{\left\|V_{c}\right\| \cos (\theta-\alpha)}{\left\|V_{c}\right\| \sin (\theta-\alpha)}=\left\|V_{c}\right\|\binom{\cos \alpha}{\frac{-\sin \alpha}{L}} .
$$

Obviously, these inputs do not depend on the configuration of the robot (in fact, one could have let $\theta=0$ from the beginning to simplify the computations).

The corresponding inputs for the differential-drive robot can be computed by inverting the well-known formulas

$$
\begin{aligned}
& v=\frac{r\left(\omega_{R}+\omega_{L}\right)}{2} \\
& \omega=\frac{r\left(\omega_{R}-\omega_{L}\right)}{d}
\end{aligned}
$$

obtaining

$$
\begin{aligned}
\omega_{R} & =\frac{2 v+d \omega}{2 r} \\
\omega_{L} & =\frac{2 v-d \omega}{2 r}
\end{aligned}
$$

Plugging the required v and ω in these formulas we finally obtain

$$
\begin{aligned}
& \omega_{R}=\frac{\left\|V_{c}\right\|}{2 r}\left(2 \cos \alpha-\frac{d}{L} \sin \alpha\right)=0.157 \mathrm{rad} / \mathrm{sec} \\
& \omega_{L}=\frac{\left\|V_{c}\right\|}{2 r}\left(2 \cos \alpha+\frac{d}{L} \sin \alpha\right)=0.785 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

