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Abstract. In this paper, we solve the gait planning problem by using
the Flexible LIP model, which has been shown to be more realistic w.r.t.
the LIP for cost-effective or compliant biped robots for gait generation.
We extend a stable inversion approach to obtain bounded Center of Mass
(CoM) reference trajectories and show several advantages compared to
preview control: avoidance of numerical integration, lower computation
time, exact tracking of reference Zero Moment Point (ZMP) trajectories,
and the ability to come to an immediate stop.
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1 Introduction

In this paper, we apply the trajectory planning and control methods derived
in [13,12] to the Flexible Linear Inverted Pendulum (FLIP) model for bipedal
locomotion introduced in [19]. The result is a computationally efficient method
for planning bounded trajectories using a model that is more realistic than the
Linear Inverted Pendulum (LIP) model used by many researchers (e.g., [10]) in
the past.

Several models of bipedal locomotion have been introduced that are intended
to capture dynamic aspects that are not present in the LIP model. Pratt et
al. [16] include a flywheel to model the dynamics of a rotating body. In [15,1],
the dynamics of the swinging leg are taken into account by including extra masses
in the model. Dau et al. [4] propose a specific extension to the LIP model by a
function that can be utilized to model various dynamical issues.

While multiple-mass models are an indisputable improvement, another im-
portant dynamical aspect in robotics is compliance, elasticity and flexibility.
These can arise as a desired compliance, as in the COMAN [19] and TORO [7]
humanoids. But elasticity can also be an undesired property of cost-effective
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robots like Nao by Aldebaran Robotics. While compliance is a reasonable at-
tribute for a humanoid robot expected to operate in an environment with hu-
mans, the necessity of light-weight and cost-effective robots is evident.

Thus, in our previous paper [19] we presented a novel model called the Flex-
ible Linear Inverted Pendulum model (FLIPM) that includes elasticity and has
a proven positive impact on walking stability. In this paper we further investi-
gate this model and give a new interpretation as an interconnected system of a
flexible system and the cart-table model of Kajita et al. [9].

Along with improvements in the modeling, different enhancements or alter-
native approaches to the preview control of [9] have also been proposed. For
example, the combination of an observer with the preview control showed a sta-
bilizing effect in simulation [3] and on a physical robot [2]. It is also possible
to include multiple sensor sources [21] and reactive stepping [20] ideas. Model
Predictive Control as proposed by Diedam et al. [5] allows also reactive stepping
without defining an a-priori reference ZMP.

The novel concept of Capture Point (CP), defined as the the point on the
floor where the robot has to step in order to come to a full stop, was initially
introduced in Pratt et al. [16]. Engelsberger et al. [6] applied this concept to a
walking algorithm which is the base for Missura et al. [14] to include a state
estimation.

In this paper we want to exploit the novel FLIP model and generate a stable
gait by using the boundedness approach introduced in [13,12] which provides
a certain number of possible advantages. First an analytical solution can be
derived, given a desired ZMP trajectory, for the CoM trajectory thus allowing
efficient real-time implementations. Moreover this approach can also be seen as
an extension of the Capture Point concept with its benefits as the determination
of stopping strategies or sudden change of plans.

In Section 2 we illustrate the FLIPM and its interpretation as the series
interconnection of two sub-systems. This separation allows, in Section 3.2, the
development of a novel controller. To show a direct application of both the
FLIPM and the boundedness approach, we explicitly illustrate the derivation of
the state reference trajectories when a piecewise constant desired ZMP is chosen.
The necessity of an impulsive control input is also highlighted together with an
alternative approach. Experiments finally show the performance of the obtained
controller in Section 5. Conclusions and future work are then addressed.

2 FLIP Dynamical Model

In this section we first describe the idea behind the Flexible Linear Inverted
Pendulum Model (FLIPM), and write it as two systems in series. As explained
in the introduction, it is intended to model elasticity in various parts of the
robot: motors, gears, light-weight links and possible PD controllers, which can
be imagined as a spring and a damper. Comparably to LIPM, it is a linear
model and thus can still be efficiently applied. Note that it does not model
vertical flexibility as height changes would lead to a nonlinear model.
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Fig. 1. The cart-table representation of the FLIPM

We begin with the cart-table model proposed by Kajita et al. [9], here ex-
tended as in Fig. 1. A massless table stands on the ground with a cart on top
at height zh, with mass m1 at position c1. The cart can accelerate itself such
that the table stands stably even if the cart is not located above the stand of
the table, in which case the Zero Moment Point (ZMP) xzmp is located in the
support polygon of the table.

To model the elasticity, we add a second mass m2 � m1 with position c2,
located within the cart. The second mass is connected to mass 1 by a spring-
damper mechanism, with spring constant k and damper constant b, modeling
elastic parts of the robot like motors, gears etc.. Thus mass 2 models everything
that is located before all elastic parts of the robot, and mass 1 everything after
the elasticity. In this model, the control input is a force applied to mass 2. In
Fig. 1 the acceleration of mass 1 due to the spring and damper is the acceleration
achieved by the wheels on the table. While both masses are used in the dynamic
model, to simplify calculations the second mass is not included in the ZMP.

The corresponding equations of motion are

m1c̈1 = −b(ċ1 − ċ2)− k(c1 − c2) (1)

m2c̈2 = b(ċ1 − ċ2) + k(c1 − c2) + u (2)

and the ZMP (neglecting the contribution of mass 2) is given by

xzmp = c1 −
zh
g
c̈1 = c1 −

1

ω2
o

c̈1 (3)

where ω2
o = g/zh (which is the pendulum frequency for the LIP). Computing

the overall transfer function from u to xzmp which, after some manipulations,
takes on the form

F (s) =
xzmp(s)

u(s)
=

(
1− 1

ω2
o
s2

s2

)(
bs+ k

m1m2s2 + (m1 +m2)(bs+ k)

)
(4)

it is interesting to recognize the typical cart-table transfer function Fct(s) from
the acceleration c̈1 and the ZMP

Fct(s) =
xzmp(s)

c̈1(s)
=

1− 1
ω2

o
s2

s2
(5)
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Fig. 2. FLIPM as a series interconnected system (up) and its inverse (down)

and a second transfer function

Fflex(s) =
c̈1(s)

u(s)
=

bs+ k

m1m2s2 + (m1 +m2)(bs+ k)
(6)

from the input force u to c̈1 which can be thought as the contribution of a flexible
system Sflex. In the sequel it is important to notice that Sflex is both stable and
minimum-phase due to the presence of a stable zero at −k/b. The overall system
F (s) = Fct(s)Fflex(s) can be interpreted as the conceptual series interconnection
of the cart-table Sct and the flexible system Sflex as shown in Fig. 2.

If m2 = 0 the transfer function (4) reduces to Fct(s)/m1 which is consistent
with u being a force while in the classic cart-table the input is an acceleration.

In order to find the same explicit series interconnection in the state space, we
make a change of coordinates. We choose the first two components as x1 = c1
and x2 = ċ1 with

ẋ1 = x2, ẋ2 = u1, y1 = x1 −
1

ω2
o

u1

and u1 = c̈1, which leads to the cart-table model Sct with transfer function
Fct(s). The original version of the cart-table [9] had also the acceleration c̈1 as
a state variable in order to obtain a strictly proper transfer function.

We choose as the two final state components the relative position and velocity(
x3

x4

)
=

(
c2 − c1
ċ2 − ċ1

)
(7)

so that we obtain, by setting

M̄ =
1

m1
+

1

m2
=
m1 +m2

m1m2
(8)

the following state space representation (A2, B2) of Sflex(
ẋ3

ẋ4

)
=

(
0 1
−kM̄ −bM̄

)(
x3

x4

)
+

(
0

1/m2

)
u (9)

The output matrix C2, which gives the transfer function Fflex(s)

Fflex(s) = C2(sI −A2)−1B2 = C2

(
s −1
kM̄ s+ bM̄

)−1(
0

1/m2

)
(10)



and therefore the acceleration c̈1 as output y2, is

C2 =

(
k

m1

b

m1

)
(11)

The previous series separation allows the direct use of the framework and results
of [13,12] for the Sct subsystem. The basic idea is illustrated next.

3 Stable inversion approach

After briefly recalling the basic idea of [13] for the LIP, we take advantage of the
series interconnection previously identified for the FLIPM.

3.1 Stable inversion for the LIP

For the LIP, the problem consists in finding, for a given desired output ZMP
denoted as xd

zmp(t), the corresponding bounded CoM reference trajectory and

feedforward input ud(t) which guarantee exact tracking: if the state is initialized
on the bounded state reference trajectory, the cart-table driven by ud(t) will en-
sure zero output tracking error. This reference state trajectory (CoM state) can
then be translated, through inverse kinematics, into a joint reference trajectory
to be tracked by the local joint controllers.

Using the framework of [12] we transform an exact tracking problem for the
cart-table into a stable inversion one for the LIP, i.e. the inverse of the cart-table
system. The LIP is then forced by xd

zmp and has its generic state trajectories
exponentially diverging unless a specific initial state for the unstable part is
chosen (the LIP has an unstable pole in s = ωo). These initial conditions which
guarantee a bounded state evolution for a given xd

zmp, should verify the so-
called boundedness condition (see [13] for further details) which involves only
the unstable dynamics of the LIP as in [18,6,8].

For the LIP system
F−1
ct (s) =

s2

1− 1
ω2

o
s2

(12)

the boundedness condition extend the concept of capture point of [16] and,
for any given analytical expression of the desired ZMP xd

zmp(t), we are able
to obtain a bounded CoM position trajectory in an analytical closed form (so
also the velocity and acceleration have closed form analytical expressions) thus
providing a useful tool for real-time implementation.

3.2 Stable inversion for the FLIPM

For the FLIP model, we seek the bounded reference trajectory for c1, analogous
to finding the CoM trajectory for the LIP. To do so, we extend the approach re-
called in Section 3.1 to the FLIPM by using the particular series interconnection
highlighted in (4): the inverse of a series interconnection is the series (in reverse
order) of the single inverse systems and thus we can use all our previous results



for the LIP part. In Fig. 2 the overall inverse system is expressed in terms of
S−1

ct , i.e. the LIP, and S−1
flex which denote the inverse system of respectively Sct

and Sflex.

Moreover, being Sflex minimum phase, its inverse S−1
flex is stable. Therefore

since the boundedness constraint involves only the unstable dynamics, obtaining
a stable inverse for the FLIPM reduces to using the boundedness constraint for
the unstable part of the LIP and just inverting Sflex. All previous results obtained
for the LIP can therefore be extended.

To explicitly derive S−1
flex we rewrite the dynamics of Sflex using a change of

coordinates which also highlights the dynamics of the zeros (the zero-dynamics)
and thus enables the direct derivation of a reduced order inverse system [17].
Since Sflex has relative degree one - we need to differentiate the output once
to make the input appear explicitly - we choose as new coordinates the output
z = y2 and η = x3 = c2 − c1(

z
η

)
=

(
k/m1 b/m1

1 0

)(
x3

x4

)
(13)

so that, in these new coordinates, system Sflex becomes

ż =

(
k

b
− bM̄

)
z − k2

m1b
η +

b

m1m2
u (14)

η̇ =
m1

b
z − k

b
η (15)

y2 = z (16)

By definition, the dynamics of η, when the output is restricted to be identically
zero (z = 0), gives the dynamics of the zeros (one zero at −k/b for the flexible
system as clearly confirmed by the transfer function Fflex(s)). The reduced order
first order flexible system inverse S−1

flex is then directly obtained as

η̇ = −k
b
η +

m1

b
y2(t) (17)

u =

(
b

m1m2

)−1 [
k2

m1b
η + ẏ2(t)−

(
k

b
− bM̄

)
y2(t)

]
(18)

where u is solved from (14) and z is taken from (16). Being S−1
flex stable, if we

apply the bounded yd
2 (t) = c̈d1(t) obtained from the LIP (see Section 3.1 and

Fig. 2) as input, the resulting state evolution ηd(t) and output ud(t) will be
bounded for any initial state4. Note that the output u(t) in (18) depends also
on its input derivative ẏ2 =

...
c 1.

Going back to the original system with the new coordinates (13), we can
summarize the overall procedure by noting that if the FLIPM is driven by ud(t)
and has a state evolving as (cd1 , ċ

d
1 , η

d, c̈d1), then the output will exactly track the
desired ZMP xd

zmp(t). The analytical closed form expression of cd1(t), for a given

4 Note that the stable dynamics of the inverse should be consistently initialized, for
example ηd(0) = x3(0), in order to obtain identically null tracking error.



xd
zmp, is readily obtained using the boundedness condition of [13]. An example

is discussed in the following section.

4 A carried out example: piecewise constant ZMP

In order to illustrate the overall approach and its potential, we choose the most
demanding reference ZMP trajectory: an instantaneous variation at time T , i.e.
xd

zmp(t) = ustep(t − T ) where ustep(·) denotes the Heaviside step function. The

boundedness condition applied to the chosen xd
zmp(t) leads to

c1(0) +
ċ1(0)

ωo
= e−ωoT (19)

which coincides with the Capture Point condition of [16]. A possible correspond-
ing reference trajectory cd1 of the LIP is given by5

cd1(t) =
1

2
eωo(t−T ) · (1− ustep(t− T )) +

1

2
(2− e−ωo(t−T )) · ustep(t− T ) (20)

where the first term shows the anticipatory behavior emphasized in [9]. Note
that the resulting desired velocity ċd1

ċd1(t) =
ωo
2

(
eωo(t−T ) − 2 sinh(ωo(t− T )) · ustep(t− T )

)
(21)

is still continuous6 while the acceleration c̈d1(t) is not. We still need to also
compute ηd, but since it is the solution of (17) driven by yd

2 = c̈d1 ,

ηd(t) = e−k/btηd(0) +
m1

b

∫ t

0

e−k/b(t−τ)c̈d1(τ) dτ (22)

it can be obtained analytically by substituting c̈d1 and evaluating the integral.

Finally, in order to compute the feedforward term ud using (18) for the
particular chosen desired ZMP, we note that the third derivative of cd1

...
c d

1(t) =
ω3
o

2

(
eωo(t−T ) − 2 sinh(ωo(t− T ))ustep(t− T )

)
− ω2

o Imp(T ) (23)

is needed and therefore an impulse Imp(T ) appears in the desired feedforward

ud(t) =
m2k

2

b2
ηd(t)− m1m2

b

(
k

b
− bM̄

)
c̈d1(t) +

m1m2

b

...
c d

1(t) (24)

which makes the implementation difficult. From a theoretical point of view, this
result is consistent with the FLIPM model: in order to make the ZMP change
instantaneously we need an impulsive input. Note that if xd

zmp were continuous,
at this point we would have obtained an analytical result that could be directly
implemented, which would be extremely beneficial for real-time applications.

5 This choice corresponds to the stable dynamics initialized to 0 (see[13] for details).
6 Note that, due to the special structure of cd1(t), the impulses that appear from the

derivation of the step functions in (20) cancel out. Similarly for the acceleration.



4.1 Approximate inverse

The presence of the impulse in (24) emanates from the chosen challenging xd
zmp

and from the system Sflex having relative degree one and therefore the need of
ẏ2 in (18). A possible way to avoid this derivation is to make a relative degree
zero approximation of Sflex by adding a high frequency zero in Fflex(s), i.e.

F a
flex(s) = (1 + τs)Fflex(s) =

(1 + τs)(bs+ k)

m1m2s2 + (m1 +m2)(bs+ k)
(25)

which can be rewritten, after some manipulations, as

F a
flex(s) =

bτ

m1m2
+

αs+ β

m1m2s2 + (m1 +m2)(bs+ k)
(26)

with
α =

1

m1m2

[
τ(k − M̄b2) + b

]
, β =

k

m1m2
(1− M̄bτ) (27)

Since only the numerator of the transfer function has changed, we can use the
same state equations (9) as for Sflex, while the output is now given by

c̈1 =
(
βm2 αm2

)(x3

x4

)
+

bτ

m1m2
u = Ca

(
x3

x4

)
+Dau (28)

Being the relative degree 0, the inverse system is readily found as

ẋi = (A2 −B2D
−1
a Ca)xi +B2D

−1
a (29)

u = −D−1
a Caxi +D−1

a c̈1 (30)

with xi = (x3, x4)T and A2, B2 defined in (9). When the ZMP trajectory is given
by a step function, we have avoided the triple derivative of cd1 which introduced
the impulse. The choice of the high frequency zero needs to be done consistently
with the sampling time and the system parameters.

4.2 Some interesting applications

The previous analysis shows that we can obtain closed form expressions for the
FLIPM reference state corresponding to a given xd

zmp. The same boundedness
framework, however, allows to solve a simultaneous CoM/ZMP problem which
allows to solve for both a desired ZMP which satisfies some additional constraints
and the corresponding CoM (which for the FLIP refers to c1). For example, in
the same spirit of the Capture Point, a change of plan or a sudden obstacle could
require the humanoid to stop as soon as possible, if possible in one step. This is
equivalent to requiring a step recovery from a generic initial state (c1(0), ċ1(0)).
Considering a generic instantaneous step at time T of length α, since the bound-
edness constraint

c1(0) +
ċ1(0)

ωo
= αe−ωoT (31)

applied to the FLIPM involves only the unstable dynamics of the LIP, we can
solve (31) either in the step length α - as shown next in Section 5 - or in the
step duration T . While this solution guarantees that, after the step is taken,
c1 converges asymptotically to 0, other interesting choices can also be studied
by considering both parameters α and T to be still determined. We can, for



example, add the additional requirement that the humanoid should immediately
stop when the step is taken without the asymptotic convergence to the rest
upright position. This can be achieved by solving simultaneously

c1(0) +
ċ1(0)

ωo
= αe−ωoT c1(0)− ċ1(0)

ωo
= αeωoT (32)

where the second condition ensures a deadbeat behavior. Solving in α and T

α =
1

ωo

√
ω2
oc

2
1(0)− ċ21(0) T =

1

2ωo
ln

(
ωoc1(0)− ċ1(0)

ωoc1(0) + ċ1(0)

)
(33)

Analyzing the existence of T leads to interesting considerations.
We envisage to explore and implement, for the FLIPM, this and several

other possibilities illustrated in [11] together with a smoother choice of the ZMP
desired trajectory as the typical Constant/Cubic/Constant profile used for rep-
resenting single/double/single support patterns.

5 Experiments

As in [19] we show the superiority of the FLIPM compared to the LIP, we give a
comprehensive comparison between the boundedness approach and the preview
control w.r.t. the tracking error and execution time. Additionally, we show how
the approximate inverse system performs on a system that is hard to control due
to the spring-damper-system even in the case of a stopping capture step.

5.1 Dynamic Simulation

To verify that the system is capable of generating a stable gait, we apply it in
the rigid body dynamics simulation environment SimRobot that is based on the
Open Dynamics Engine. In [19] the Nao is utilized as an example for a robot
with elasticities, thus we also utilize a model of it here. As this robot is position
controlled, we directly apply cd2 = cd1 + ηd without numerically problematic in-
tegration steps that would be required using preview control [21]. We thus have
a reference c1 that exactly matches the reference, while preview control uses an
optimization function which allows tracking errors.

Fig. 3 depicts the results of a walk forward at 10 cm/s that is interrupted
by an unforeseen instant stop at 14.7 s executed utilizing a capture step. In this
simulation we use high values for k and b (1000, 200) as the simulated robot
reveals a low elasticity. The frequency of control and simulation is 100 Hz. As it
is implemented in C++7, it can also be applied on a physical robot in real-time
at this frequency.

To show stability we consider directly the body orientation as shown in in
Fig. 3, rather than the measured ZMP. As can be seen, a low oscillation occurs
during the walk that does not affect stability. It is a consequence of the simulation
of the collisions between the feet and the ground, which are not fully rigid. At the

7 https://github.com/OliverUrbann/FLIPM.

https://github.com/OliverUrbann/FLIPM
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Fig. 3. Results of the dynamic simulation with control and simulation frequency of 100
Hz applying the exact system (Sec. 3) implemented in C++.

stopping step the oscillation stops immediately indicating a correct determined
final position.

5.2 Comparison

Fig. 4 shows the application of the approximate system to the state space equa-
tion xt+1 = Axt + Budt that represents the FLIPM as presented in [19]. The
control output udt is obtained and applied to the state space by integration en-
abling a comparison with a preview controller.

The walk initially consists of 10 steps with a sudden stopping (capture) step
at 1.8 s. With low values for b the tracking error of the reference ZMP is low,
even in case of an interrupting and unforeseen stop by a capture step. Rising
values of b require an adaption of τ to compensate the arising tracking error.

In contrast to Sec. 5.1, Fig. 4 is obtained using a high control frequency of
2 kHz. While this leads to satisfying results applying the boundedness approach,
the preview controller in Fig. 4(d) performs partially better. However, in fact
preview control is not applicable at these frequencies as the time for calculating
the depicted 3 seconds is 204.9 s using a Python script on a Core i5 PC. This
is a consequence of the preview that must be approx. 1 s, thus requiring to
calculate 2000 future frames in each time step. In contrast, calculation time is
approx. 1 s for the simulation of 3 s using the boundedness approach. Thus, it
needs 1/3 of the available time for calculation and is therefore even at 2 kHz
real-time capable using Python. At lower frequencies, where preview control is
also real-time capable, e.g. at 100 Hz where computation time is 0.5 s, it reveals
higher tracking errors (see [19]) and a jitter in the resulting ZMP. Therefore,
at frequencies where the controller is real-time capable, Boundedness Control
performs better.
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(d) Preview Control (b = 200)

Fig. 4. Comparison of different choices of k, b and τ for the approximate iterative
system and preview control (without capture step).

6 Conclusion

In this paper, we presented a boundedness approach for gait planning based
on the Flexible Linear Inverted Pendulum Model (FLIPM). Applying a stable
inversion to a series connection of LIP and the flexible system we are able to
obtain a reference trajectory for the CoM and a control output. We show sev-
eral advantages compared to preview control like Capture Point determination,
computation time etc.

As future work we will investigate an advantage of preview control: closed-
loop control. While the experiments show stable results, a system applying a
control output may drift due to integration steps. Additionally, sensor feedback
will be investigated due to its importance for physical robots.
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