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Abstract— It is in general complex to consider the complete
robot dynamics when planning trajectories for bipedal locomo-
tion. We present an approach to trajectory planning, with the
classical Linear Inverted Pendulum Model (LIPM), that takes
explicit consideration of the unstable dynamics. We derive a
relationship between initial state and the control input that
ensures the overall system dynamics will converge to a stable
steady state solution. This allows us to exploit the unstable
dynamics to achieve system goals, while imposing constraints
on certain degrees of freedom of the input and initial conditions.
Based on this, we propose an approach to trajectory planning,
and derive solutions for several typical applications. Experi-
mental simulations using the REEM-C biped robot platform of
Pal Robotics validate our approach.

I. INTRODUCTION

In this paper, we address the problem of planning loco-
motion trajectories for bipedal robots. Our approach begins
by using the classical Linear Inverted Pendulum Model
(LIPM) to approximate the robot dynamics. Although the
LIPM is unstable (e.g., [1]), for any specific input there
exist initial conditions from which the system will converge
to a stable steady state solution. Likewise, for any initial
conditions, there exists a stabilizing input. In this paper,
we derive a constraint – the boundedness constraint – that
relates the LIPM initial conditions to its input, such that
the system dynamics converge to a stable steady state when
the constraint is satisfied. We then apply this constraint to
derive control strategies that will achieve various locomotion
goals, such as resisting external disturbances, arriving to a
desired state at a specified time, etc. Finally, we use these
control strategies as input to a full dynamic simulation of
the REEM-C biped robot to demonstrate their effectiveness.
Our results argue that it is feasible to derive control strategies
for humanoid robot locomotion by considering explicitly the
unstable dynamics of the LIPM approximation in order to
derive, for example, zero moment point (ZMP) trajectories.

The remainder of the paper is organized as follows. In
Section II we provide a brief review of related research. Since
the LIPM is by now well known in the bipedal locomotion
community, in Section III we give only a high level overview
of model and its application to bipedal locomotion. In
Section IV we derive a constraint on initial conditions and
input that ensures boundedness of the unstable dynamics

S. Hutchinson is Professor of Electrical and Computer Engineering at
the University of Illinois. E-mail: seth@illinois.edu. L. Lanari is with
the Dipartimento di Ingegneria Informatica, Automatica e Gestionale,
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of the LIPM. We then extend this analysis to characterize
trajectories of the stable dynamics, and finally of the center of
mass (CoM) dynamics. In Section V, we show how the anal-
ysis of Section IV can be used to solve trajectory planning
problems for locomotion, as well as how to solve directly for
state trajectories by setting up appropriate boundary value
problems. In Section VI, we give several specific application
problems to demonstrate our approach, including deriving
inputs to achieve desired terminal conditions and resisting
external disturbance. In Section VII, we present full dynamic
simulations of the PAL Robotics humanoid REEM-C robot.
Finally, in Section VIII we describe the relationship between
our approach and several existing methods.

II. RELATED RESEARCH

For more than two decades, the LIPM has been widely
used to approximate the dynamics of bipedal robots for gait
planning [1]. Under this approximation, the relationship be-
tween the ZMP and the center of mass (CoM) is governed by
an unstable second order system. One of the more successful
approaches using this approximation is the Preview Control
based approach of Kajita [2]. It is assumed that the planner
knows the future reference trajectory for a finite horizon
thus leading to a non-causal control approach. The approach
illustrated in Section IV also contains a non-causal aspect.

In the work of Harada and colleagues [3]–[6], trajectory
planning has been formulated as a two-point boundary value
problem (TPBVP) that is solved analytically for a family
of polynomial ZMP trajectories allowing real-time imple-
mentation. A combination of these techniques is used in [4]
where the TPBVP approach is used for a nominal part while
Preview Control is applied on the perturbation dynamics. A
clear presentation of the problems related to these approaches
can be found in [7]. Some of these aspects have been
addressed in [8] by allowing higher order polynomials and
expanding the concept of simultaneous planning of CoM and
ZMP trajectories. The work in [9] gives a thorough treatment
of boundary conditions and their connection to gait planning
problems. In [10] and [7], the LIPM is extended using a
three-mass system, taking into account the trajectory of the
swinging leg. A closely related point of view is presented in
[11] using Model Predictive Control. A Fourier series based
approximate solution is given in [12] where an additional
smoothing is also required.

Also related to our approach is the research done on
capture point dynamics, since these coincide with the un-
stable mode of the LIPM. The seminal paper of Pratt et
al. [13] introduced the capture point as the point on the
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Fig. 1. The Linear Inverted Pendulum (LIPM)

ground where the humanoid had to step in order to come
to a complete stop after the push has vanished. The analysis
carried on the LIPM was enriched with the use of an ankle
torque or a flywheel to maintain balance before a step was
needed. A complementary result defining decision surfaces
was presented in [14]. The introduction of the Foot Point
Estimation [15] where a nonlinear model of a rimless wheel
with only two spokes was used, allowed the inclusion of
the energy loss due to the ground impact. Reactive stepping
strategies are developed in [16] by considering the capture
point and the neutral point in a TPBVP framework. The
capture point concept has been used successfully also for
walking gaits in [17]. We refer to the complete bibliography
of [18] for a complete overview.

III. THE LINEAR INVERTED PENDULUM

Researchers often resort to approximate models of the
dynamics during trajectory planning, and then rely on closed-
loop control schemes to stabilize the actual robot during
locomotion. As described above, the LIPM is a popular ap-
proximation that has proven to be effective for this purpose.

The LIPM dynamics [2], [18] in the sagittal plane are

ẍc =
g

zo
(xc − xa) +

1

mho
(τa − τh) +

F (t)

m
(1)

with, see Fig. 1, xa the point foot location, xc the CoM x-
position, ho its constant height, m its concentrated mass, τa
an ankle torque and τh a hip torque acting on a reaction
mass. The explicit contribution of a possibly time-varying
disturbance force F (t) acting in the x-direction is also
included. The equations for the lateral component of motion
are similar, so we do not include these here.

Defining ωo =
√
g/ho, we may rewrite (1) as

ẍc(t) = ω2
oxc(t)− ω2

oz(t) (2)

in which z(t) accounts for all external inputs to the dynamic
equations for the CoM, including possible disturbance.

As shown in [18], model (2) can be instantiated to rep-
resent basic gait models and is therefore general enough to
encompass a wide variety of dynamic models for locomotion.
• Point foot. With no torques present the pendulum is
represented as a massless telescoping leg with point foot
location in xa and a point mass m kept at a constant height
ho. The Center of Pressure (CoP) is fixed in xa if no step is
taken. In this case xa can be considered as a control input,
and in the absence of external disturbances we have

ẍc = ω2
oxc − ω2

oxa (3)

• Finite-sized foot. If we allow a finite-sized foot with an
ankle torque τa, the CoP location can be changed by the
ankle torque since xcop = xa − τa/(mg) and therefore (1)
can be rewritten as

ẍc = ω2
oxc − ω2

oxcop (4)

For flat foot contact on a horizontal surface the CoP coincides
with the Zero Moment Point [19] (ZMP) i.e. xcop = xzmp.
In this context, the CoP is used as a control input.
• Reaction mass. In order to mimic human behavior in bal-
ancing, arm and torso movements can, at least approximately,
be represented by an actuated reaction mass which generates
a momentum around the CoM and therefore an acceleration
along the x-axis. We omit the rotational dynamics of the
reaction mass since it is not essential in our framework.
Defining the Centroidal Moment Pivot (CMP) as

xcmp = xcop +
τh
mg

= xa −
τa − τh
mg

(5)

we obtain the system dynamics

ẍc = ω2
oxc − ω2

oxcmp (6)

In the sequel, we use (2) as the LIPM dynamic model,
since equations (3), (4) and (6) are variations of this equation.

IV. BOUNDED SOLUTIONS FOR THE LIPM MODEL

In this section, we first review the state space description
of the LIPM dynamics, and use the change of coordinates
of [7] that decouples its unstable and stable modes. Then,
in Section IV-B we provide the first main result of the
paper — a constraint on the initial conditions and input that
ensures boundedness of the unstable subsystem trajectories.
In Section IV-C, we give a kind of dual analysis for the stable
system. Then, in Section IV-D we relate the results from
Sections IV-B and IV-C to the CoM trajectory. A point-mass
robot taking a single step is used to illustrate the concepts.
More interesting cases are given in Section VI.

A. LIPM equivalent state-space representations

System (2) can be represented in the CoM position and
velocity (xc, ẋc) coordinates and with input z(t) by

Sc :
(
xc
ẋc

)
Ac =

(
0 1
ω2
o 0

)
Bc =

(
0
−ω2

o

)
Applying the change of coordinates(

xu
xs

)
=

(
1 1/ωo
1 −1/ωo

)(
xc
ẋc

)
(7)

we can fully decouple the stable and unstable dynamics

ẋu = ωoxu − ωoz (8)
ẋs = −ωoxs + ωoz (9)

Note that the unstable dynamics xu coincide with the capture
point dynamics [18], also named divergent component of
motion [7], [17] or extrapolated center of mass [20].

We desire to select trajectories of the system that remain
bounded and avoid the divergent behavior associated to the



eigenvalue +ωo. This can be accomplished either by an
appropriate choice of initial condition xu(t0), or by designing
the input z(t) to maintain xu(t) bounded1. To this end, we
will analyze the two subsytems, xu and xs, separately in Sec-
tions IV-B and IV-C, which will allow us to relate constraints
on the inputs and the initial conditions to performance goals
(e.g., center of mass position and velocity at the final time).
By taking this approach, the stable dynamics can be viewed
as allowing extra degrees of freedom for the control design.

B. Unstable subsystem

The solution of (8) for general input z(t) is given by

xu(t; z) = eωo(t−t0)xu(t0)− ωo
∫ t

t0

eωo(t−τ)z(τ)dτ (10)

Note that we use the notation xu(·; z) to make explicit the
dependence on choice of control input z. In general, this
solution diverges; however, as shown in [21], [22], if the
initial condition satisfies

xu(t0) = x?u(t0; z) , ωo

∫ ∞
t0

e−ωo(τ−t0)z(τ)dτ (11)

we obtain the particular solution

x?u(t; z) = ωo

∫ ∞
0

e−ωoτz(τ + t)dτ (12)

which is bounded under mild boundedness conditions on the
input z(t). Here, we use the notation x?u(·; z) to denote the
particular trajectory of the system under the input z when the
initial condition on xu satisfies (11). This solution depends
on the future values of the input z, and therefore is anticausal.
Although this may sound odd, it has already been noticed in
[2] that the CoM trajectory must be noncausal with respect
to the desired ZMP trajectory.
Consider, for example, as input z=zstep(t−ta), with zstep(·)
the Heaviside step function. Then (11) and (12) become

x?u(0; z) = ωo

∫ ∞
0

e−ω(τ+ta)dτ = e−ωota (13)

x?u(t; z) = eωo(t−ta)[zstep(t)−zstep(t−ta)]+zstep(t−ta)

Fig. 2 illustrates the trajectory of xu for this case.
Under the change of coordinates given by (7), the condi-

tion (11) also implies a constraint on the initial conditions
for the center of mass trajectory, namely

x?u(t0; z) = xu(t0) = xc(t0) +
1

ωo
ẋc(t0) (14)

In the sequel, we refer to (14) as the boundedness condition.

1Note that the term “bounded” here is referred to the given input, i.e. we
want to avoid the divergence due to the unstable eigenvalue ωo and obtain
a behavior similar to the concept of steady-state. For example, if the input
were a ramp we could admit a similar behavior even if it is diverging.
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xs(t) for various initial conditions of the form xs(0) = kx?
s (0; z) for

k = 1, 0.8, 0.5, 0.3, 0.1, 0.

C. Stable Subsystem

Let us now consider the stable subsystem given by (9).
Since this system is stable, for any initial condition xs(t0),
the trajectory xs(t) will asymptotically converge to a steady-
state solution if it exists. However, if the input z(t) is equal to
0 for all t < ta and is defined as z(t) = v(t−ta)zstep(t−ta),
then, for any t0 < ta, it may be possible to select the initial
condition xs(t0) such that xs(t) evolves as its steady-state
from time ta on (i.e., the steady-state solution is achieved
at the moment the input is applied). This particular initial
condition is defined as

xs(t0) = x?s (t0; z) , ωoe
ωo(ta−t0)

∫ ta

−∞
eωo(τ−ta)v(τ)dτ

(15)
Consider again the example illustrated in Fig. 2 in which

z = zstep(t− ta), with t0 = 0. In this case, (15) becomes

x?s (0;u) = ωo

∫ ta

−∞
eωoτdτ = eωota (16)

and therefore

x?s (t; z) = e−ωo(t−ta)[zstep(t)− zstep(t− ta)]+ zstep(t− ta)

denotes the particular trajectory starting in t0 that will lead
to the steady-state behavior from ta on.

Fig. 2 illustrates various trajectories for xs for different
choices of initial condition. In particular, the red trajectory
corresponds to xs(0) = x?s (0; z) and the black trajectory cor-
responds to xs(0) = 0. Other trajectories shown correspond
to xs(0) = kx?s (0; z)

D. CoM trajectory

Under the change of coordinates given by (7), the center
of mass trajectory corresponding to x?u and x?s is given by

x?c =
1

2
(x?u + x?s ) ẋ?c =

ωo
2

(x?u − x?s )



When the initial state of the stable subsystem deviates
from x?s (0, z), a full range of CoM behaviors is possible. In
this case, we can write the trajectory xc(t) directly in terms
of this deviation as

xc =
1

2
(x?u + xs)

=
1

2
(x?u + e−ωotxs(0) + ω0

∫ t

0

e−ωo(t−τ)z(τ)dτ)

=
1

2
(x?u + e−ωot(xs(0)− x?s (0; z))

+e−ωotx?s (0; z) + ω0

∫ t

0

e−ωo(t−τ)z(τ)dτ)

=
1

2

(
x?u + e−ωot(xs(0)− x?s (0; z)) + x?s (t)

)
= x?c +

1

2
e−ωot (xs(0)− x?s (0; z)) (17)

Note that (17) gives a complete characterization of all
bounded solutions parameterized by the initial condition
xs(0). Furthermore, note that xc asymptotically approaches
x?c for any initial condition xs(0). This implies that if the
boundedness condition (14) is satisfied, xc → x?c .

This asymptotic behavior of any xc belonging to the
considered family of bounded solutions, with an abuse of
notation, may allow us to define x?c as the steady state
behavior of the system under the effect of the input z(t).

Consider again the example given above with z =
zstep(t− ta), and x?u(t), x

?
s (t) previously computed. In this

case, the resulting center of mass trajectory is given by

x?c(t) = cosh(ωo(t− ta))[zstep(t)− zstep(t− ta)]
+zstep(t− ta)

ẋ?c(t) = ωo sinh(ωo(t− ta))[zstep(t)− zstep(t− ta)]

For this case, Fig. 3 shows the CoM trajectories given by (17)
for a range of values of xs(0), including xs(0) = x?s (0, u)
(in red) and xs(0) = 0 (in black).
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V. PLANNING AND CONTROL DESIGN

As described above in Section IV, condition (14) is
necessary to ensure a bounded solution for the CoM tra-
jectory. Since (14) depends on both the initial conditions
of the system and on the input, it can be used either to
infer constraints on the initial conditions when the input is

specified, or to derive constraints on the design of z(t) in
the case where the initial conditions are specified. In this
section, we discuss each of these cases. Following this, in
Section VI we present solutions for a few specific problems.

A. Constraints on Initial Conditions

If the input z(t) is known (for example if a desired
ZMP trajectory is given, or in the case of a known external
disturbance), then we can directly evaluate x?u(t0; z) using
(11), and (14) then defines a linear constraint between xc(t0)
and ẋc(t0). For example, if xc(t0) is specified, we have

ẋc(t0) = ωo [x
?
u(t0; z)− xc(t0)]

In this case, we have a boundary value problem in which the
boundary conditions are

xc(t0) = Actual initial CoM position

x?u(t0;u) = Bounded unstable solution selection

If, on the other hand, ẋc(t0) is given, we have the explicit
constraint on CoM intial position

xc(t0) = x?u(t0; z)−
1

ωo
ẋc(t0)

leading to a boundary value problem in which the boundary
coditions are

ẋc(t0) = Actual initial CoM velocity

x?u(t0; z) = Bounded unstable solution selection

Finally, note that in the case when the input z(t) is known
for all t ≥ t0, (14) can be viewed as an extension of
the classical capture point condition. In particular, in the
unforced case (i.e. for z = 0), we have x?u(t0; 0) = 0, leading
to xc(t0) = −ẋc(t0)/ωo, which is the classical capture point
condition. When z 6= 0, (14) generalizes the notion of capture
point to give the initial condition from which the unstable
subsystem will converge for the input z.

B. Constraints on Control Design

Alternatively, if the initial conditions on the center of mass
trajectory are given, (14) can be viewed as a constraint on
the design of the control input z(t). In particular, consider
the case in which the system input is a linear combination
of a disturbance input, zdist, and a control input, zcont, with
zcont chosen as a linear combination of known functions zi

zcont =
∑

αizi(t) (18)

For example, the zi could be a collection of step functions,
cubic splines or the monotonic functions used in [9]. For this
class of inputs, we can rewrite (14) to infer constraints on
the choice of the design parameters αi

xu(t0) = x?u(t0; z)

= x?u(t0; zcont) + x∗u(t0; zdist) (19)

=
∑
i

αix
?
u(t0; zi) + x?u(t0; zdist) (20)



where (19) and (20) follow due to the linearity of (11)
in z(t). Note that in (20) each expression x?u(t0; zi) and
x?u(t0; zdist) can be directly evaluated using (11), since zi
and zdist are known functions. Therefore, (20), defines a
linear constraint on the αi. Given a sufficient number of
other constraints (e.g., initial or final conditions for CoM
trajectory, smoothness constraints at individual steps, etc.),
we may solve uniquely for the αi. On the other hand, if
there are not enough constraints to uniquely determine the
αi, we could choose to optimize various performance criteria
using the extra degrees of freedom.

VI. APPLICATIONS

For illustration purposes, we consider the point foot case
so that control inputs of the form zi = zstep(t − ti) also
represent physical footsteps by the robot. Recall from (13)
that in this case, x?u(0; zi) = e−ωoti .

A. Single Footstep for Arbitrary CoM Initial Conditions

Consider the case for which the robot will take a single
step at time t1, i.e., z(t) = zstep(t − t1). In this case,
combining (20) and (14) we obtain

αx?u(0; zstep(t− t1)) = αe−ωot1 = xc(0) +
1

ωo
ẋc(0) (21)

α = eωot1

(
xc(0) +

1

ωo
ẋc(0)

)
(22)

Thus, for any initial CoM position xc(0) and velocity
ẋc(0), we are able to obtain a bounded trajectory by choice
of the magnitude of a single step. Furthermore, we have
(xc, ẋc) → (x?c , ẋ

?
c) and (x?c , ẋ

?
c) → (1, 0). This solution

is closely related to the well-known capture point condition
for selecting a single footstep that will bring the robot to
rest from its initial conditions. In particular, the quantity
inside the parentheses corresponds to the capture point, and
the magnitude of the step is determined by both the capture
point, and the amount of time that passes before executing
the step.

B. Disturbances

For illustration purposes we now show how the design
approach can help in determining the proper steps when
the humanoid is disturbed by some known force F (t). For
example a known change in the terrain slope can be modeled
as a constant known force acting on the CoM

F (t) = Fzstep(t− T ) or zdist(t) =
1

mω2
o

F (t) (23)

where T is the instant at which we want the swinging foot to
touch the ground with the new known slope. The disturbance
enters the CoM equation according to (1). In order to plan
this transition step properly starting from the actual initial
CoM conditions (position and velocity) we need the new
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Fig. 4. Constant disturbance anticipative compensation from a generic
CoM initial condition, ta = 0.2 sec, T = 0.7 sec

step xa = αazstep(t − ta), with ta ≤ T , in order to make
the boundedness condition (20) satisfied, that is

xu(0) =
F

mω2
o

x?u(0; zstep(t−T )) + αax
?
u(0; zstep(t−ta))

=
F

mω2
o

e−ωoT + αae
−ωota

which, solving in the step length αa, leads to

αa = eωota

(
xc(0) +

ẋc(0)

ω2
o

)
− F

mω2
o

eωo(ta−T ) (24)

In this example, the anticipative effect of our design, when
possible, is evident and illustrated in Fig. 4. The step is taken
in advance knowing the disturbance will act later. Moreover
note that the final CoM configuration has a CoM position
value which differs from the value of the step length αa
and this means the LIPM is not perpendicular wrt to the
ground. This difference arises since the humanoid needs to
compensate the effect of the constant disturbance zdist.

C. Steady state control

An interesting situation arises when we succeed in impos-
ing both constraints (14) and (15) that is

xu(0) = x?u(0; z) Boundedness Constraint
xs(0) = x?s (0; z) Steady State Constraint

with z(t) = v(t−ta)zstep(t−ta). Constraint (14) guarantees
that a bounded x?u exists, while (15) makes xs exactly follow
the steady state from ta on or, equivalently, xc follow x?c
from ta on. This particular situation is similar to the concept
of deadbeat. We can therefore guarantee that, at the time the
last input is applied, the humanoid has definitively reached
a final configuration and remains there. Referring for illus-
tration purposes to the disturbance example shown in Fig. 4
of Section (VI-B) where the CoM position reaches it’s final
value asymptotically, adding a second step αbzstep(t − tb)
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and the steady state constraint (15)

xs(0) = xc(0)−
ẋc(0)

ωo
= x?s (0; zdist(t)) + αax

?
s (0; zstep(t− ta))

+αbx
?
s (0; zstep(t− tb))

=
F

mω2
o

eωoT + αae
ωota + αbe

ωotb

leads to the behavior shown in Fig. 5 where the final constant
CoM position is reached at T with the relative position w.r.t.
the final step position remaining the same as in Fig. 4.

D. Other useful design conditions

From the previous analysis it is clear that as long as
we can express a design constraint linearly w.r.t. the design
parameters αi, the resulting equations will be easier to solve.
We could for example require that the total distance covered
by the gait should be equal to a given distance ddes. Since
we have chosen to illustrate these concepts with simple point
foot steps zi = zstep(t− ti), the total distance will just be

ddes =
∑

αi (25)

and therefore the condition is easily stated.
We can also design our steps amplitude in order to make

the CoM be at some specific location xdesc at a specific time
T and/or have a particular velocity ẋdesc at a given time tv .
To obtain the corresponding equations in the unknowns αi,
it is sufficient to rewrite the CoM position and velocity in
terms of, for example, the initial CoM position xc(0)

xdesc =
∑

αi
{
zstep(T − ti) + e−ωoti sinh(ωoT )

− cosh(ωo(T − ti))zstep(T − ti)}+ e−ωoTxc(0)

ẋdesc = ωo

[
−e−ωotvxc(0) +

∑
αi
{
e−ωoti cosh(ωotv)

− sinh(ωo(tv − ti))zstep(tv − ti)}]

Note finally that these conditions are satisfied at a spe-
cific instant and need to be compatible with other design
requirements.

VII. SIMULATION RESULTS

To validate the illustrated approach, the walking algorithm
has been tested on the REEM-C robot in the Gazebo simu-
lation environment. Gazebo is an open-source 3D simulator
that includes an accurate simulation of rigid-body physics.
REEM-C is a biped humanoid robot developed and commer-
cialized by Pal Robotics as a research platform (Fig. 6).

Fig. 6. REEM-C biped robot platform

The robot is 1.65 meters tall, weights 80 kg and has 44
degrees of freedom: 6x2 in the legs, 2 in the waist, 2 in the
head, 7x2 in the arms and 7x2 in the hands. The available
sensors are absolute and relative joint encoders, 6 axis
force/torque sensors in the ankles, IMU, 2 laser range finders,
stereo cameras, microphones and speakers. Simulation runs
at 1 KHz, while the walking algorithm is executed at 200
Hz. The walking solver computes the reference trajectories
for the ZMP and CoM and an inverse kinematics algorithm is
used for providing reference positions to joint PID controllers
at every control cycle. A ZMP closed-loop controller is used
to compensate for disturbances and differences between the
simplified inverted pendulum model and the real system.

Preliminary experiments have been carried out in order to
validate the ideas introduced in Section IV. The CoM has,
for simplicity, been considered fixed with the humanoid’s
structure at a constant height of 0.7 m. In spite of this ap-
proximation, the use of the LIPM and very little tuning of the
ZMP trajectory, these first results are very encouraging. In
particular we report the CoM reference and actual trajectories
in Fig. 7 together with the chosen reference ZMP. The CoM
errors w.r.t. to the reference are shown in Fig. 8 where the
initial errors are more evident. A reconstructed ZMP signal
in the Gazebo environment is also shown in Fig. 10. To
evaluate the contribution of the stabilizer, Fig. 9 shows the
brute application of the reference CoM trajectory with no
stabilizer. A short video of the REEM-C full simulation in
Gazebo has been also included.

These preliminary results correspond to a desired ZMP
trajectory with the single support represented by a con-
stant value while the double support phase is a cubic
polynomial. In the near future we plan to experiment the
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design approach illustrated in Section V-B by using this
Constant/Cubic/Constant pattern as a basis function zi.

VIII. DISCUSSION AND FUTURE WORK

A. Boundary Value Problems

It is important to stress the basic differences in the
proposed approach w.r.t. to well-known results and these
differences become clearer when referred to the correspond-
ing Boundary Value Problem (BVP). Basically we have a
linear second order differential equation driven by a fixed,
for now, input. The generic solution needs two constraints
to be uniquely defined. We may, at this stage, have basically
three options:

(A) The two constraints are defined by the initial and
final position of the CoM (as in [3]). Note that
the final CoM position condition can be restated
as an initial velocity CoM constraint. Defining a
final CoM position for the specific unstable system
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at hand helps in limiting the diverging behavior
associated with the particular solution.

(B) Choosing as initial conditions x?c(0; z) and ẋ?c(0; z)
we obtain a different solution with the characteris-
tics previously discussed in Section IV.

(C) A third option can be devised by imposing the
boundedness constraint (14) and, for example, the
initial CoM position xc(0) as shown in (V-A). The
solutions of this third BVP are given by (17).

The three cases are summarized in Fig. 11.

B. Desired vs. Actual ZMP Trajectories

The three approaches described above define desired state
trajectories for the CoM. It is important to stress that in all
three cases, the actual initial conditions will rarely match the
desired initial conditions. Therefore, some sort of feedback
(stabilizer) is required, and the closed-loop dynamics of
the resulting system will produce trajectories that match
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the desired ones only asymptotically. Therefore, during the
transient, the real ZMP will differ from the desired ZMP. An
analysis of this error is possible in this framework.

C. Future Work

The approach that we have presented is amenable to real-
time planning, and in the future we hope to investigate online
implementations for planning and re-planning footsteps dur-
ing gait execution. Moreover, following the ideas of [7], the
family of ZMP trajectories can be enriched by including the
effect of the swinging leg.

We also would like to investigate what appear to be close
connections between our approach and the approach reported
in [23].

Moreover, we will extend our approach to nonlinear
systems, and specifically to derive boundedness conditions
that can be directly applied to nonlinear models for biped
locomotion.

Finally, we will continue to pursue real-world implemen-
tation and experimentation using the REEM-C robot.

IX. CONCLUSIONS

In this paper, we have presented an approach to trajectory
planning for a bipedal robot. We began with a linearized
approximation of the biped dynamics, and developed an
explicit boundedness constraint on the relationship between
the input and the initial conditions. For a sufficiently rich
class of inputs, it is possible to satisfy the boundedness
constraint while using remaining degrees of freedom to
satisfy other performance goals. This idea formed the basis
for our proposed trajectory planning method, which we illus-
trated for several typical problems. Finally, we have provided
preliminary experimental validation of our approach using
the REEM-C biped that has been developed by Pal Robotics.
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