Control Systems

Linear Algebra topics

L. Lanari

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

outline

- basic facts about matrices
- eigenvalues eigenvectors characteristic polynomial algebraic multiplicity
- eigenvalues invariance under similarity transformation
- invariance of the eigenspace
- geometric multiplicity
- diagonalizable matrix: necessary & sufficient condition
- diagonalizing similarity transformation
- a more convenient similarity transformation for complex eigenvalues
- spectral decomposition
- not diagonalizable (A defective) case: Jordan blocks

matrices - notations and terminology

$$p \times q \text{ matrix} \qquad M = \left(\begin{array}{cccc} m_{11} & m_{12} & \cdots & m_{1q} \\ m_{21} & m_{22} & \cdots & m_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ m_{p1} & \cdots & m_{p,q-1} & m_{pq} \end{array} \right)$$

 m_{ij} are the matrix elements (or entries)

$$M = \{m_{ij}: i=1,\ldots,p\quad\&\quad j=1,\ldots,q\}$$

$$j\text{-th column}$$

$$i\text{-th row}$$

transpose
$$M^T = \left\{ m'_{ij} : m'_{ij} = m_{ji} \right\} \longrightarrow \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}^T = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^T = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$$

vector (column)
$$v: n \times 1$$

row vector
$$v^T: 1 \times n$$

scalar
$$1 \times 1$$

square matrix
$$M:p\times p$$

rectangular matrix
$$M:p\times q \qquad (p\neq q)$$

particular square matrices

diagonal matrix
$$\begin{pmatrix} m_1 & 0 & \cdots & 0 \\ 0 & m_2 & \ddots & 0 \\ 0 & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & m_n \end{pmatrix} \quad \text{compact notation:} \quad M = \mathrm{diag}\{m_i\}, \quad i = 1, \dots, p$$

$$M = \operatorname{diag}\{m_i\}, \quad i = 1, \dots, p$$

$$\left(egin{array}{cccc} M_1 & 0 & 0 \ 0 & M_2 & 0 \ 0 & 0 & M_3 \end{array}
ight)$$

compact notation:

block diagonal matrix
$$\begin{pmatrix} M_1 & 0 & 0 \\ 0 & M_2 & 0 \\ 0 & 0 & M_3 \end{pmatrix} \qquad \begin{array}{c} \text{compact notation:} \\ M = \operatorname{diag}\{M_i\}, \quad i=1,\dots,k \\ \text{with } M_i \text{ square matrix} \\ \end{pmatrix}$$

upper block triangular matrix

$$\left(\begin{array}{ccc} M_{11} & M_{12} \\ 0 & M_{22} \end{array}\right)$$

similarly:

- $\left(\begin{array}{cc} M_{11} & M_{12} \\ 0 & M_{22} \end{array} \right)$ lower block triangular strictly lower block triangular with M_{ii} square matrix

square matrices

• for block triangular or block diagonal the computation of the determinant is simplified

$$\det\begin{pmatrix} M_{11} & M_{12} \\ 0 & M_{22} \end{pmatrix} = \det(M_{11}) \cdot \det(M_{22})$$

$$\det\begin{pmatrix} M_{1} & 0 \\ 0 & M_{2} \end{pmatrix} = \det(M_{1}) \cdot \det(M_{2})$$
special case

- determinant of a diagonal matrix = product of the diagonal terms
- special case

examples

$$\det \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ 0 & m_{22} & m_{23} \\ 0 & 0 & m_{33} \end{pmatrix} = m_{11} m_{22} m_{33} \qquad \det \begin{pmatrix} m_{11} & 0 & 0 \\ 0 & m_{22} & 0 \\ 0 & 0 & m_{33} \end{pmatrix} = m_{11} m_{22} m_{33}$$

• these particular cases will be useful for the eigenvalue computation

matrix-vector multiplication

• right multiplication of a matrix M by a column vector v is equivalent to making a linear combination of the columns m_i of M with coefficients the elements v_i of v

$$M\boldsymbol{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

$$= v_1 \, \boldsymbol{m}_1 + v_2 \, \boldsymbol{m}_2$$
example
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 5 \\ 6 \end{pmatrix} = 5 \begin{pmatrix} 1 \\ 3 \end{pmatrix} + 6 \begin{pmatrix} 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 17 \\ 39 \end{pmatrix}$$

• left multiplication of a matrix M by a row vector v^T is equivalent to making a linear combination of the rows m_i^T of M with coefficients the elements v_i of v^T

$$\mathbf{v}^T M = \begin{pmatrix} \mathbf{m}_1^T \\ \mathbf{m}_2^T \end{pmatrix}$$

$$= v_1 \, \mathbf{m}_1^T + v_2 \, \mathbf{m}_2^T$$

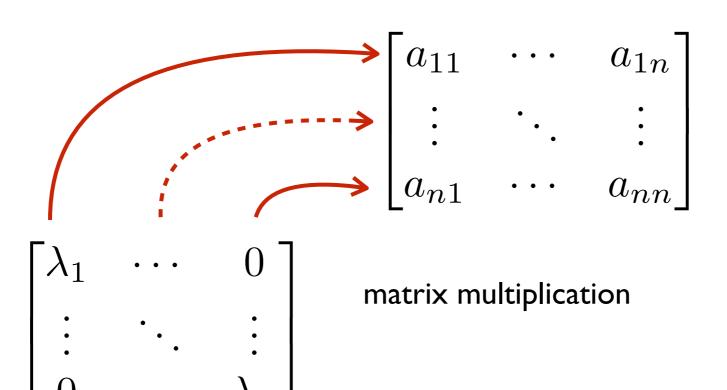
$$\text{example} \quad \begin{pmatrix} 5 & 6 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = 5 \begin{pmatrix} 1 & 2 \end{pmatrix} + 6 \begin{pmatrix} 3 & 4 \end{pmatrix} = \begin{pmatrix} 23 \\ 34 \end{pmatrix}$$

square matrices

• left multiplication by a diagonal matrix $\Lambda = \mathrm{diag}\{\lambda_i\}$

$$\Lambda A = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix} \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} \lambda_1 & \cdots & a_{1n} \lambda_1 \\ \vdots & \ddots & \vdots \\ a_{n1} \lambda_n & \cdots & a_{nn} \lambda_n \end{bmatrix} \longleftarrow$$

the i-th element of the diagonal matrix multiplies the i-th row of A



square matrices

• left multiplication by a diagonal matrix $\Lambda = \mathrm{diag}\{\lambda_i\}$

$$\Lambda A = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix} \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} a_{11}\lambda_1 & \cdots & a_{1n}\lambda_1 \\ \vdots & \ddots & \vdots \\ a_{n1}\lambda_n & \cdots & a_{nn}\lambda_n \end{bmatrix}$$

the *i*-th element of the diagonal matrix Λ multiplies the *i*-th row of A

similarly, right multiplication by Λ corresponds to operations on columns of A

$$A \Lambda = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix} = \begin{bmatrix} a_{11}\lambda_1 & \cdots & a_{1n}\lambda_n \\ \vdots & \ddots & \vdots \\ a_{n1}\lambda_1 & \cdots & a_{nn}\lambda_n \end{bmatrix}$$

the i-th element of the diagonal matrix Λ multiplies the i-th column of A

some matrix properties

remember that in general (except some special cases) the product of matrices is not commutative, that is $MN \neq NM$

for non-square matrices it is obvious, for example if M is 2×3 and N is 3×2 , MN will be 2×2 while $NM \times 3 \times 3$.

a square matrix M is invertible (or non-singular) $\Leftrightarrow \det(M) \neq 0$

$$(A^{-1})^{-1} = A$$
 $(AB)^{-1} = B^{-1}A^{-1}$
 $M = \text{diag}\{m_i\} \implies M^{-1} = \text{diag}\{\frac{1}{m_i}\}$
 $A^{-1}A = AA^{-1} = I$
 $A^0 = I$

$$\det(A) = \det(A^T) \qquad \det(\alpha A) = \alpha^n \det(A) \quad \text{ and not } \quad \alpha \det(A)$$

det(MN) = det(M).det(N) for square matrices M and N with same size

for square matrices

nullspace and image of M

consider the linear map from ${m R}^n$ to ${m R}^n$ represented by the square matrix M

$$M: \mathbf{R}^n \longrightarrow \mathbf{R}^n$$

• the kernel or nullspace Ker(M) of M is the linear subspace defined as

$$Ker(M) = \{ v \in \mathbf{R}^n \mid Mv = 0 \}$$

since it is a linear space, it is characterized by a base; each vector of the base can be seen as a particular linear combination of the columns of M (since v multiplies on the right) that give the null vector

• the image or range ${
m Im}(M)$ of M is the linear subspace defined as

$$\operatorname{Im}(M) = \{ v \in \mathbf{R}^n \mid Mu = v \text{ for } u \in \mathbf{R}^n \}$$

also the image is a linear space, its base can be found choosing the set of linearly independent columns of M

• for
$$M: \mathbb{R}^n \longrightarrow \mathbb{R}^n$$

Rank-nullity theorem
$$\dim(\operatorname{Ker}(M)) + \dim(\operatorname{Im}(M)) = n$$

nullspace and image of ${\cal M}$

examples

$$M = \begin{pmatrix} 1 & -3 \\ 2 & -6 \end{pmatrix} \quad \operatorname{Ker}(M) = \operatorname{gen}\begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

3 times the first column of M plus the second column of M gives the null vector

$$\operatorname{Im}(M) = \operatorname{gen}\begin{pmatrix} 1\\2 \end{pmatrix}$$

the two columns of M are clearly linear dependent (the second one is -3 times the first one)

$$M = \begin{pmatrix} 1 & 2 & -1 \\ 1 & 2 & -1 \\ 2 & 4 & -2 \end{pmatrix} \quad \text{Ker}(M) = \text{gen} \left\{ \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \right\}$$

or equivalently

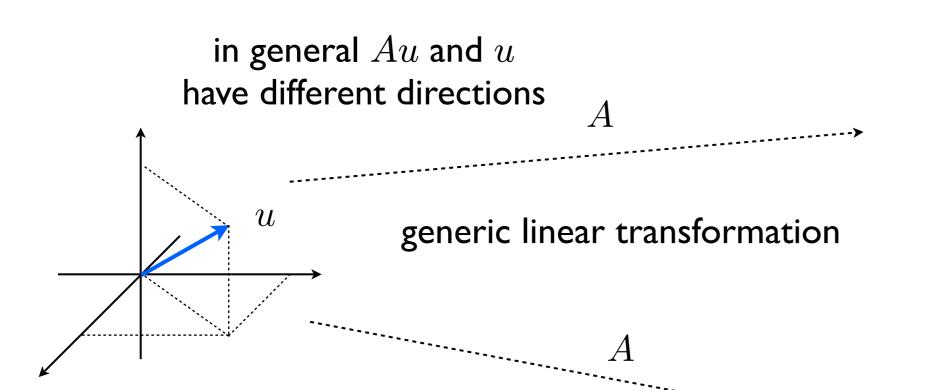
$$\operatorname{Ker}(M) = \operatorname{gen} \left\{ \begin{pmatrix} -2\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix} \right\}$$

$$\operatorname{Im}(M) = \operatorname{gen}\begin{pmatrix} 1\\1\\2 \end{pmatrix}$$

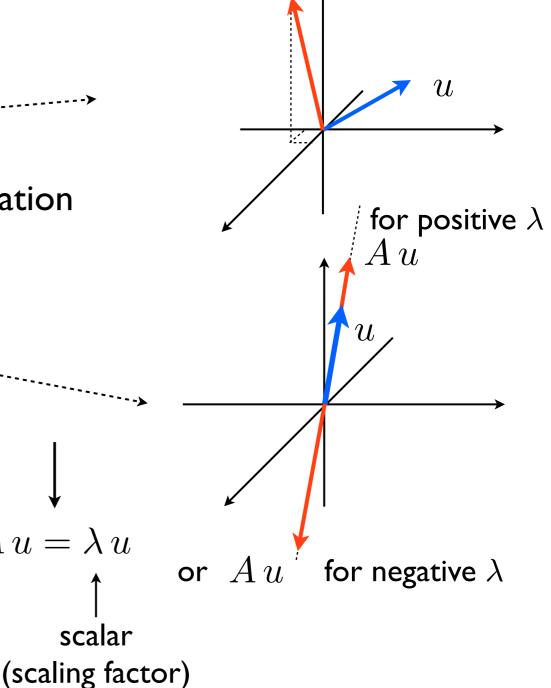
these two basis generate the same linear subspace: any vector of the second base can be obtained from a linear combination of the first basis

eigenvalues & eigenvectors of a square matrix A

A transforms a vector u into the vector Au (linear mapping)



but there are particular non-zero directions (eigenvectors) such that Au is parallel to uthis means there exists a λ (eigenvalue) such that $Au = \lambda u$



Au

 $A u = \lambda u$

scalar

example

$$A = \begin{pmatrix} -2 & -2 \\ 2 & 3 \end{pmatrix}$$

eigenvalues

$$\lambda_1 = -1$$

$$\lambda_2=2$$

no special relation between the vector and its image

$$A \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -2 & -2 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

no special relation between the vector and its image

$$A \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 & -2 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \end{pmatrix}$$

the vector and its image are parallel

$$A\begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} -2 & -2 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \end{pmatrix} = -1 \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

the vector and its image are parallel

the vector and its image are parallel factor = eigenvalue
$$A \begin{pmatrix} 1 \\ -2 \end{pmatrix} = \begin{pmatrix} -2 & -2 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

Definition: given the matrix A $(n \times n)$, if for a scalar λ_i there exists a non-zero vector $u_i \neq 0$ such that A $u_i = \lambda_i u_i$ then λ_i is an eigenvalue of A and u_i is an associated eigenvector

note that $A u_i = \lambda_i u_i$ $(A - \lambda_i I) u_i = 0$ u_i belongs to the nullspace or kernel of $(A - \lambda_i I)$ non-trivial $u_i \neq 0$ solution exists iff $\det(A - \lambda_i I) = 0$

the eigenvalues λ_i are the roots of the n-th order characteristic polynomial

$$p_A(\lambda) = \det(\lambda I - A) = \lambda^n + a_{n-1}\lambda^{n-1} + a_{n-2}\lambda^{n-2} + \dots + a_1\lambda + a_0$$

the eigenvalues λ_i are the solutions of $p_A(\lambda) = \det(\lambda I - A) = 0$

- same solutions of $\det{(A$ $\lambda I)} = 0$ since $\det{(A$ $\lambda I)} = (-1)^n \det{(\lambda I A)}$
- kernel or nullspace of M is the subspace of all vectors v s.t. Mv=0
- the eigenvectors u_i associated to the eigenvalue λ_i generate a linear subspace: the eigenspace V_i
- if u_i is am eigenvector associated to the eigenvalue λ_i then also α u_i is an eigenvector associated to the same eigenvalue

ex.
$$A = \begin{pmatrix} -2 & -2 \\ 2 & 3 \end{pmatrix}$$

$$p_A(\lambda) = \det(\lambda I - A) = \det\begin{pmatrix} \lambda + 2 & 2 \\ -2 & \lambda - 3 \end{pmatrix} = \lambda^2 - \lambda - 2 = (\lambda + 1)(\lambda - 2)$$

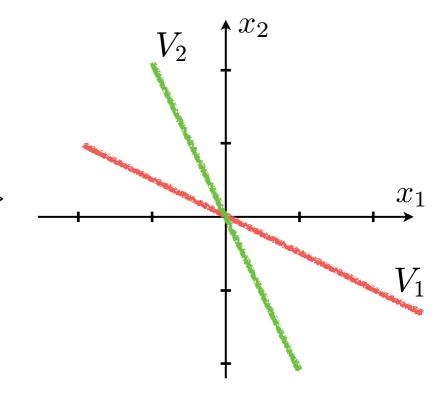
therefore the eigenvalues are $\lambda_1 = -1$ and $\lambda_2 = 2$

• for $\lambda_1 = -1$ the eigenspace V_1 is determined by

$$V_1 = \ker(A - \lambda_1 I) = \ker\begin{pmatrix} -1 & -2 \\ 2 & 4 \end{pmatrix} = \operatorname{gen}\left\{\begin{pmatrix} 2 \\ -1 \end{pmatrix}\right\}$$

• for $\lambda_2=2$ the eigenspace V_2 is determined by

$$V_2 = \ker(A - \lambda_2 I) = \ker\begin{pmatrix} -4 & -2 \\ 2 & 1 \end{pmatrix} = \operatorname{gen}\left\{\begin{pmatrix} 1 \\ -2 \end{pmatrix}\right\}$$



hyp: A square matrix $n \times n$ with real elements

$$p_A(\lambda) = \det(\lambda I - A) = \lambda^n + a_{n-1}\lambda^{n-1} + a_{n-2}\lambda^{n-2} + \dots + a_1\lambda + a_0$$

- $p_A(\lambda)$ is a polynomial of order n with real coefficients a_i if A is real
- set of the n solutions of $p_A(\lambda)=0$ defined as the spectrum of A, symbol: $\sigma(A)$
- since the coefficients of $p_A(\lambda)$ are real its roots can be real and/or complex

$$\begin{array}{ll} \text{therefore if} & \left\{ \begin{array}{l} \lambda_i \in \mathbb{R} \\ \lambda_i \in \mathbb{C} \end{array} \right. & \text{then} & u_i \text{ real components} \\ u_i \text{ complex components and } \lambda_i^* & \longrightarrow & u_i^* \end{array}$$

• define $ma(\lambda_i)$ = algebraic multiplicity of eigenvalue λ_i as the multiplicity of the solution $\lambda = \lambda_i$ in $p_A(\lambda) = 0$

special cases

triangular matrix (upper or lower)
$$\begin{pmatrix} m_{11} & m_{12} & \cdots & m_{1n} \\ 0 & m_{22} & \ddots & m_{2n} \\ 0 & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & m_{nn} \end{pmatrix} \text{ eigenvalues = } \{m_{ii}\}$$

in these situations eigenvalues = elements on the main diagonal

eigenvalues - invariance

- \bullet similarity transformation: $A \xrightarrow{T} TAT^{-1}$ has the same eigenvalues as $A \det(T) \neq 0$
 - eigenvalues are invariant under similarity transformations (proof)
- right and left eigenvectors:

$$Au_i = \lambda_i u_i \qquad \rightarrow \qquad u_i \qquad \text{right eigenvector (column)}$$

$$v_i^T A = v_i^T \lambda_i = \lambda_i v_i^T \qquad \rightarrow \qquad v_i^T \qquad \text{left eigenvector (row)}$$

we will often choose the left eigenvectors such that $v_i^T u_j = \delta_{ij}$

where
$$\delta_{ij}$$
 $\begin{cases} = 0 & \text{if } i \neq j \\ = 1 & \text{if } i = j \end{cases}$ Kronecker delta

$$ullet$$
 $A=egin{pmatrix} -2 & -2 \ 2 & 3 \end{pmatrix}$ if $u_1=egin{pmatrix} 2 \ -1 \end{pmatrix}$ we will choose $v_1^T=rac{1}{3}\begin{pmatrix} 2 & 1 \end{pmatrix}$

if
$$u_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$
 we will choose $v_2^T = \frac{1}{3} \begin{pmatrix} -1 & -2 \end{pmatrix}$

eigenspace

the eigenspace V_i corresponding to the eigenvalue λ_i of A is the vector space

$$V_i = \{u \in \mathbb{R}^n | Au = \lambda_i u\}$$
 or equivalently $V_i = \operatorname{Ker}(A - \lambda_i I)$

reminder:

- basis of ${\rm Ker}(M)$ is a set of linearly independent vectors which spans the whole subspace ${\rm Ker}(M)$
- span $\{v_1, v_2, ..., v_k\}$ = vector space generated by all possible linear combinations of the vectors $v_1, v_2, ..., v_k$
- as a consequence, the eigenvector u_i associated to λ_i is not unique example: $A(\alpha u_i) = \alpha A u_i = \alpha \lambda_i u_i = \lambda_i (\alpha u_i)$

all belong to the same linear subspace

eigenspace

example:

•
$$A = \begin{pmatrix} 0 & 0 & -1 \\ -1 & 1 & -1 \\ -1 & 0 & 0 \end{pmatrix}$$
 $p_A(\lambda) = \det(\lambda I - A) = (\lambda - 1)^2 (\lambda + 1)$ $\lambda_1 = 1$ $ma(\lambda_1) = 2$ $ma(\lambda_2) = 1$

$$\lambda_1 = 1 \text{ has the eigenspace} \quad V_1 = \ker(A - I) = \ker\begin{pmatrix} -1 & 0 & -1 \\ -1 & 0 & -1 \\ -1 & 0 & -1 \end{pmatrix} = \operatorname{gen}\left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \right\}$$

since any linearly independent vectors generated by the chosen basis can be chosen as new basis, V_1 can also be generated by

$$V_1 = \operatorname{gen} \left\{ \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} -2 \\ \sqrt{2} \\ 2 \end{pmatrix} \right\}$$

but not as

$$V_1 \neq \operatorname{gen} \left\{ \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} -2 \\ 2 \\ 2 \end{pmatrix} \right\}$$

since, although each vector belongs to V_1 , they are not linearly independent

geometric multiplicity

• if λ_i eigenvalue with $ma(\lambda_i) > 1$ it will have one or more linearly independent eigenvectors u_i

$$\begin{array}{lll} \textbf{ex.} \ A_1 & = & \left(\begin{array}{cc} \lambda_1 & 0 \\ 0 & \lambda_1 \end{array} \right), & u_{11} = \left(\begin{array}{c} 1 \\ 0 \end{array} \right), & u_{12} = \left(\begin{array}{c} 0 \\ 1 \end{array} \right) & \begin{array}{c} 2 \text{ linearly independent eigenvectors} \\ \dim(V_1) = 2 \end{array} \\ A_2 & = & \left(\begin{array}{cc} \lambda_1 & \beta \\ 0 & \lambda_1 \end{array} \right), & \text{with} \quad \beta \neq 0, & \text{only} \quad u_1 = \left(\begin{array}{c} 1 \\ 0 \end{array} \right) & \begin{array}{c} 1 \text{ linearly independent eigenvectors} \\ \dim(V_1) = 1 \end{array} \end{array}$$

note that A_1 and A_2 have the same eigenvalue λ_1 both with same $ma(\lambda_1)=2$ since they have the same characteristic polynomial $p_A(\lambda)=(\lambda-\lambda_1)^2$

Definition

the geometric multiplicity of λ_i is the dimension of the eigenspace associated to λ_i

$$\dim(V_i) = mg(\lambda_i)$$

$$mg(\lambda_i) = \dim \left[\operatorname{Ker}(A - \lambda_i I) \right] = n - \operatorname{rank}(A - \lambda_i I)$$

geometric multiplicity

$$1 \le mg(\lambda_i) \le ma(\lambda_i) \le n$$

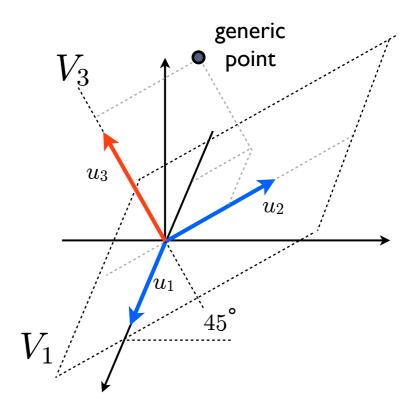
ex. 1
$$A_1 = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_1 \end{pmatrix}$$
, $(A_1 - \lambda_1 I) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ $mg(\lambda_1) = 2 = ma(\lambda_1)$
 $A_2 = \begin{pmatrix} \lambda_1 & \beta \\ 0 & \lambda_1 \end{pmatrix}$, $(A_2 - \lambda_1 I) = \begin{pmatrix} 0 & \beta \\ 0 & 0 \end{pmatrix}$ $mg(\lambda_1) = 1 < ma(\lambda_1)$

ex. 2
$$P = \begin{pmatrix} 0.5 & 0 & 0.5 \\ 0 & 1 & 0 \\ 0.5 & 0 & 0.5 \end{pmatrix}$$
 projection matrix

$$\lambda_1 = \lambda_2 = 1 \qquad u_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad u_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

$$ma(\lambda_1) = 2 = mg(\lambda_1)$$

$$\lambda_3 = 0 \qquad u_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$



Definition

An $(n \times n)$ matrix A is said to be diagonalizable if there exists an invertible $(n \times n)$ matrix T such that TAT^{-1} is a diagonal matrix

Theorem

An $(n \times n)$ matrix A is diagonalizable if and only if it has n linearly independent eigenvectors

since the eigenvalues are invariant under similarity transformations

if A diagonalizable
$$TAT^{-1} = \Lambda = \text{diag}\{\lambda_i\}, i = 1, \dots, n$$

the elements on the diagonal of Λ are the eigenvalues of A

Hyp: A has n linearly independent eigenvectors

(Note: this does not mean necessarily n distinct eigenvalues)

ullet we need to find T such that TAT^{-1} is a diagonal matrix since by hypothesis the n eigenvectors u_i are linearly independent, the matrix having the vectors u_i as columns is necessarily non-singular

$$\mathcal{U} = \left[\begin{array}{cccc} u_1 & u_2 & \cdots & u_n \end{array} \right]$$
 non-singular $n\mathbf{x}n$ matrix

we rewrite the n relations defining the eigenvalues $Au_i = \lambda_i u_i, \quad i = 1, \dots, n$ in matrix form

$$A \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdot & 0 \\ & & \ddots & \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}$$

$$A\mathcal{U} = \mathcal{U}\Lambda \qquad \text{with} \qquad \Lambda = \operatorname{diag}\{\lambda_1, ..., \lambda_n\}$$

$$\Lambda \mathcal{U} = \mathcal{U} \Lambda$$
 with $\Lambda = ext{diag} \{ \ \lambda_{1, \ ..., \ } \}$

from $A\mathcal{U}=\mathcal{U}\Lambda$ being \mathcal{U} non-singular, we can define T such that $T^{-1}=\mathcal{U}$

$$AT^{-1} = T^{-1}\Lambda \rightarrow A = T^{-1}\Lambda T \rightarrow \Lambda = TAT^{-1}$$

therefore the diagonalizing similarity transformation is T s.t.

$$T^{-1} = \mathcal{U} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix}$$

We have an alternative necessary & sufficient condition for diagonalizability

A: $(n \times n)$ is diagonalizable if and only if $mg(\lambda_i) = ma(\lambda_i)$ for every eigenvalue λ_i

rationale:

when $mg(\lambda_i) = ma(\lambda_i)$ for every eigenvalue λ_i we have $mg(\lambda_i) = ma(\lambda_i)$ linearly independent eigenvectors for every eigenvalue and therefore a total of n linearly independent eigenvectors

Warning: distinct eigenvalues (real and/or complex) $\stackrel{\Longrightarrow}{\swarrow}$ A diagonalizable

$$\begin{array}{c|cccc}
\bullet & A = \begin{pmatrix} -2 & -2 \\ 2 & 3 \end{pmatrix} & T^{-1} = \mathcal{U} = \begin{pmatrix} u_1 & u_2 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ -1 & -2 \end{pmatrix} & T = \frac{1}{3} \begin{pmatrix} 2 & 1 \\ -1 & -2 \end{pmatrix} = \begin{pmatrix} v_1^T \\ v_2^T \end{pmatrix} \\
\frac{\lambda_1}{ma(\lambda_1)} = ma(\lambda_2) = 1 & \frac{1}{3} \begin{pmatrix} 2 & 1 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} -2 & -2 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & -2 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}
\end{array}$$

note that: since the algebraic multiplicity is 1 necessarily also the geometric one is 1

•
$$A = \begin{pmatrix} 0 & 0 & -1 \\ -1 & 1 & -1 \\ -1 & 0 & 0 \end{pmatrix}$$
 $V_1 = \text{gen} \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \right\}$ $V_2 = \text{gen} \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$ $\lambda_1 = 1$ $ma(\lambda_1) = 2 = mg(\lambda_1)$

$$T^{-1} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix} \quad T = \begin{pmatrix} -1/2 & 1 & -1/2 \\ 1/2 & 0 & -1/2 \\ 1/2 & 0 & 1/2 \end{pmatrix} \longrightarrow \Lambda = TAT^{-1} = \mathcal{U}^{-1}A\mathcal{U} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

 $\lambda_2 = -1$ $ma(\lambda_2) = 1 = mg(\lambda_2)$

As already noted, A having distinct eigenvalues implies that A is diagonalizable (sufficient condition) but the A being diagonalizable does not necessarily imply that its eigenvalues are distinct

Sufficiency comes from the fact that distinct eigenvalues (real and/or complex) generate linearly independent eigenvectors

However the condition is not necessary, see for example

ullet $A=egin{pmatrix} \lambda_i & 0 \ 0 & \lambda_i \end{pmatrix}$ diagonal but coincident eigenvalues, $ma(\lambda_i)=2$

however there are 2 linearly independent eigenvectors for the eigenvalue λ_i and hence the geometric multiplicity is also 2

 $\bullet \quad A = \begin{pmatrix} 0 & 0 & -1 \\ -1 & 1 & -1 \\ -1 & 0 & 0 \end{pmatrix} \quad \text{diagonalizable but not distinct eigenvalues}$

similarly the eigenvalue $\lambda_1=2$ has algebraic multiplicity 2 has also $mg(\lambda_1)=2$

diagonalization: complex eigenvalues case

hyp: A square matrix $n \times n$ with real elements

We know complex eigenvalues for A real come necessarily in pairs (λ_i, λ_i^*) the complex eigenvalue λ_i will have eigennvector u_i with complex elements

consider the case
$$n=2$$
 $\lambda_i=\alpha_i+j\omega_i$ with its eigenvector $u_i=u_{ai}+ju_{bi}$ $\lambda_i^*=\alpha_i-j\omega_i$ \longrightarrow $u_i^*=u_{ai}-ju_{bi}$

2 choices

• diagonalization (since the eigenvalues are distinct, A is diagonalizable)

$$T^{-1} = \begin{bmatrix} u_i & u_i^* \end{bmatrix} \rightarrow D_i = TAT^{-1} = \begin{bmatrix} \lambda_i & 0 \\ 0 & \lambda_i^* \end{bmatrix}$$
 but complex elements

• or real block 2 x 2 (no diagonalization)

$$T_R^{-1} = \begin{bmatrix} u_{ai} & u_{bi} \end{bmatrix} \rightarrow M_i = T_R A T_R^{-1} = \begin{bmatrix} \alpha_i & \omega_i \\ -\omega_i & \alpha_i \end{bmatrix} \text{ real elements}$$

linearly independent when A is real consequence of u_i and u_i^* being linearly independent

real system representation for complex eigenvalues

diagonalization: complex eigenvalues case

$$\bullet \ A = \begin{pmatrix} 0 & -2 \\ 1 & 2 \end{pmatrix}$$

$$p_A(\lambda) = \lambda^2 - 2\lambda + 2 = (\lambda - 1 - j)(\lambda - 1 + j)$$

$$p_A(\lambda) = \lambda^2 - 2\lambda + 2 = (\lambda - 1 - j)(\lambda - 1 + j)$$

$$\lambda_1 = 1 + j \qquad u_1 = \begin{pmatrix} 2 \\ -1 - j \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix} + j \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$\lambda_1^* = 1 - j \implies u_1^*$$

therefore
$$T_R^{-1} = \begin{bmatrix} 2 & 0 \\ -1 & -1 \end{bmatrix}$$
 $T_R = \begin{bmatrix} 1/2 & 0 \\ -1/2 & -1 \end{bmatrix}$ and $T_RAT_R^{-1} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} \alpha & \omega \\ -\omega & \alpha \end{bmatrix}$

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -2 & 2 & 0 & 0 \\ \hline 1 & 1 & -2 & 1 \\ 2 & 1 & -2 & 0 \end{pmatrix}$$

$$\lambda_1 = 1 + j \longrightarrow u_1 = \begin{pmatrix} -1 + j \\ -2 \\ -1 + j \\ -1 + j \end{pmatrix}$$

$$ma(\lambda_1) = 1 = mg(\lambda_1) \begin{pmatrix} -1 + j \\ -1 + j \\ -1 + j \end{pmatrix}$$

$$T_R^{-1} = \begin{pmatrix} -1 & 1 & 0 & 0 \\ -2 & 0 & 0 & 0 \\ -1 & 1 & 1 & -1 \\ -1 & 1 & 2 & 0 \end{pmatrix}$$

$$T_R = \begin{pmatrix} 0 & -1/2 & 0 & 0 \\ 1 & -1/2 & 0 & 0 \\ -1/2 & 0 & 0 & 1/2 \\ 1/2 & 0 & -1 & 1/2 \end{pmatrix}$$

$$T_{R}^{-1} = \begin{pmatrix} -1 & 1 & 0 & 0 \\ -2 & 0 & 0 & 0 \\ -1 & 1 & 1 & -1 \\ -1 & 1 & 2 & 0 \end{pmatrix} \qquad T_{R} = \begin{pmatrix} 0 & -1/2 & 0 & 0 \\ 1 & -1/2 & 0 & 0 \\ -1/2 & 0 & 0 & 1/2 \\ 1/2 & 0 & -1 & 1/2 \end{pmatrix} \qquad T_{R}AT_{R}^{-1} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & -1 & -1 \end{pmatrix}$$

check with Matlab

simultaneous presence of real and complex eigenvalues

If A diagonalizable, there exists a non-singular matrix R such that

$$RAR^{-1} = \text{diag} \{\Lambda_r, M_{r+1}, M_{r+3}, \dots, M_{q-1}\}$$

with $\Lambda_r = \operatorname{diag}\{\lambda_1, \ldots, \lambda_r\}$ for real eigenvalues

$$M_i = \begin{bmatrix} \alpha_i & \omega_i \\ -\omega_i & \alpha_i \end{bmatrix}$$
 for each complex pair of eigenvalues (λ_i, λ_i^*)

and
$$T_R^{-1} = (u_1 \dots u_r \text{ Re}[u_{r+1}] \text{ Im}[u_{r+1}] \dots \text{ Re}[u_{q-1}] \text{ Im}[u_{q-1}])$$

$$A = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -2 & 1 \\ 1 & -1 & -1 \end{pmatrix}$$

$$\lambda_{1,2} = -1 \pm j$$

$$\lambda_3 = -1$$

Matlab code

$$A = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -2 & 1 \\ 1 & -1 & -1 \end{pmatrix}$$

$$A = \begin{bmatrix} 0, 0, -1; 0, -2, 1; 1, -1, -1]; \\ [V,D] = eig(A)$$

$$\lambda_{1,2} = -1 \pm j$$

$$\lambda_{3} = -1$$

$$Inv(Tinv)*A*Tinv$$

$$A = \begin{bmatrix} 0, 0, -1; 0, -2, 1; 1, -1, -1]; \\ [V,D] = eig(A)$$

$$Tinv = [real(V(:,1)), imag(V(:,1)), V(:,3)]; \\ inv(Tinv)*A*Tinv$$

example

$$A = \begin{bmatrix} -6 & 5 & 4 \\ 5 & -6 & -16 \\ -10 & 10 & 9 \end{bmatrix} \qquad \lambda_1 = -1$$

$$\lambda_{2/3} = -1 \pm 10j$$

$$\lambda_1 = -1 \qquad \qquad u_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

$$\lambda_2 = -1 + 10j \qquad u_2 = \begin{bmatrix} 0.5 + 0.1j \\ -0.5 + 1.1j \\ 1 \end{bmatrix} \qquad u_{2a} = \begin{bmatrix} 0.5 \\ -0.5 \\ 1 \end{bmatrix} \qquad u_{2b} = \begin{bmatrix} 0.1 \\ 1.1 \\ 0 \end{bmatrix}$$

$$T^{-1} = \begin{bmatrix} u_1 & u_{2a} & u_{2b} \end{bmatrix} = \begin{bmatrix} 1 & 0.5 & 0.1 \\ 1 & -0.5 & 1.1 \\ 0 & 1 & 0 \end{bmatrix} \longrightarrow TAT^{-1} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 10 \\ 0 & -10 & -1 \end{bmatrix}$$

A diagonalizable: spectral decomposition

Hyp: A diagonalizable

$$A = \mathcal{U} \Lambda \mathcal{U}^{-1}$$

$$\mathcal{U} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \longrightarrow$$

$$\mathcal{U}^{-1}\mathcal{U} = I \quad \Rightarrow \quad v_i^T u_j = \delta_{ij}, \quad i, j = 1, \dots, r$$

 $\mathcal{U} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \longrightarrow \mathcal{U}^{-1} = \begin{bmatrix} v_1^T \\ v_2^T \\ \vdots \\ v_n^T \end{bmatrix} \text{ rows}$ these are also left eigenvectors $\mathcal{U}^{-1}\mathcal{U} = I \quad \Rightarrow \quad v_i^T u_j = \delta_{ij}, \quad i,j = 1,\dots,n$

here, the choice of the left eigenvector should be so that this condition is met

$$A = \mathcal{U} \Lambda \mathcal{U}^{-1} = \left[\lambda_1 u_1 \right]$$

$$\lambda_2 u_2 \quad \cdots$$

therefore computing explicitly
$$A = \mathcal{U} \Lambda \mathcal{U}^{-1} = \begin{bmatrix} \lambda_1 u_1 & \lambda_2 u_2 & \cdots & \lambda_n u_n \end{bmatrix} \begin{bmatrix} v_1^T \\ v_2^T \\ \vdots \\ v_n^T \end{bmatrix}$$

A diagonalizable: spectral decomposition

is the projection matrix on the invariant subspace generated by u_i

$$A = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} \qquad u_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad u_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\lambda_1 = 2 \qquad v_1^T = \begin{pmatrix} 1 & 1 \end{pmatrix} \qquad v_2^T = \begin{pmatrix} 0 & -1 \end{pmatrix}$$

$$\lambda_2 = 1 \qquad P_1 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \qquad P_2 = \begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix}$$

$$P_1 v = -1 \cdot u_1 \qquad P_2 v = 1 \cdot u_2 \qquad v = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

non-diagonalizable case

for illustrative purposes, we assume that λ_i is the only eigenvalue and therefore the algebraic multiplicity will be equal to n if A is $n \times n$ since A is not diagonalizable we have $0 < mg(\lambda_i) < ma(\lambda_i) = n$ in this case A is said to be defective

then there exists a change of coordinates such that in $TA\,T^{-1}$ the eigenvalue λ_i will have associated $mg(\lambda_i)$ Jordan blocks J_k with $k=1,...,mg(\lambda_i)$, each of dimension n_k (we will not explore how to determine n_k)

$$\begin{array}{c} \text{single} \\ \textbf{Jordan block} \\ \textbf{of dimension } n_k \end{array} J_k = \left[\begin{array}{ccccc} \lambda_i & 1 & 0 & \cdots & 0 \\ 0 & \lambda_i & 1 & & 0 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & \lambda_i & 1 \\ 0 & \cdots & \cdots & 0 & \lambda_i \end{array} \right] \in \mathbb{R}^{n_k \times n_k}$$

- note that the null space of J_k $\lambda_i I$ has dimension 1
- the dimension of the largest Jordan block associated to λ_i is called index

non-diagonalizable case (A defective)

In this case the eigenvector is replaced by the generalized eigenvector which will form chains of n_k generalized eigenvectors (not part of this course)

The resulting matrix, after a proper change of coordinates, is the Jordan canonical form which is block diagonal matrix having the Jordan blocks on the main diagonal

• example:

unique eigenvalue λ_i of matrix A $(n \times n)$ with geometric multiplicity $mg(\lambda_i) = p$

and algebraic multiplicity
$$ma(\lambda_i) = n = \sum_{k=1}^{p} n_k$$

then there exists a nonsingular matrix T such that $TAT^{-1}=J=\left|\begin{array}{c}J_1\\&\ddots\\&J_p\end{array}\right|$

with $J_k \in \mathbb{R}^{n_k \times n_k}$ Jordan block of dim n_k for each k = 1, ..., p

non-diagonalizable case (multiple c.c. eigenvalues)

What happens if we have repeated complex conjugate eigenvalues in the non-diagonalizable case, i.e., $mg(\lambda_i) < ma(\lambda_i)$?

Let's consider, for illustrative purposes, n=4 with the repeated pair of complex conjugate eigenvalues (λ_i, λ_i^*) , $\lambda_i = \alpha_i + j\omega_i$ with $ma(\lambda_i) = 2$ and $mg(\lambda_i) = 1$

we know there exists a change of coordinates T which will lead to one Jordan block of dimension 2 for each eigenvalue

$$TAT^{-1} = \begin{pmatrix} \lambda_i & 1 & 0 & 0 \\ 0 & \lambda_i & 0 & 0 \\ \hline 0 & 0 & \lambda_i^* & 1 \\ 0 & 0 & 0 & \lambda_i^* \end{pmatrix}$$

block diagonal complex

however we have the usual problem that the resulting matrix is complex; nevertheless as in the diagonalizable case, there exists a change of coordinates T_R which leads to a real matrix

$$T_R A T_R^{-1} = \begin{pmatrix} \alpha_i & \omega_i & 1 & 0 \\ -\omega_i & \alpha_i & 0 & 1 \\ \hline 0 & 0 & \alpha_i & \omega_i \\ 0 & 0 & -\omega_i & \alpha_i \end{pmatrix}$$

block triangular real

special cases

- if $ma(\lambda_i) = 1$ then $mg(\lambda_i) = 1$
- if $mg(\lambda_i) = 1$ then only one Jordan block of dimension $ma(\lambda_i)$

$$\begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix} \qquad \lambda_1 = -1 \qquad ma(\lambda_1) = 2 \qquad mg(\lambda_1) = 1$$

• if λ_i unique eigenvalue of matrix A and if $\mathrm{rank}(\lambda_i I - A) = ma(\lambda_i) - 1$ then only one Jordan block of dimension $ma(\lambda_i)$

consequence of the rank-nullity theorem applied to A - $\lambda_i I$

$$A-\lambda_i I:\mathbb{R}^n o\mathbb{R}^n$$

$$\dim\left(\mathbb{R}^n\right)=\dim\left(\mathrm{Ker}(A-\lambda_i I)\right)+\dim\left(\mathrm{Im}(A-\lambda_i I)\right)$$

$$n\qquad \qquad \mathrm{nullity}(A-\lambda_i I)\qquad \mathrm{rank}(A-\lambda_i I)$$

summary

A real diagonalizable

$$mg(\lambda_i) = ma(\lambda_i)$$
 for all i

 $\exists T \text{ s.t. } TAT^{-1} = \Lambda$

$$\Lambda = \operatorname{diag}\{\lambda_i\}$$

for real & complex λ_i

$$\Lambda_r = \operatorname{diag}\{\lambda_1, \dots, \lambda_r\}$$

alternative choice for complex (λ_i, λ_i^*)

$$M_i = \begin{bmatrix} \alpha_i & \omega_i \\ -\omega_i & \alpha_i \end{bmatrix}$$

$$A = \sum_{i=1}^{n} \lambda_i \ u_i \ v_i^T$$

spectral form

A real not diagonalizable

$$mg(\lambda_i) < ma(\lambda_i)$$

 $\exists T \text{ s.t.}$

$$TAT^{-1} = \operatorname{diag}\{J_k\}$$

block diagonal

 $mg(\lambda_i)$ Jordan blocks of the form

$$J_k = \begin{bmatrix} \lambda_i & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & \lambda_i & 1 \\ 0 & \cdots & 0 & \lambda_i \end{bmatrix} \in \mathbb{R}^{n_k \times n_k}$$

vocabulary

English	Italiano
eigenvalue/eigenvector	autovalore/autovettore
characteristic polynomial	polinomio caratteristico
algebraic/geometric multiplicity	molteplicità algebrica/geometrica
similar matrix	matrice simile
spectral form	forma spettrale