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ABSTRACT

Compliance in motion transmission components is the main source of vibrational hehavior
in robot manipulators. Since the actuator/transmission design may difler from joint to joint,
many robot arms have some joints that can be considered completely rigid and some other
where elasticity is relevant. We consider dynamic modeling and control designe for robot
manipulators with mixed rigid/clastic joints. A nonlinear dvnamie feedback controller is
presented that allows to achieve exact linearization and input-output decoupling for the
general class of robots baving mixed rigid felastic joints in any possible kinematic seqnence.
Sirantation results are preseated for a 2R planar anm having only the secomd joint elastic.
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1. INTRODUCTION

It is well known that compliance in the motion transmission cotpponents is the main
source of vibrational beliavior in otherwise rigid industrial robot manipulators [1]. The
use of harmonie drives, long shafts, or transmission bells introdnce an clastic conpling he-
twoeen the actuators atd the driven links, that can he modeled with Hnear/iorsional springs
of finite stiffness located at cach joint, while donbling the munber of system generalized
coordinates [2, 3], More recently, joint elasticity has been introdueed on purpose in the
design of lightweight robots in order to increase safety indices for potential collisions in a
homan-robo elose ingeraction |4, 5].

Both regulation and trajectory tracking control problems have been considered for robots
with all joints clastic. Global asymptotic stabilization to a constant equilibrium config-
nration can be obtained via PD control on the motor variables, plus the addition of a
constant (3, 6] or on-line [7] gravity compensation term. For more demanding trajectory
tracking tasks, a model-based nonlinear fecdback controt shonld be used. When inertial
couplings between the motors and links in motion are absent. {dne to the kinematic robot
structure) [8] or can be neglected [2], & static state feedback allows to exactly linearize and
decouple the closed-toep dynamics. The obtained result mindes the owe obtained with the
computed torgue method in the rigid robot case, except that the resulting inear system is
madle of separate chains of four (instead of fwo) input-ontpnt integrators from the new input
to the link pesition coordinates. In the more general ease of motor/link incrtial couplings,
it lias been shown in [9) thal the use of dyramic noulincar state feedback vields a simitar
resnlt. For a robot with A jeints, all being elastic, the dimension of the exact lincarizing
dynamic compensator is upper bounded by 2N8{N —1}. A efficient implementation of this
type of inverse-dynamics controller can be found in [14].

Since the actuator/transmission mechanical arrangement is usually ditferent from joint
to joint, many robot arms (c.g., those in the SCARA fanily) have some joints (say, N, < N}
that can be considered completely rigid while for the othors (N, = N — N clasticity is
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relevant. Modeling and control issnes of this mixed sitnation have heen considered in [11, 12],
but Hiited to the case of neglecting the motor/link inertial couplings (i.e., with the standing
assurption of the so-called reduced dynaunic model of Spong [2]). In particular, except
wlhen very restrictive conditions on the internal structure of the link inertia mnatrix hold, a
dynamic feedback is needed for decoupling and linearization purposes [11]. The controller
has dimmension 2N, sl physically forees the rigid robot joints to behave as clastic ones.

In this paper, we consider the general dynantde model of robot manipulators for the
miixed case of rigid/clastie joints appearing in any possible kinematic sequence. A coordinate
transformatiou is introduced that puts the robot dynanic equations in a canonical form
where control-oriented propertios can easily be investigated. Control design based on exact
Hncarization and input-outpnt decoupling via nonlinesr dynamic feedback is then presented,
specializing the constructive algorithin given in [9] for deriving the actual expression and the
dimension of the dynamic feedback linearizing law. Simulation results iHustrating trajectory
tracking performance are presented for a 2R planar robot with the first joint rigid and the
sceond ofastic.

2. DYNAMIC MODELING

Consider an open Kinematic chain of rigid bodies, interconnected by N joints all un-
dergoing clastic deformation. The robot is actuated by N clectrical drives, the d-th being
located at the i-th joint (or meounted on a previous link of index j < ). Let § € BY be
the link position coordinates and 8 € RY be the motor (i.e., rotor) position coordinates as
reflected through the gear eatios. Joint deforimations are small, so that their elasticity can
be modeled with (niedainped) linear springs. Morcover, the rotors of the motors are mniform
bodics with center of inass on their rotation axis [3]. From these standard assumptions, the
inertin matrix and the gravity term in the dynamic model will be independent from 8.

Following a Lagrangian approach, the kinctic energy (inchading links and motors) is

L G\ _Lo.r oy (B@ S@\(a
' =§ (qr BT)AIuliLﬁtiC(a] (G)=§ ( qT BT)(ST([I‘) J )(9)1

where all blocks of the inertin mateix A eic(@) are N x N matrices: B(§) > 0 contain the
inertial properties of the rigid links, () is a strictly upper triangular matrix and acconuts
for the incrtial conplings between iotors and links, while the diagonal matrix J > 0, is the
matrix of the cffective motor inertias. For the case of presentation, we will assume from
now on that matrix § is constant. This holds teae, e.g., for a spatial 3R elbow manipulator
and for planar robuts with any number of rotational joints. The potential (gravitational
plus edastic) cuerpy is
U = U, + 3G~ 6 K79,

where K = ding{K|,..., An} > 0 is the stiffuess matrix of the clastic joints.

The robot dynamic model is obtainad from the Euler-Lagrange equations for the La-
grangian L = T — /. Under the above assumptions, the 28 second-order differential
euations have the form (see [3] or [8] for a detailed derivation)

B@g+S0+c(g. @) +9(@ +K(G-6) = 0 (1)

STo+J0+K(e-§ = 7 (2)

whure o, §) ave Coriolis and centrifugal torins, g{g) = (AU, /0§)T are gravity torns, and
& RY are the torques supplicd by the motors. We define also n(§, §) = ¢(§, §) + g(@)-

98

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on March 6, 2009 at 08:45 from IEEE Xplore. Restrictions apply.



Suppose now that N < N joints (in any order in the chain) are rigid and N, = N — N,
joints are clastic, with associated motor coordipates @ € MY, The (N + N % (N + N,)

inertia neatrix becomes N R
&3 - B{g) &8
l”mixurl(q) = ( g('g) Jeg )

with B(7) € RY<RY, §(7) € RYx Y and Jgg € RN x RY. It is convenicnt 1o reorder
the link position vector § so that the first Ny compouents ¢ are those driven throngh rigid
joints while the remaining gg are related to the Ve clastic joints, or

~ i T
i=T,q & q=(ZE)=T.,rm

heing Ty an orthonormal matrix. In the new coordinates, the dypamic model becomoes

ir np{d.q) 0 e
Afmixud([” QE' + nE(Qs q) + ‘T((QE - 9) = 0 , (3)
/] 0 K(8—qg) TE
with T
Brp(q) + Jnr + San+ Sip  Bre(a) + Siq || Sre
Minoa(2) = Brgla) + Sen Besl@ | Ses
S}E SI;TTE(G) “ JEE

where the blocks are extracted from B(g), S, and J in egs. (1-2) as

T _ { Brr(q) Bre(q) t_{ Srr Sge ot _{ Jep 0
T BT, _(B}{g{(,‘!) Berlq) TaSTy =\ sep sge ) /70 = 00 e )

while (n%(g, 4y nkig, (j))T= T, ). We note that the block Spg (reprosenting the inertial
conpling between each rigid joint and the clastic joints that follow in the robot kinematic
chain} differs from Sgp (representing the incrtial coupling hetween cach elastic joint and the
rigid joints that foliow in the robot kinematic chain}. The matrices Spr aud Sgpg inherit
the strictly upper triangular strncture of 8. As an example, cousider a 58 robot having ihe
first and forrth joints rigid and the remaining three elastic. After reordering, we will have
the following structure for the inertia matrix:

Bu+Ju Bu+tSu B1a By Bis Il S12 Sy Sis

By + 84 Byyt+Jduy [ Bau+ 8y Byy+Su By b 0 S

B2 Byy 4 Sy By Bay Bos || 0 Say Sa

Ao = By By, -+ Sy By Ba; By | 0 0 Sy
wuixecd By By Bay Bys B;‘,L ( {} 4]
Si2 0 0 0 0o 0 0
S { Say 0 { G Jy 0

Stin Sian 8o Sap 0 0 Jy

Befining now Bm;(q) = Brn(q) + Jrr + Spr + SER and I;’nE(q) = Bre(q} + SETR, the
dynamic equatious (3) of a robot with mixed rigid/clastic joiuts are rewritton as:

Brelq) dr + Bre(q) ju + Sre d+nr(e.d) = (4)
BRp(a) dr + Beslq) e+ Sgp 0+ np(q.¢) + K{igg —8) = 0 {5)
Sfein+Sigip+Jep 6+ K(0—qg) = 75 {6)
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W perform o partial feedback linearization of eys. (4 G}, by defining two nonlincar static
state foelback laws for 7p and 7g, in tenins of new control inputs up and ag, as follows:

™
TE

Brr(e) ur + Bre(q) de + Sre v +nalq,4) {n
S35 up+ Sgg Gg + Jek ue + K(0 — qg). (8)

Note that the formal dependenee on acceleration of the control expressions {7 8) can be
alimiraied by substituting for §g solved from cq. (5). The systemn dynamics becotnes:

dp = ug (9}
Blu(q) ur + Ber(g) de + Sep up +np(g.¢) + K(gg —8) = 0 (10}
f = ug. (11}

We note that if the matrix Sgg =1, the result in [11] would apply and a dymamic feedback
law of dimension 28, would then be coough to exactly linearize system (9 11). We shall
cogsider hereafter the (most difficult) case in whieh el npper diagonal elements of Sgg are
ditferent. from zero.

3. DYNAMIC FEEDBACK LINEARIZATION

The design of a feedback lincarizing controller can be completed by specializing the
algorithm given in [9] to the mixed rigid/elastic joint case. In doing so, the state of the
lincarizing dynamic compensator is built. ' We will use the differential notation ol = d*z [ dE.
3.1 Linearization of the generalized force fg
Detine as temporary systen output the generalized foree

J& = Bie(q)ir + Bee (q)ie + ne(g ) + Kqs,
that collects all terme depending on g within eq. (5), which can thas be rewritten as
fe+ See b+ Ko=0. (12)

Due to the strictly upper triangular structure of matrix Sgg, we can solve eq. (12) for
cach component fg; in terms of 8; and éj, §=i+1,..., N, starting from the last sealar
equation ad moving backwards. Repeated differentiation of eq. (12) and use oq. (11) allows
to expross the resublting derivatives of fg in terms of the components of the input ug, In
order to avoid differentiation of input ug, we need to introduce a first dynamic extension
in terms of cotpensator states ¢g; , for i=2,... Ney j=1,... 202 = 1)

UE;, — ¢Ei.l
(ﬂE. =) QSE,J = ¢El.2
| : (1)
(R[Ez:_ll =) P = ¢Ea.z(e7|)

(u[égl_l)] =) ‘?:L‘E.,z(ekl) = s

i

with the position ug, = wg, for notational consistency ad where We € IRNe is an interme-
diate control inpnt, The introduced compensator state ¢z will be of dimension N.(N, — 1).
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It 1s easy to sce that the following confrol law detined recursively for wg, nsing linear
feedback from ¢p and a new control mput wg € R+,

KnTEey, = wey,
KNC—IEE.' = SEENP—l_NFEEN”_f.wEN,‘—I
(14)
N,
’Kin: = SEE-‘JHTEE&H + Z SEE.\}‘?&EJ,?"H + We;.
F=t+E

fori = Ne—2, N.—3...., 1, will cancel the couplings due to clements of matrix Sgg, leading
to the lincar and deconpled relations

3.2 Linearization of the link coordinates g

We resnme now the original output ¢ = (g, ¢g) and complete the control design by taking
into aceount. Lhe original systom (9 11) and the relations (15). For linearizing and deconpling
the dynamics of qg, a dynamic balancing of the different. chains of integrators introduced
at the previons step is needed. Differentiating 2(, — 1) times the i-th equation in (15), we

obtain
Q2N Pipn PNy @ o i ] )
AE2—1) g2 L= A2V 3} = FTELA (bgﬁ‘.— (q) zflﬁ'{"bg“E.(Q) Getng, (‘J- Q)+I(i QE,) o (lb)

fori=1,..., Ne, where b,,,(g) is the i-th colimn of matrix B, (g).
In order to avoid differcntiation of input wg, we need to imtroduce a second dynamie
crtension in terms of compensador states ¥, fori=1,. .. N =1, 7=1,...,2(N. — i}

i

wg, = 1!)5'&.|

(e, =)¥e, = ¥g,
(17}

[2{Ne~i)-1] ; _
(T”E,- =) UJE-"J(N.‘—n)—I = ""”Ef.zm,,y-)
‘[2(Np—i}] Y. J—
(”‘E.- -) YEamey = UB:

with the position wg,, = 7g,, and where Tg € R™ is an intermediate confrol mput, The
additional compensator state ¥ introduced will he again of dimension No(Ne —1).
As a resmlt, eqs. (16) becone in vector fornn

d_EN

i (BRs(@)un + Bep(@)de + nele. d) + Kog) =x (18)

and would involve differentiation of the input g to the rigid joints whenever EEE(Q) #0.
Therefore, assuming that every columm of this matrix contains at least a non-zere clement,
we define a third dynamie cstension, e, add a chain of 2N, integrators on each input
channel ug, for i =1,..., Ny, with compensator states Cp,, (=1, N F= 1.0 2N, )

(dr, =)um, = <g,,
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( N = ap, ﬁ) Ry = lria

: (19}
2N+ _ ["Ne—ll _
(QR, ) Cﬂ. anemt = Cltiaw,
2(Ne+1)] 2N,
(q!'?, = U[R‘ l =) CR-’,QN,, = tp,
where vg € R is the lincarizing control input on the rigid joints, ic.,
d* et g '
W=U[z“ 'l‘.:],...,Nr. (2(])

The introduee] compensator state (g is of dimension 2N, N,.. Note that this is a new
aperation needed for the mixed rigid felastic joint case, as opposed to the algorithm in [9].
As for the clastic joints, developing differentiation in e, (18) and using cos. (19), yields

Biulayon + Bep(ggg ™ + v = 7g (21)
with
£ NN TE ol o Nl (2N 28]
ZB Hgh Ry Y Bie@ g +ng (3,4 + Kag;
. =1 P p=1
where CR, anpmpy Uenotes a column vector with clements CRi sy © = 1,...,N.. The

final operation is the definition of an inverse dymamics control law
Ty = Biy(q) v+ Bee(g)ve + v (22)

which ¢an be rewritten i the fortn of a nonlinear static feedback from the extended state
of the robot and of the dynamic compensator. Combining egs. (21) and (22) leads to

Mg, , ,
S = s = b e (29

3.3 Overall controller and tracking error stabilization

Summarizing the algorithmie steps in eqs. (7 8), (13 14), (17), (19}, and (22), we have
designed a nonlinear dynamic compensator of the form

£=0(,0,4,0.6) +3(a.6,4.0,5  17=v(¢,0,4,0,8+8g.0.40.¢v (24

with state £ = ((f ¢F wa)T € RP und lincarizing input v = (v ’UE)T € RN, such
that the dosed-loop cquations consist of & balanced and decoupld chains of 2(Ng + 1}
ittegrators cach, from the inpnts »; to the outputs g, 1 =1,..., N —sce egs. (20) and {23).
The dirnension of the dynamic compensator {24) is P = 2N (N, — 1)+2N. N, = ZN.(N—1).
Note that this is ouly au upper bonnd if some cohunns in the strictly upper triangular part
of matrix Sgg and/or in matrix BFc(g) turn out to be zero.

In order to obtain stable tracking of a desired trajectory g4(8) = (gFg(2) gug(t)™,
the control design is completed on the lincar and decoupled side of the problem by pole
assignimend, i.c., choosing

2V +1
¥ —q,lz{N' g 3 ki (qﬁ"!—q!"]) i=1,...,N, (25}
i=0
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whetc k;j are cocfficients of Hurwits polynomials with desired roots in the open left-hard
side of the eomplex plane. Therefore, the tracking crror can be exponentially stabilized to
zoro with any desired rate of convergence. It follows from g, {25) that, in order to obtain
perfect tracking for matched initial conditions, the desired trajectory g4(t) shonld be at
least 2(N, + 1} differentiable.

4. SIMULATION RESULTS

We have considered a 2R robot with the first joint rigid and the sceond being elas-
tie, moving in the horizoutal plane. The Buks have thin eylindrical formn and uniformly
distribnted masses and the robot s characterized by the following data:  link lengths
& = 0.5 [m], i = 1,2; link radius r; = 0.05 [m], i = 1,2; link masses my = 10, mg =
5 [kg]; center of mass positions d; = (.25 {m], ¢ = 1,2; link baryeentrad inertias I,.; =
ﬁmif}z + imir? [Ness? frad], § = 1,2; mass of seeond motor my,z = 0.5 [kg]; motor inertias
Jmi = 0.5 [Nm-s? frad), i = 1,2; stiffuess of seeond joint Ka = 1000 [Nui/rad).

The dynamic model is already in the form (4 6), with the following clements:

Brirlg) = Lun + Lo + Jing + mads +madh + (ma + mea)€ + 2madsfy cosga

Bre(q)
Jrr = Jm Jegg = Jue Spr = Sgn=Sgep =0 Sre = Juz

nplg,§) = —madalysinga@(2q +do)  nelg, ) = madpl) singa g

L0+ mgd% + madal] cos g2 Bpp=1,2+ mzd%

Il

The desired trajectory gq{t} is a 9-th ovder polynomial for each link, interpolating the
initial position ge{0) = (0,0} to the final position g7} = (7/2,7/2) in T = 10 s and
with zero boundary conditions nup to the fourth time derivative at both ends. The robot
arm I8 initially at rest, bot with ¢{0) = {(x/12,x/12}, Lc., with an initial position error
on both links. Since Sgg = 0, the dynamic feedback lincarizing controller hins dimension
P = 2N, = 2 and the resulting linear system is made of two chaing of four integrators. The
stabilizer in oq. (23) assigns four collocated poles in —12 to each inpat-ontput channel,

Figures 1-2 show the obtained results. The initial error is recovered within 1 s with
{ahsolute} peak torgues of about 30 Nm amd 11 N at the two joints, oceurring in the first
instants of motion. Onee the desired trajectory is ronched, the roquired torgues are nmch
lower (abont 1 Nm and 0.4 N, respectively). The deformation of the clastic joint has a
maximun of 22 7+ 107 rad i the initial transient, while its hehavior is a scaled and rasher
specular copy of the torque applied at the second joint.

5. CONCLUSION

We have presented the general dynamic model of robot anns luwing joiuts of the mixed
rigid /etastic type and investigated its properties of exact lincarizability via nonlinear dy-
namie state feedback. A feedback transformation converts the problem in a form where the
dynamic Enearization algorithm of [9] can be applied, limited to those link position ontputs
driven through clastic joints. The dimension of the Hnearizing compensator for a robot
with ¥V joints, N, of which are clastic, is (al most) equal fo 28,(N — 1). In partioular, it is
posstble Lo define a dynamic control law of order 2NN, for the N rigid joints of the robot
and then deal with the clastie ones in a caseaded form. Using the structure of the obtained
mlel, conditions can be derived under which the dimension of the dyuamic controller
reduces or even vanishes into a static state feedback, generalizing the results in {11},
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Figure 12 Desired (- -) and actual (—) trajectovies: gy (left) end ga (right)
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Figire 2: Control toryues: 1y (left) and 72 (right)

REFERENCES

L. L.M. Sweet aud M.C. Gouod, “Redefinition of the robot metion contrel problemn,” IEEE Control Systems
Mug., vol. 5, no. 3, pp. 18 24, 1985,

2. M.W. Spong, “Modeling and control of elastic joint robots,” ASME J. of Dynamie Systems, Meusure-
ment, and Condrel. vol. 109, pp. 310 319, 1987,

3. P. Tomei, “A simple PD controller for robots with clastic joints,” IEEE Trans. on Aulomatic Control,
vol. 36, uo. 10, pp. 1208 1213, 1991,

4, G. Hirzinger, A, Albu-Schiiffer, M, Hiibale, 1. Schaefer, and N. Sporer, “On a new generation of torque
controlled light-weight robots.” 2001 [EEE il Conf. on Rebotics and Automation, pp. 3356 3363,
26001,

. A. Bicchi, 5. Lodi Rizzini, and G. Tonictti, “Compliant design for intrinsic safety: General issues and
preliminary design,” IEEE/RST ut. Conf. on Intellivent Robots and Systems, pp. 1864 1869, 2001.

6. R. Kelly and V. Santibades, “Global regulation of elastic joint robets based on energy shaping,” [EEE
Thuns. on Autematic Congrof, vol. 43, vo. 10, pp. 1451 1456, 1998.

7. L. Zollo, A. De Luca, and B. Siciliano, “Regulation with en-line gravity compensation for robots with
clastic joints,” 2004 TEEE Int. Conf. on Robolics and Automation, New Orleans, LA, Apr. 2004.

8. A. De Luca and P. Tomei, “Elastic joints,” in Theory of Robot Control, C. Canudas de Wit, B. Siciliano,
G. Bastin (Eds.), pp. 179 217, Spriuger, 1996.

9. A. D¢ Luea and P. Lucibelto, *A general algorithm for dynamic feedback linearization of robots with
elastic joints,” 1998 IEEE fnt. Conf. on Robotics and Avtomation. ppy. 504 510, 1998,

10. R. Hépler and M. Thiimmnel, “Symbeolic computation of the juverse dynamies of elastic joint robots,”
2004 IEEE Inl. Conf. on Robotics and Automation, New Orleans, LA, Apr. 2004.

11. A. Dc Luca, “Decoupling and feedback linearigation of robots with mixed rigid felastic joints,” Int. 1
of Robust and Nonlinemr Control, vol. 8, no. 11, pp. 965 977, 1008,

12, W.-H. Zhu and . Be Schutter, *Adaptive contrel of mixed rigid/Hexible joint robot manipulators based
on virtual decompuosition,” JEEE Thans. on Robotics und Autormafion, vol. 15, no. 2, pp. 310 317, 1999,

2]

104

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on March 6, 2009 at 08:45 from IEEE Xplore. Restrictions apply.



