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Nonhomogeneous Nilpotent Approximations for
Nonholonomic Systems With Singularities
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Abstract—Nilpotent approximations are a useful tool for analyzing and
controlling systems whose tangent linearization does not preserve control-
lability, such as nonholonomic mechanisms. However, conventional homo-
geneous approximations exhibit a drawback: in the neighborhood of sin-
gular points (where the system growth vector is not constant) the vector
fields of the approximate dynamics do not vary continuously with the ap-
proximation point. The geometric counterpart of this situation is that the
sub-Riemannian distance estimate provided by the classical Ball-Box The-
orem is not uniform at singular points. With reference to a specific family
of driftless systems, we show how to build a nonhomogeneous nilpotent ap-
proximation whose vector fields vary continuously around singular points.
It is also proven that the privileged coordinates associated to such an ap-
proximation provide a uniform estimate of the distance.

Index Terms—Nilpotent approximations, nonholonomic systems, singu-
larities, sub-Riemannian distance.

I. INTRODUCTION

Studying local properties of nonlinear systems through some approx-
imation of the original dynamics is often the only viable approach to
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the solution of difficult synthesis problems. Tangent linearization, the
most common technique, may not preserve the structural properties of
the system; a well-known example of this situation are nonholonomic
mechanisms, that cannot be stabilized by smooth feedback. To deal
with these cases, it is convenient to resort to a nilpotent approximation
(NA), a higher order approximation with increased adherence to the
original dynamics. Among the classical applications of NAs, we men-
tion the study of sufficient controllability conditions for systems with
drift [2], [14] and of stabilizability properties for nonsmoothly stabiliz-
able systems [6], [9].

Various techniques are available for computing NAs (e.g., [1] and
[4]). These require first to express the original dynamics in a privileged
coordinate system centered at the approximation point, defined on the
basis of the control Lie algebra. Then, the transformed vector fields
are expanded in Taylor series; by truncating the expansion at a proper
order, one obtains a nilpotent system which is polynomial, homoge-
neous and triangular. As shown in [5], homogeneity may be essential
for preserving controllability and stabilizability; for this reason, homo-
geneous NAs have been used in the above applications.

There is, however, a situation in which homogeneous NAs exhibit
a drawback: in the neighborhood of singular points (where the growth
vector changes), both the privileged coordinate system and the trun-
cation order change. Hence, in the presence of singularities, homoge-
neousNAs vary discontinuouslywith the approximation point. Another
consequence is that the sub-Riemannian distance estimate provided by
the Ball-Box Theorem [1] is not uniform around singularities: when
approaching a singular point through a sequence of regular points, the
region of validity for such estimate tends to zero [8].

The above problem is particularly critical when nilpotent approx-
imations are used to design approximate steering laws to be applied
iteratively in a feedback fashion. This approach, based on the general
framework of [11], was proposed in [15] for achieving stabilization of a
particular nonsmoothly stabilizable, nonnilpotentizable system.Within
this scheme, continuity is also essential for estimating the steering error
due to the approximation in order to prove stability. Another use of NAs
that requires continuity is the evaluation of the complexity of nonholo-
nomic motion planning problems [7].

In this note, we show that continuity in the presence of singularities
may be achieved by giving up the homogeneity property. For five-di-
mensional two-input driftless systems with generic singularities, we
build nonhomogeneousNAs that preserve structural properties and vary
continuously with the approximation point over a finite number of sub-
sets that cover the singular locus. By doing so, we associate a contin-
uous approximation procedure to each point. As a byproduct, a uniform
estimate of the sub-Riemannian distance is also obtained.

II. BACKGROUND MATERIAL

We recall some basic tools used in sub-Riemannian geometry fol-
lowing [1]. While the general setting is that of differentiable manifolds,
the local nature of our study allows the restriction to IRn. Consider a
driftless control system

_x =

m

i=1

gi(x)ui; x 2 IR
n (1)

where g1; . . . ; gm are C1 vector fields on IRn and the input vector
u(t) = (u1(t); . . . ; um(t)) takes values on IRm. Given x0 2 IRn,
let � be a trajectory of (1) originating from x0 under an input function
u(t), t 2 [0; T ]. We define its length as

length(�) =
T

0

u2
1
(t) + � � � + u2m(t)dt:

A point x = �(t), for t2 [0; T ], is said to be accessible from x0.
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System (1) induces a sub-Riemannian distance d on IRn, defined as

d(x1; x2) = inf
�

length(�) (2)

with the infimum taken over all trajectories � joining x1 to x2. Chow’s
Theorem states that any two points in IRn are accessible from each
other (i.e., d(x1; x2) < 1) if the elements of the Lie Algebra Lg
generated by the gi’s span the tangent space Tx M at each point x0
(Lie algebra rank condition, or LARC). As (1) is driftless, the LARC
implies controllability in any usual sense [14]. Throughout this note,
we assume that the LARC is satisfied.

Take x0 2 IRn and let Ls(x0) be the vector space generated by the
values at x0 of the brackets of g1; . . . ; gm of length � s, s = 1; 2; . . .
(the gi’s are brackets of length 1). The LARC guarantees that there
exists a smallest integer r = r(x0) such that dimLr(x0) = n, called
the degree of nonholonomy at x0.

Let ns(x) = dimLs(x), s = 1; . . . ; r. A point x0 is regular if the
growth vector (n1(x); . . . ; nr(x)) is constant around x0; otherwise x0
is singular. In particular, points where r changes are singular. Regular
points are an open and dense set in IRn.

A. Nilpotent Approximations and Privileged Coordinates

Consider a smooth real-valued function f . Call first-order nonholo-
nomic derivatives of f the Lie derivatives gif of f along gi, i =
1; . . . ;m. Call gi(gjf), i; j = 1; . . . ; m, the second-order nonholo-
nomic derivatives of f , and so on.

Definition 1: A function f is of order� s at x0 if its nonholonomic
derivatives of order � s� 1 vanish at x0. If f is of order � s and not
of order � s + 1 at x0, it is of order s at x0.

Equivalently, if f is of order s at x0, then f(x) = O(ds(x0; x)).
Definition 2: A vector field h is of order � q at x0 if, for every s

and every f of order s at x0, hf has order � q + s at x0. If h is of
order � q but not � q + 1, it is of order q at x0.

It is easy to show that gi, i = 1; . . . ; m, has order � �1, bracket
[gi; gj ], i; j = 1; . . . ;m, has order � �2, and so on.

Definition 3: A system

_x =

m

i=1

ĝi(x)ui

defined on a neighborhood of x0, is a nilpotent approximation (NA) of
system (1) at x0 if

a) the vector fields gi � ĝi are of order � 0 at x0;
b) its Lie algebra is nilpotent of step s > r(x0).
This definition is equivalent to those in [1] and [5]. Property a) im-

plies the preservation of growth vector and LARC.
Algorithms for computing nilpotent approximations are based on the

fact that at each point one can define a set of locally defined privileged
coordinates.

Definition 4: Define the integer wj , j = 1; . . . ; n by setting wj =
s if ns�1 < j � ns, with ns = ns(x0) and n0 = 0. The local
coordinates z = (z1; . . . ; zn) centered at x0 are privileged if the order
of zj at x0 equals wj , for j = 1; . . . ; n. In this case, wj is called the
weight of coordinate zj .

The order of functions and vector fields expressed in privileged co-
ordinates can be computed in an algebraic way.

• The order of monomial z�1 . . . z�n equals its weighted degree
w(�) = w1�1 + . . . + wn�n.

• The order of a function f(z) at z = 0 (the image of x0) is the
least weighted degree of the monomials actually appearing in the
Taylor expansion of f at 0.

• The order of a vector field h(z) = n

j=1 hj(z)@z at z = 0 is
the least weighted degree of the monomials actually appearing in
the Taylor expansion of h at 0:

h(z) �
�;j

a�;jz
�
1 . . . z�n @z

considering a�;jz
�
1 . . . z�n @z as a monomial and assigning to

@z the weight �wj .
For our developments it is convenient to define the notion of approx-

imation procedure.
Definition 5: An approximation procedure of system (1) on a given

open domain V � IRn is a functionAP which associates to each point
x0 2 V a smooth mapping z : IRn ! IRn and a driftless control
system 	 on IRn, given by the vector fields ĝ1; . . . ; ĝm, such that

• z = (z1; . . . ; zn) restricted to a neighborhood 
 of x0 are privi-
leged coordinates at x0;

• the pull-backs z�ĝi of the vector fields ĝi by z define on 
 an
NA of (1) at x0.

In other words,	 is an NA at 0 of (1) expressed in the z coordinates.
One example of such procedure is recalled here.

B. Homogeneous Approximation Procedure

Consider (1) and an approximation point x0 2 IRn. An algorithm
for computing a set of privileged coordinates and a nilpotent approxi-
mation at x0 is the following [1].

1) Compute at x0 the growth vector (n1; . . . ; nr) and the weights
w1; . . . ; wn as described previously.
2) Choose vector fields 
1; . . . ; 
n such that their values at x0 form a
basis of Lr(x0) = Tx IRn and such that


n +1(x); . . . ; 
n (x) 2 Ls(x); s = 1; . . . ; r

for any x in a neighborhood of x0, with n0 = 0.
3) From the original coordinates x, compute local coordinates y as

y = ��1(x� x0)

where � is the n � n matrix whose elements �ij are defined by

j(x0) = n

i=1 �ij@x jx .
4) Build privileged coordinates z = (z1; . . . ; zn) around x0 via the
recursive formula

zj = yj +

w �1

k=2

hk(y1; . . . ; yj�1); j = 1; . . . ; n (3)

where

hk(y1; . . . ; yj�1) = �
j�j=k

mj 

�
1 . . . 


�

j�1 yj +

k�1

q=2

hq (x0)

with mj = j�1
i=1 y

�

i =�i! and j�j =
n

i=1 �i.
5) Express the dynamics of the original system in privileged coordi-
nates

_z =

m

i=1

gi(z)ui:

6) Expand the vector fields gi(z) in Taylor series at 0 and express them
in terms of vector fields that are homogeneous w.r.t. the weighted de-
gree

gi(z) = g
(�1)
i (z) + g

(0)
i (z) + g

(1)
i (z) + � � � :

7) Let ĝi(z) = g
(�1)
i (z), and define the approximate system as

_zj =

m

i=1

ĝij(z1; . . . ; zj�1)ui; j = 1; . . . ; n (4)
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where the ĝij ’s are homogeneous polynomials of weighted degree
wj � 1.

System (4) is an NA (triangular by construction) of the original dy-
namics (1) in the z coordinates, hereafter referred to as a homogeneous
NA.

Strictly speaking, the above algorithm does not represent an approx-
imation procedure because Step 2 contains a choice. Assume, however,
that there exists an open domain V containing x0 where a unique way
can be specified for choosing the vector fields 
j , j = 1; . . . ; n. By
doing so, one obtains an approximation procedure AP on V . An ex-
ample of this construction will be given in Section IV.

C. Distance Estimation

Privileged coordinates provide the following estimate of the sub-Rie-
mannian distance d.

Ball-Box Theorem: Consider system (1) and a set of privileged co-
ordinates z = (z1; . . . ; zn) at x0. There exist positive constants c0,C0

and �0 such that, for all x with d(x0; x) < �0

c0f(z) � d(x0; x) � C0f(z) (5)

where f(z) = jz1j
1=w + � � � + jznj

1=w .

III. OBJECTIVE

Assume we wish to control system (1) around a point �x by means of
nilpotent approximations computed in the vicinity of �x (for example,
using the approach in [15]). To this end, we use an approximation pro-
cedure AP defined on an open domain V including �x to compute a
nilpotent approximation 	 and the associated privileged coordinates z
at x0 2 V .

To guarantee that the structure of the NA does not change in
V—which would hinder its use for control synthesis—it is essential
thatAP is a continuous1 function in V ; i.e., both the privileged coordi-
nates and the NA must vary continuously w.r.t. the approximation point
x0 2 V . If �x is regular, the homogeneous approximation procedure
satisfies this requirement; however, if �x is singular, the growth vector
and the associated privileged coordinates weights change around the
point, implying that the procedure is discontinuous at �x.

A similar difficulty arises when considering distance estimation.
Around a regular point �x, coordinates z and constants c0, C0 and
�0 depend continuously on the approximation point x0. This is not
true at a singular point. In particular, if fxig is a sequence of regular
points converging to a singular point x1, then �i tends to 0 although
�1 is nonzero. Hence, if �x is singular, the estimate (5) does not hold
uniformly in V ; that is, there is no � > 0 such that the estimate holds
for any x0 and x in V that satisfy d(x0; x) < �.

The objective of this notemay nowbemore clearly stated.With refer-
ence to a family of five-dimensional driftless systemswith singularities,
it will be shown that around each point �x 2 IR5 it is possible to define
an approximation procedure which is continuous at �x. In particular, we
prove that there exists a finite set of continuous approximation proce-
dures with open domains of definition covering IR5. As a consequence,
we also obtain a modified version of the Ball-Box Theorem yielding an
estimate of the sub-Riemannian distance which is uniform w.r.t. the ap-
proximation pointx0. Apart from its intrinsic significance, the latter de-
velopmentwill be essential inderiving (along the linesof [1, Prop. 7.29])
a uniform estimate of the steering error arising from the use of NAs.

1The functionAP takes values in the product of the set of smooth mappings
from IR to itself with the set of m-tuples of smooth vector fields on IR ,
which can be equipped with the product topology induced by the C topology
on C (IR ). The continuity of AP is relative to this topology.

IV. FAMILY OF SYSTEMS WITH SINGULARITIES

Consider the family of driftless controllable systems

_x = g1(x)u1 + g2(x)u2; x 2 IR
5
; g1; g2 2 C

1 (6)

having growth vector (2,3,5) at regular points and (2,3,4,5) at singular
points. A generic (for theC1Whitney topology) pair of vector fields in
IR5 satisfies this assumption (except possibly for a set of codimension
� 4, where the growth vector may be (2, 3, 4, 4, 5). For example, the
so-called general two-trailer system, consisting of a unicycle towing
two off-hooked trailers, belongs to this family [15].

Under the above assumption, system (6) cannot be transformed in
chained form at regular points [12]. This also implies that the system
is not flat; alternatively, one may check that the conditions [13] for
flatness are violated. If the particular instance of system (6) under con-
sideration is exactly nilpotentizable, one may use the algorithm of [10]
to achieve exact steering between arbitrary points; otherwise, no exact
steering methods are available. Therefore, it is in general of interest
to define an approximation procedure of (6), either for approximate
steering or distance estimation.

Let us apply the homogeneous approximation procedure. First,
we recall some algebraic machinery introduced in [14]. Denote by
L(X1; X2) the free Lie algebra in the indeterminates fX1;X2g. The
following brackets are the first eight elements of a P. Hall basis of
L(X1;X2)

X1; X2; X3 = [X1; X2]; X4 = [X1; [X1; X2]]

X5 = [X2; [X1; X2]]; X6 = [X1; [X1; [X1; X2]]]

X7 = [X2; [X1; [X1; X2]]]; X8=[X2; [X2; [X1; X2]]]:

Consider (6) and letEg be the evaluation map which assigns to each
P 2 L(X1;X2) the vector field obtained by plugging in gi for the cor-
responding indeterminate Xi (i = 1; 2). The vector fields g3; . . . ; g8
are given by gj = Eg(Xj), j = 3; . . . ; 8. Denote by Vr the open set of
regular points, where the growth vector is (2,3,5). In each point of Vr ,
a basis of the Tx IR5 is given by the value of Br = fg1; . . . ; g4; g5g.

At a singular point, where the growth vector is (2,3,4,5), we need one
bracket of length 3 and one of length 4 to span the tangent space. Candi-
date bases are given by the value of the setsBij = fg1; g2; g3; gi; gjg,
i = 4, 5, j = 6, 7, 8. Each Bij has rank 5 on an open set Vij � IR5.
The union of the six Vij contains the singular locus Vs and some reg-
ular points.

Consider now a point x0 in IR5. To define a homogeneous approxi-
mation procedure on the basis of the algorithm of Section II-B, wemust
instantiate Step 2 depending on the nature of x0. If, to perform Step 2,
we chooseBr , we obtain a procedureAPr defined on Vr; if we choose
a Bij , we obtain a procedure APij defined on the corresponding Vij .
In formulas

APr(x0) = (zr;	r); forx0 2 Vr

APij(x0) =
(zij;r;	ij;r); for x0 2 Vij \ Vr
(zij;s;	ij;s); for x0 2 Vij \ Vs

:

At x0 2 Vij \ Vr , both APr and APij are defined and continuous.
Instead, at x0 2 Vij \ Vs, APij is not continuous near x0, while APr
is not defined. Therefore, no homogeneous approximation procedure is
continuous near a singular point—correspondingly, no such procedure
gives a uniform distance estimation on the corresponding Vij .

In the following sections, we show that nonhomogeneous NAs solve
the aforementioned difficulties.

V. NONHOMOGENEOUS APPROXIMATION PROCEDURE

With reference to (6), we intend to show that, given a domain Vij ,
it is possible to devise a nonhomogeneous approximation procedure
which is continuous at each point—whether regular or singular—of
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Vij . For illustration, consider first the domain V46 (equal to the whole
state space for the aforementioned general two-trailer system [15]).

The key point is to modify the homogeneous approximation
procedure given in Section II-B by assigning to the coordinate z5 its
maximum weight, i.e., w5 = 4. The modified procedure, denoted by
APnh

46 , is detailed here (compare with Section II-B).

1) Set the weights to 1, 1, 2, 3, 4.
2) Choose B46 as a set of vector fields.
3)–6) As in Section II-B. We get

gi(z) = g
(��1)
i (z) + g

(0)
i (z) + g

(1)
i (z) + � � � :

g
(��1)
i (z) is the sum of all terms of weighted degree � �1.

7) Let �gi(z) = g
(��1)
i (z), and define the approximate system 	nh

46 as

_zj =

2

i=1

�gij(z1; . . . ; zj�1)ui; j = 1; . . . ; 5: (7)

The inclusion of terms of weighted degree � �1 in �gi(z) is due to
the new assignment of weights. In particular, having now set w5 = 4,
@z is of weighted degree �4. As a consequence, the weighted degree
of a monomial a�z

�
1 . . . z�n @z , computed with the new weights, is

not equal to its order. Thus, at regular points the first monomials actu-
ally appearing in the Taylor expansion of the fifth component of gi(z)
are of weighted degree< w5� 1. These monomials are automatically
zero at singular points, for z5 becomes there of order 4.

Theorem 1: The approximation procedureAPnh
46 depends continu-

ously on x0 in V46.
Proof: First, observe that the system of coordinates provided by

APnh
46 is privileged. In fact, setting w5 = 4 affects only the expression

[computed by (3)] of z5 at regular points of V46, where additional,
higher-degree terms appear w.r.t. the expression provided by AP46.
This does not affect the order of z5, which will still be 3 at regular
points. At singular points, the coordinates provided by APnh

46 and by
AP46 coincide. Hence, z are privileged in V46 since they have order
(1, 1, 2, 3, 3) at regular points and (1, 1, 2, 3, 4) at singular points.

We now show that 	nh
46 is a nilpotent approximation of (6) in V46,

expressed in the z coordinates. At singular points, 	nh
46 coincides with

the homogeneous NA 	46;s obtained by applying AP46. At regular
points of V46, the order of privileged coordinates is (1, 1, 2, 3, 3) and,
therefore, the homogeneous approximation of 	nh

46 at z = 0, obtained
by applying AP46 to (7), coincides with 	46;r . Hence, the homoge-
neous NA of 	nh

46 at z = 0 is also the homogeneous NA of (6) at x0,
expressed in z. This proves condition a) of Definition 3 . To prove b),
consider that �g1; �g2 of system (7) are, by construction, of weighted de-
gree � �1. Thus, their brackets of length � 5 are of weighted degree
� �5. However, no monomial can be of weighted degree < �4, so
that all brackets of length> 4 must be zero, i.e., (7) is nilpotent of step
5.

Finally, coordinates z and 	nh
46 are continuous in V46 by construc-

tion, and so is APnh
46 .

	nh
46 has the same polynomial, triangular structure of the homoge-

neous NA (4). The distinctive feature of 	nh
46 is its nonhomogeneity:

function �gi5(z1; . . . ; z4), i = 1; 2, is the sum of two polynomials of
homogeneous degree 2 and 3, respectively. At singular points the coef-
ficients of the monomials of homogeneous degree 2 vanish, so that only
a polynomial of homogeneous degree 3 is left. We call APnh

46 a non-
homogeneous approximation procedure and 	nh

46 a nonhomogeneous
NA.

Since 	nh
46 satisfies Definition 3, which implies the LARC, we con-

clude that 	nh
46 preserves the controllability of the original system. In

view of the absence of drift, this also guarantees stabilizability of the
approximate system via continuous time-varying feedback, by the re-
sult of [3].

In a generic domain Vij , a nonhomogeneous approximation proce-
dure APnh

ij is obtained by choosing Bij in Step 2. The associated NA
is denoted by 	nh

ij .
The state space IR5 of system (6) is given by the union of Vr and the

sixVij ’s defined in Section IV. If one of theVij ’s covers the whole state
space (i.e., if one of theBij ’s gives a basis at every point), thenAPnh

ij

provides at each point a system of privileged coordinates and a nilpo-
tent approximation which depend continuously on the approximation
point. In general, however, a globally valid basis may not exist; if so,
there exists no approximation procedure (homogeneous or nonhomo-
geneous) that is defined and continuous everywhere. Still, around each
point there exists at least one continuous approximation procedure: ei-
ther APr or one of the APnh

ij .
For practical purposes one may also wish to associate a single ap-

proximation procedure to each point of the state space. To this end,
one may partition the state space into seven subsets with nonempty in-
terior:

Dr = fx 2 IR
5:j det�rj � j det �hlj; h = 4; 5; l = 6; 7; 8g

Dij = x 2 IR
5
; x 62 Dr :

j det �ij j > j det �hlj; fhlg < fijg

j det �ij j � j det �hlj; fhlg�fijg

for i; h = 4; 5, j; l = 6; 7; 8. Here, �r and �hl are the 5� 5 ma-
trices whose columns are, respectively, the vectors of coordinates of
the vector fields fg1; . . . ; g5g and fg1; g2; g3; gh; glg at x, and couples
of indices have been ordered lexicographically. EachDij (respectively,
Dr) is included in Vij (respectively, Vr); therefore, by taking APnh

ij

onDij and APr onDr we define on IR5 a unique approximation pro-
cedure whose restriction to each of the seven subsets is continuous.

VI. UNIFORM ESTIMATION OF SUB-RIEMANNIAN DISTANCE

We now address the problem of obtaining a uniform estimate of the
sub-Riemannian distance as a function of privileged coordinates. To
this end, we first sketch the procedure for estimating uniformly the
sub-Riemannian distance through the lifting method, and then show
that an estimate based on privileged coordinates can be obtained by
computing the relationship between the latter and the lifted privileged
coordinates [such as (11)].

A. Lifting of the Control System

We first desingularize the system using the lifting method, based on
the following result.

Lemma [8]: Consider (1) and x0 2 IRn. There exist an integer
~n � n; a neighborhood ~U � IR~n of (x0, 0); coordinates (x; �) on ~U ,
where � = (�1; . . . ; �~n�n); and smooth vector fields ~gi on ~U in the
form2

~gi(x; �) = gi(x) +

~n�n

j=1

bij(x; �)@�

with the bij ’s smooth functions on IR~n, such that the system defined
by the lifted vector fields ~g1; . . . ; ~gm satisfies the LARC and has no
singular point in ~U .

2With a little abuse of notation, we denote by g also the vector fields obtained
by extending the input vector fields of system (1) with ~n�n coordinates equal
to zero.
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Let (x1, 0) be a point in ~U and u(t), t 2 [0; T ] , be an input function.
They define a trajectory in IR~n steering the lifted system from (x1, 0)
to (x2; �), the solution at t = T of the differential equation

( _x(t); _�(t)) =

m

i=1

~gi(x(t); �(t))ui(t)

with initial condition (x(0); �(0)) = (x1; 0). Using the definition of
the lifted vector fields, we write these equations as

_x(t) =

m

i=1

gi(x(t))ui(t)

_�j(t) =

m

i=1

bij(x(t); �(t))ui(t); j = 1; . . . ; ~n� n

with x(0) = x1, �j(0) = 0. The first equation represents the original
system in IRn. Therefore, the canonical projection of the trajectory in
IR~n associated to u(t) and steering the lifted system from (x1; 0) to
(x2; �) is the trajectory in IRn associated to the same u(t) and steering
the original system from x1 to x2. In particular, the two trajectories
have the same length.

The sub-Riemannian distance between x1 and x2 in a neighborhood
of x0 is

d(x1; x2) = inf
�2IR

~d((x1; 0); (x2; �)) (8)

where ~d is the sub-Riemannian distance for the lifted system.

B. Distance Estimation

As in Section V, consider for illustration the case x0 2 V46. Our
objective is to build a regular system in some space IR~n such that its
canonical projection on IR5 near x0 coincides with the original system.
Let b1(x; �) and b2(x; �) be C1 functions on IR5 � IR and set

~gi(x; �) = gi(x) + bi(x; �)@�; i = 1; 2: (9)

For a generic (for theC3 topology) choice of the bi’s, the lifted system
defined by ~g1; ~g2 on IR~n = IR6 will have growth vector (2,3,5,6) at
(x0; 0). Hence, this system satisfies the LARC and has no singular point
in a neighborhood ~Ux of (x0; 0).

Consider the first eight elements of a P. Hall basis as given in Sec-
tion IV and the evaluation map E~g assigning to each element of the
Lie Algebra in the indeterminates fX1; X2g the vector field obtained
by plugging in the ~gi, i = 1; 2, for the correspondingXi. Denoting by
~g3; . . . ; ~g8 the vector fields given by ~gj = E~g(Xj), j = 3; . . . ; 8, we
can also write

~gi(x; �) = gi(x) + bi(x; �)@�; i = 3; . . . ; 6:

Reducing (if needed) ~Ux so that ~Ux � V46 � IR, and using the
genericity of b1 and b2, we can assume that f~g1(x; �); . . . ; ~g6(x; �)g
has rank 6 at any point (x; �) 2 ~Ux .

Let (x1; 0) 2 ~Ux . We want to compute privileged coordinates in
IR6 around (x1, 0) for the lifted control system, and compare them
with z1; . . . ; z5; �, where the zi’s are the coordinates constructed in
Section V. To this end, we follow Steps 1–4 of the procedure given in
Section V.

1) Set the weights to 1, 1, 2, 3, 4, 4.
2) For the choice of the vector fields, note first that, being

, we have

g5(x1) = �1g1(x1) + . . . + �4g4(x1) + �g6(x1) (10)

where if is singular. Set
and choose vector fields . At ( , 0), we have

~gi(x1; 0) = gi(x1; 0) + b0i @�; i = 1; . . . ; 4; 6

~g05(x1; 0) = �g6(x1; 0) + b05@�

where , . Note that is
nonzero.
3) Compute local coordinates as

~y = ~��1
x� x1
�

where is thematrix whose columns are the values of the vector
fields at ( , 0). Being , where

and is the 5 5 matrix whose columns are the
values of at , we obtain

~yi = yj ; j = 1; . . . ; 4

~y5 =
1

�
(� � b06y5 � b04y4 � . . .� b01y1)

~y6 = y5 �
�

�
(� � b06y5 � b04y4 � . . .� b01y1) = y5 � �~y5:

4) Define privileged coordinates around ( )
using (3). Since for , we have for

. The last two coordinates have the form

~z5 =
�

�
+  5(z1; . . . ; z5)

~z6 = z5 � �~z5: (11)

The privileged coordinates provided by APnh
46 led to an expression

of ~z6 depending only on z5 and ~z5. The same coordinates are now used
to derive an estimate of d.

Theorem 2: Let S � V46 be a compact set. There exist c, C and
� > 0 such that, for all x1 2 S and all x with d(x1; x) < �

cf 0(z) � d(x1; x) � Cf 0(z) (12)

where

f 0(z)=jz1j+jz2j+ jz3j
1=2+jz4j

1=3+min
z5
�

1=3

; jz5j
1=4 (13)

with � = det(�r)=det(�46) and �r the 5� 5 matrix whose columns
are the values of g1; . . . ; g5 at x1.

Proof: Consider x0 2 V46. We first prove the result for a com-
pact neighborhoodNx of x0 such thatNx �f0g � ~Ux . At any point
~x1 = (x1; 0) 2 Nx � f0g, the Ball-Box Theorem guarantees the ex-
istence of ~c1, ~C1 and ~�1 > 0 such that an inequality like (5) holds for ~d
if ~d(~x1; ~x) < ~�1. Moreover, (x1, 0) is a regular point and, by construc-
tion, ~z1; . . . ; ~z6 around (x1, 0) vary continuously with x1. Then, ~c1, ~C1

and ~�1 are continuous functions of x1 and have finite, nonzero extrema
on the compact set Nx . Hence, there exist ~c, ~C and ~� > 0 such that,
for any x1 2 Nx and any ~x = (x; �) such that ~d(~x1; ~x) < ~�, it is

~cf(~z) � ~d(~x1; ~x) � ~Cf(~z) (14)

where f(~z) = j~z1j + j~z2j + j~z3j
1=2 + j~z4j

1=3 + j~z5j
1=3 + j~z6j

1=4.
According to (8), it is

d(x1; x) = inf
�2IR

~d((x1; 0); (x; �)):

Being @~z5=@� = 1=� nonzero and using (11), we may write

inf
�2IR

f(~z)= inf
~z 2IR

jz1j+. . .+jz4j
1=3+j~z5j

1=3+ jz5 � �~z5j
1=4 :
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The infimum is attained at ~z5 = z5=� if jz5j � �4 and at ~z5 = 0 if
jz5j � �4. This, together with the estimate (14) of ~d, gives the estimate
of d(x1; x), with c = ~c and C = ~C . The expression of � is easily
derived from (10).

Having proven the result on a compact neighborhood Nx of each
x0 2 V46, let now S be a compact subset of V46. The union of the
interiors Vx of Nx , x0 2 S, is a covering of S by open sets, from
which we can extract a finite covering[Vi; equation (12) holds on each
Vi with constants ci, Ci and �i. Setting � = mini �i, c = mini ci, and
C = maxi Ci, the thesis follows.

Note the following points.

• The estimate does not depend on the choice of the lifting.
• When x1 is a singular point, the continuous function � equals

zero and Theorem 2 is simply the Ball-Box Theorem at a singular
point. On the other hand, when x1 is regular and far enough from
the singular locus, it may be certainly assumed that � > � (re-
ducing � if needed). In this case, condition d(x1; x) < � implies
jz5j � �4, and Theorem 2 turns out to be the Ball-Box Theorem
at a regular point.

• A uniform estimate of the form (12)–(13) holds for compact sub-
sets of the generic Vij , with the privileged coordinates defined by
APnh

ij and �ij = det�r=det �ij in place of �. The same is true
on compact subsets ofVr , with the privileged coordinates defined
by APr and � = �r = 1 in place of �; in this case, the estimate
(12)–(13) coincides with that of the classical Ball-Box theorem.

If V46 covers the whole state space, Theorem 2 directly provides a
uniform estimation of d on IR5. Even in the general case, however, it
is possible to obtain the same result; in fact, given any compact subset
K � IR5, we can write K =

i;j
Kij [ Kr , having set Kij =

K \Dij andKr = K \Dr . Estimate (12)–(13) holds onKr as well
as each Kij ; a uniform distance estimation over K is then obtained
by computing the appropriate extremal values of c, C and � over the
subset.
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Control With Disturbance Preview and
Online Optimization

Zachary Jarvis-Wloszek, Douglas Philbrick, M. Alpay Kaya,
Andrew Packard, and Gary Balas

Abstract—We present a intuitive and self-contained formulation of a sta-
bility preserving receding horizon control strategy for a system where lim-
ited preview information is available for the disturbances. The simplicity of
the derivation is due to (and its benefits somewhat offset by) a set of strin-
gent and highly structured assumptions. The formulation uses a suboptimal
value function for terminal cost, and relies on optimization strategies that
only require a trivial improvement property, allowing implementation as
an “anytime” algorithm. The nature of this strategy’s performance is clar-
ified with linear examples.

Index Terms—Anytime, disturbance preview, model predictive control,
receding horizon control.

I. INTRODUCTION

Performance advances in microprocessors have spurred the interest
in receding horizon, also termed model predictive, control strategies.
An excellent review of the growth of the field is given in [1]. Of par-
ticular interest to this note are [2], [3], especially [4], [5], and the sub-
optimality results of [6].

We extend the methods of receding horizon control to the case where
a discrete nonlinear dynamic system is driven by disturbances, and
where consistent finite length previews of these disturbances are avail-
able. We consider the problem as a dynamic game between control
and disturbance. From this perspective, it is generally the case that ad-
vanced knowledge of the disturbance is both desirable and expensive.
Hence, in some cases a limited preview will be available through ad-
ditional sensors, intelligence, or short term predictive models (e.g., the
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