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Nonhomogeneous Nilpotent Approximations for
Nonholonomic Systems With Singularities

Marilena Vendittelli, Giuseppe Oriolo, Frédéric Jean, and
Jean-Paul Laumond

Abstract—Nilpotent approximations are a useful tool for analyzing and
controlling systems whose tangent linearization does not preserve control-
lability, such as nonholonomic mechanisms. However, conventional homo-
geneous approximations exhibit a drawback: in the neighborhood of sin-
gular points (where the system growth vector is not constant) the vector
fields of the approximate dynamics do not vary continuously with the ap-
proximation point. The geometric counterpart of this situation is that the
sub-Riemannian distance estimate provided by the classical Ball-Box The-
orem is not uniform at singular points. With reference to a specific family
of driftless systems, we show how to build a nonhomogeneous nilpotent ap-
proximation whose vector fields vary continuously around singular points.
It is also proven that the privileged coordinates associated to such an ap-
proximation provide a uniform estimate of the distance.

Index Terms—Nilpotent approximations, nonholonomic systems, singu-
larities, sub-Riemannian distance.

1. INTRODUCTION

Studying local properties of nonlinear systems through some approx-
imation of the original dynamics is often the only viable approach to
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the solution of difficult synthesis problems. Tangent linearization, the
most common technique, may not preserve the structural properties of
the system; a well-known example of this situation are nonholonomic
mechanisms, that cannot be stabilized by smooth feedback. To deal
with these cases, it is convenient to resort to a nilpotent approximation
(NA), a higher order approximation with increased adherence to the
original dynamics. Among the classical applications of NAs, we men-
tion the study of sufficient controllability conditions for systems with
drift [2], [14] and of stabilizability properties for nonsmoothly stabiliz-
able systems [6], [9].

Various techniques are available for computing NAs (e.g., [1] and
[4]). These require first to express the original dynamics in a privileged
coordinate system centered at the approximation point, defined on the
basis of the control Lie algebra. Then, the transformed vector fields
are expanded in Taylor series; by truncating the expansion at a proper
order, one obtains a nilpotent system which is polynomial, homoge-
neous and triangular. As shown in [5], homogeneity may be essential
for preserving controllability and stabilizability; for this reason, homo-
geneous NAs have been used in the above applications.

There is, however, a situation in which homogeneous NAs exhibit
a drawback: in the neighborhood of singular points (where the growth
vector changes), both the privileged coordinate system and the trun-
cation order change. Hence, in the presence of singularities, homoge-
neous NAs vary discontinuously with the approximation point. Another
consequence is that the sub-Riemannian distance estimate provided by
the Ball-Box Theorem [1] is not uniform around singularities: when
approaching a singular point through a sequence of regular points, the
region of validity for such estimate tends to zero [8].

The above problem is particularly critical when nilpotent approx-
imations are used to design approximate steering laws to be applied
iteratively in a feedback fashion. This approach, based on the general
framework of [11], was proposed in [15] for achieving stabilization of a
particular nonsmoothly stabilizable, nonnilpotentizable system. Within
this scheme, continuity is also essential for estimating the steering error
due to the approximation in order to prove stability. Another use of NAs
that requires continuity is the evaluation of the complexity of nonholo-
nomic motion planning problems [7].

In this note, we show that continuity in the presence of singularities
may be achieved by giving up the homogeneity property. For five-di-
mensional two-input driftless systems with generic singularities, we
build nonhomogeneous NAs that preserve structural properties and vary
continuously with the approximation point over a finite number of sub-
sets that cover the singular locus. By doing so, we associate a contin-
uous approximation procedure to each point. As a byproduct, a uniform
estimate of the sub-Riemannian distance is also obtained.

II. BACKGROUND MATERIAL

We recall some basic tools used in sub-Riemannian geometry fol-
lowing [1]. While the general setting is that of differentiable manifolds,
the local nature of our study allows the restriction to IR"™. Consider a
driftless control system

m
i=) gix)ui. r€R" M
=1
where ¢1, ..., gm are C™ vector fields on IR" and the input vector

u(t) = (u1(t),...,um(t)) takes values on IR™. Given o € IR",
let 7 be a trajectory of (1) originating from x¢ under an input function
u(t),t € [0,T]. We define its length as

T
length(7) = / \/uf(f) +- 4?2 (1) dt.
0

A point x = 75(t), for t €[0, T, is said to be accessible from zq.

0018-9286/04$20.00 © 2004 IEEE



262 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 2, FEBRUARY 2004

System (1) induces a sub-Riemannian distance d on IR™, defined as
d(x1, x2) = inf length(n) )
n

with the infimum taken over all trajectories 7 joining x; to x2. Chow’s
Theorem states that any two points in IR" are accessible from each
other (i.e., d(x1,x2) < o0) if the elements of the Lie Algebra L,
generated by the g;’s span the tangent space 75, M at each point
(Lie algebra rank condition, or LARC). As (1) is driftless, the LARC
implies controllability in any usual sense [14]. Throughout this note,
we assume that the LARC is satisfied.

Take 29 € IR™ and let L°(x) be the vector space generated by the
values at zo of the brackets of g1,...,gm oflength < 5,5 =1,2,...
(the ¢;’s are brackets of length 1). The LARC guarantees that there
exists a smallest integer » = r(2;9) such that dim L (xp) = n, called
the degree of nonholonomy at xg.

Let ns(z) = dim L*(x), s = 1,...,7. A point @ is regular if the
growth vector (n1(x), ..., n.(x)) is constant around x; otherwise
is singular. In particular, points where r changes are singular. Regular
points are an open and dense set in IR".

A. Nilpotent Approximations and Privileged Coordinates

Consider a smooth real-valued function f. Call first-order nonholo-
nomic derivatives of f the Lie derivatives ¢; f of f along ¢;, i =
1,....,m.Call gi(g;f),4,j = 1,...,m, the second-order nonholo-
nomic derivatives of f, and so on.

Definition 1: A function f is of order > s at x¢ if its nonholonomic
derivatives of order < s — 1 vanish at zo. If f is of order > s and not
of order > s + 1 at xq, it is of order s at xq.

Equivalently, if f is of order s at xq, then f(x) = O(d’(wo,z)).

Definition 2: A vector field h is of order > q at x if, for every s
and every f of order s at xo, hf has order > ¢ + s at zo. If h is of
order > ¢ butnot > g + 1, itis of order q at xo.

It is easy to show that ¢;, ¢ = 1,...,m, has order > —1, bracket
[9i» 951, 4,5 = 1,...,m, has order > —2, and so on.

Definition 3: A system

m
T = Z Gi(@) u;
=1

defined on a neighborhood of zq, is a nilpotent approximation (NA) of
system (1) at xg if

a) the vector fields g; — ¢; are of order > () at wxg;

b) its Lie algebra is nilpotent of step s > (o).

This definition is equivalent to those in [1] and [5]. Property a) im-
plies the preservation of growth vector and LARC.

Algorithms for computing nilpotent approximations are based on the
fact that at each point one can define a set of locally defined privileged
coordinates.

Definition 4: Define the integer w;, j = 1,...,n by setting w; =
sif na1 < j < ma, with n, = n.(x0) and no = 0. The local
coordinates z = (z1,..., z, ) centered at xo are privileged if the order
of z; at wp equals wj, for j = 1,...,n. In this case, w; is called the
weight of coordinate z;.

The order of functions and vector fields expressed in privileged co-
ordinates can be computed in an algebraic way.

e The order of monomial 27! ... z5" equals its weighted degree
w(a) = wiar + ... + Wi,

* The order of a function f(z) at z = 0 (the image of x¢) is the
least weighted degree of the monomials actually appearing in the
Taylor expansion of f at 0.

* The order of a vector field 2(z) = >27_, h;j(2)0:; at = = 0 is
the least weighted degree of the monomials actually appearing in
the Taylor expansion of & at 0:

h(z) ~ Zan,,]zfl

@,j

BN

~%n

. a1
considering aq ;%1 = «.. 2
0, the weight —w;.

.; as a monomial and assigning to

For our developments it is convenient to define the notion of approx-
imation procedure.

Definition 5:  An approximation procedure of system (1) on a given
open domain ¥V C IR" is a function A P which associates to each point
xg € )V a smooth mapping z : IR" — IR" and a driftless control
system ¥ on IR", given by the vector fields g1, - - ., G, such that

e z=1(z1,...,2n) restricted to a neighborhood 2 of o are privi-
leged coordinates at xo;

« the pull-backs z*§; of the vector fields g; by z define on 2 an
NA of (1) at xp.

In other words, W is an NA at 0 of (1) expressed in the = coordinates.
One example of such procedure is recalled here.

B. Homogeneous Approximation Procedure

Consider (1) and an approximation point 29 € IR™. An algorithm
for computing a set of privileged coordinates and a nilpotent approxi-
mation at o is the following [1].

1) Compute at wo the growth vector (ni,...
wi,...,wy, as described previously.
2) Choose vector fields v1, ..., ¥, such that their values at 2o form a

basis of L" (x9) = T, IR™ and such that
Yrgor+1 ()5 ooy, () € L7 (),

for any « in a neighborhood of ¢, with no = 0.
3) From the original coordinates &, compute local coordinates y as

y=T""(x—m)

,nr) and the weights

where I" is the n X n matrix whose elements I';; are defined by
Yi(wo) = 300, Tij0a, |~T0"

4) Build privileged coordinates = = (z1,..., z,) around xy via the
recursive formula

k=2
where
k—1
hi(y1,. .o yj—1) = —Zm]- k. ’y?j?l (yj + th> (0)
|| =k q=2
wla)<w,
withm; = l’;; y; /il and o) = 37«

5) Express the dynamics of the original system in privileged coordi-
nates

= Zgi(z)ui.
=1

6) Expand the vector fields g; (=) in Taylor series at 0 and express them
in terms of vector fields that are homogeneous w.r.t. the weighted de-
gree

g() =g VO +a @+ )+
7) Let gi(z) = ggfl) (z), and define the approximate system as

j=1....n @)
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where the §;;’s are homogeneous polynomials of weighted degree
w; — 1.

System (4) is an NA (triangular by construction) of the original dy-
namics (1) in the z coordinates, hereafter referred to as a homogeneous
NA.

Strictly speaking, the above algorithm does not represent an approx-
imation procedure because Step 2 contains a choice. Assume, however,
that there exists an open domain )V containing =y where a unique way
can be specified for choosing the vector fields v;, 7 = 1,...,n. By
doing so, one obtains an approximation procedure AP on V. An ex-
ample of this construction will be given in Section IV.

C. Distance Estimation

Privileged coordinates provide the following estimate of the sub-Rie-
mannian distance d.

Ball-Box Theorem: Consider system (1) and a set of privileged co-
ordinates z = (z1,..., 2, ) at xp. There exist positive constants cq, C
and €g such that, for all # with d(zo, ) < €

cof(2) < d(xo,x) < Cof(2) 5)
where £(2) = |21/ 4+ |z [0

III. OBJECTIVE

Assume we wish to control system (1) around a point by means of
nilpotent approximations computed in the vicinity of z (for example,
using the approach in [15]). To this end, we use an approximation pro-
cedure AP defined on an open domain V including # to compute a
nilpotent approximation ¥ and the associated privileged coordinates =
atxg € V.

To guarantee that the structure of the NA does not change in
V—which would hinder its use for control synthesis—it is essential
that AP is a continuous' function in V; i.e., both the privileged coordi-
nates and the NA must vary continuously w.r.t. the approximation point
xo € V.If ¥ is regular, the homogeneous approximation procedure
satisfies this requirement; however, if Z is singular, the growth vector
and the associated privileged coordinates weights change around the
point, implying that the procedure is discontinuous at z.

A similar difficulty arises when considering distance estimation.
Around a regular point Z, coordinates z and constants ¢o, Cy and
€0 depend continuously on the approximation point zo. This is not
true at a singular point. In particular, if {z;} is a sequence of regular
points converging to a singular point ., then €; tends to O although
€ 18 nonzero. Hence, if Z is singular, the estimate (5) does not hold
uniformly in V; that is, there is no € > 0 such that the estimate holds
for any zo and  in V that satisfy d(zq, ) < e.

The objective of this note may now be more clearly stated. With refer-
ence to a family of five-dimensional driftless systems with singularities,
it will be shown that around each point z € IR® it is possible to define
an approximation procedure which is continuous at Z. In particular, we
prove that there exists a finite set of continuous approximation proce-
dures with open domains of definition covering IR”. As a consequence,
we also obtain a modified version of the Ball-Box Theorem yielding an
estimate of the sub-Riemannian distance which is uniform w.r.t. the ap-
proximation point ;o. Apart from its intrinsic significance, the latter de-
velopment will be essential in deriving (along the lines of [1, Prop. 7.29])
a uniform estimate of the steering error arising from the use of NAs.

IThe function A P takes values in the product of the set of smooth mappings
from IR™ to itself with the set of m-tuples of smooth vector fields on IR™,
which can be equipped with the product topology induced by the C° topology
on C'°°(IR™). The continuity of AP is relative to this topology.

IV. FAMILY OF SYSTEMS WITH SINGULARITIES

Consider the family of driftless controllable systems

&= g1(x)ur + g2 () uz, t€IR®, gi1,92 €C™  (6)

having growth vector (2,3,5) at regular points and (2,3,4,5) at singular
points. A generic (for the C'>° Whitney topology) pair of vector fields in
IR® satisfies this assumption (except possibly for a set of codimension
> 4, where the growth vector may be (2, 3, 4, 4, 5). For example, the
so-called general two-trailer system, consisting of a unicycle towing
two oft-hooked trailers, belongs to this family [15].

Under the above assumption, system (6) cannot be transformed in
chained form at regular points [12]. This also implies that the system
is not flat; alternatively, one may check that the conditions [13] for
flatness are violated. If the particular instance of system (6) under con-
sideration is exactly nilpotentizable, one may use the algorithm of [10]
to achieve exact steering between arbitrary points; otherwise, no exact
steering methods are available. Therefore, it is in general of interest
to define an approximation procedure of (6), either for approximate
steering or distance estimation.

Let us apply the homogeneous approximation procedure. First,
we recall some algebraic machinery introduced in [14]. Denote by
L(X4, X>) the free Lie algebra in the indeterminates { X1, X2 }. The
following brackets are the first eight elements of a P. Hall basis of
L(X1,X2)

)(1, Xz, X3 :[AXVI,Xz], X4 = [.Xl, [Xl,AYQ]]
X5 =[Xo, [X0, Xo]], Xo = [X0, [X0, [X0, Xo]]
X7 =[Xo, [ X1, [ X1, Xo]]], Xs =[Xs, [Xa, [ X1, X2]])-

Consider (6) and let E; be the evaluation map which assigns to each
P € L(X, X>) the vector field obtained by plugging in g; for the cor-
responding indeterminate X; (i = 1,2). The vector fields g3,...,gs
are givenby g; = E,(X;),j = 3,...,8. Denote by V. the open set of
regular points, where the growth vector is (2,3,5). In each point of V.,
a basis of the TIOZH5 is given by the value of B, = {¢1,..., g4, g5 }.

At a singular point, where the growth vector is (2,3,4,5), we need one
bracket of length 3 and one of length 4 to span the tangent space. Candi-
date bases are given by the value of the sets B;; = {91, 92, 93,9, 95 }»
i =4,5,j = 6,7, 8. Each B;; has rank 5 on an open set V;; C IR".
The union of the six V;; contains the singular locus V, and some reg-
ular points.

Consider now a point z in IR”. To define a homogeneous approxi-
mation procedure on the basis of the algorithm of Section II-B, we must
instantiate Step 2 depending on the nature of xo. If, to perform Step 2,
we choose B, we obtain a procedure A P, defined on V,; if we choose
a B;;, we obtain a procedure AP;; defined on the corresponding V;;.
In formulas

AP, (x0) = (2, 9,), foraxg €V,
APy (20) = { (zijrs ¥ijr), forao € )/:z'j NV,
(2ij,5, ¥sj,8), Torzg € Vi; NV,

Atxo € Vi; NVy, both AP and AP;; are defined and continuous.
Instead, at zo € V;; N Vs, AP;; is not continuous near o, while AP,
is not defined. Therefore, no homogeneous approximation procedure is
continuous near a singular point—correspondingly, no such procedure
gives a uniform distance estimation on the corresponding V.

In the following sections, we show that nonhomogeneous NAs solve
the aforementioned difficulties.

V. NONHOMOGENEOUS APPROXIMATION PROCEDURE

With reference to (6), we intend to show that, given a domain V;;,
it is possible to devise a nonhomogeneous approximation procedure
which is continuous at each point—whether regular or singular—of
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V;;. For illustration, consider first the domain V46 (equal to the whole
state space for the aforementioned general two-trailer system [15]).

The key point is to modify the homogeneous approximation
procedure given in Section II-B by assigning to the coordinate zs its
maximum weight, i.e., ws = 4. The modified procedure, denoted by
APy is detailed here (compare with Section II-B).

1) Set the weights to 1, 1, 2, 3, 4.
2) Choose Bys as a set of vector fields.
3)-6) As in Section II-B. We get

(£=1)

9i(x) ==+ 4+ )+

ggg_l) (z) is the sum of all terms of weighted degree < —1.

7)Letgi(z) = gz(-g_] ) (2), and define the approximate system TRl as

2

5= i (21 zim i,

=1

j=1,...,5. 0

The inclusion of terms of weighted degree < —1 in g;(z) is due to
the new assignment of weights. In particular, having now set ws = 4,
0-, is of weighted degree —4. As a consequence, the weighted degree
of a monomial anzy" ... 25" 8;»7 , computed with the new weights, is
not equal to its order. Thus, at regular points the first monomials actu-
ally appearing in the Taylor expansion of the fifth component of g; (z)
are of weighted degree < ws — 1. These monomials are automatically
zero at singular points, for z5 becomes there of order 4.

Theorem 1: The approximation procedure APJy* depends continu-
ously on z¢ in Vse.

Proof: First, observe that the system of coordinates provided by
AP is privileged. In fact, setting ws = 4 affects only the expression
[computed by (3)] of z5 at regular points of V46, where additional,
higher-degree terms appear w.r.t. the expression provided by APig.
This does not affect the order of z5, which will still be 3 at regular
points. At singular points, the coordinates provided by APjY" and by
AP, coincide. Hence, z are privileged in Vs since they have order
(1, 1, 2, 3, 3) at regular points and (1, 1, 2, 3, 4) at singular points.

We now show that ¥/ is a nilpotent approximation of (6) in Vae,
expressed in the z coordinates. At singular points, ¥%¢ coincides with
the homogeneous NA W,¢ ; obtained by applying APss. At regular
points of Vse, the order of privileged coordinates is (1, 1, 2, 3, 3) and,
therefore, the homogeneous approximation of W3¢ at = = 0, obtained
by applying AP to (7), coincides with W46 .. Hence, the homoge-
neous NA of 72 at z = 0 is also the homogeneous NA of (6) at xo,
expressed in z. This proves condition a) of Definition 3 . To prove b),
consider that g, g» of system (7) are, by construction, of weighted de-
gree < —1. Thus, their brackets of length > 5 are of weighted degree
< —5. However, no monomial can be of weighted degree < —4, so
that all brackets of length > 4 must be zero, i.e., (7) is nilpotent of step
5.

Finally, coordinates ~ and W} are continuous in Vas by construc-
tion, and so is AP;Y". [

W has the same polynomial, triangular structure of the homoge-
neous NA (4). The distinctive feature of U452 is its nonhomogeneity:
function gi5(21,...,24), ¢ = 1,2, is the sum of two polynomials of
homogeneous degree 2 and 3, respectively. At singular points the coef-
ficients of the monomials of homogeneous degree 2 vanish, so that only
a polynomial of homogeneous degree 3 is left. We call AP}Y" a non-

homogeneous approximation procedure and W52 a nonhomogeneous
NA.

Since ¥4 satisfies Definition 3, which implies the LARC, we con-
clude that U2 preserves the controllability of the original system. In
view of the absence of drift, this also guarantees stabilizability of the
approximate system via continuous time-varying feedback, by the re-
sult of [3].

In a generic domain V;;, a nonhomogeneous approximation proce-
dure APZ}h is obtained by choosing B;; in Step 2. The associated NA
is denoted by \I/Z’]h .

The state space IR” of system (6) is given by the union of V, and the
six V;;’s defined in Section IV. If one of the V;; ’s covers the whole state
space (i.e., if one of the B;;’s gives a basis at every point), then AP{}”
provides at each point a system of privileged coordinates and a nilpo-
tent approximation which depend continuously on the approximation
point. In general, however, a globally valid basis may not exist; if so,
there exists no approximation procedure (homogeneous or nonhomo-
geneous) that is defined and continuous everywhere. Still, around each
point there exists at least one continuous approximation procedure: ei-
ther AP, or one of the AP,;';-h.

For practical purposes one may also wish to associate a single ap-
proximation procedure to each point of the state space. To this end,
one may partition the state space into seven subsets with nonempty in-
terior:

D, ={z € R*|detT,|> |detTs|, h = 4,5, 1=6,7,8}

5 | |det FL'J'| > |det 1“,,,,|7{hl} < {lj}
D=1z e &D,: Y
: { ST EDr | Get Tyl > | det Toal, {11} {is}

fori,h = 4.5, 5,1 = 6,7,8. Here, ', and T'j,; are the 5 X 5 ma-
trices whose columns are, respectively, the vectors of coordinates of
the vector fields {g1,..., 95} and {g1, g2, g3, gn» 9: } at x, and couples
of indices have been ordered lexicographically. Each D;; (respectively,
D,) is included in V;; (respectively, V,); therefore, by taking AP}3"
onD;; and AP, on D, we define on IR® a unique approximation pro-
cedure whose restriction to each of the seven subsets is continuous.

VI. UNIFORM ESTIMATION OF SUB-RIEMANNIAN DISTANCE

We now address the problem of obtaining a uniform estimate of the
sub-Riemannian distance as a function of privileged coordinates. To
this end, we first sketch the procedure for estimating uniformly the
sub-Riemannian distance through the lifting method, and then show
that an estimate based on privileged coordinates can be obtained by
computing the relationship between the latter and the lifted privileged
coordinates [such as (11)].

A. Lifting of the Control System

We first desingularize the system using the /ifting method, based on
the following result.

Lemma [8]: Consider (1) and 2y € IR"™. There exist an integer
7 > n; a neighborhood U C IR" of (zo, 0); coordinates (x,&) on U,
where £ = (&1,...,&—n); and smooth vector fields g; on U in the
form?

f.—n,

g]i(wv 5) = g,‘,(l’) + Z b”(l‘ 5)853‘
J=1

with the b;;’s smooth functions on Eﬁ, such that the system defined
by the lifted vector fields g1. ..., gm satisfies the LARC and has no
singular point in U.

2With a little abuse of notation, we denote by g; also the vector fields obtained
by extending the input vector fields of system (1) with 7 — n coordinates equal
to zero.
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Let (1, 0) be a point in U and u( t),t € [0,T], be an input function.
They define a trajectory in IR" steering the lifted system from (z1, 0)
to (w2, £), the solution at ¢ = T of the differential equation

(0,10 = 3 (a0, €0 wi ()

with initial condition (x(0),£(0)) = (1, 0). Using the definition of
the lifted vector fields, we write these equations as

i) = Y giw(t) wilt)
G0= Y b0 6O, =i

with z(0) = z1, £,;(0) = 0. The first equation represents the original
system in IR"™. Therefore, the canonical projection of the trajectory in
IR™ associated to u(t) and steering the lifted system from (z1,0) to
(22, &) is the trajectory in IR™ associated to the same w(¢) and steering
the original system from w; to w». In particular, the two trajectories
have the same length.

The sub-Riemannian distance between x; and x2 in a neighborhood
of &g is

fi((,771,0>,(fl’)2,£)) (8)

d(ri,22) = inf
&Efl‘iﬁ’_”

where d is the sub-Riemannian distance for the lifted system.

B. Distance Estimation

As in Section V, consider for illustration the case xy € Vi¢. Our
objective is to build a regular system in some space JR™ such that its
canonical projection on IR® near x¢ coincides with the original system.
Let by (x, &) and bo (2, £) be C* functions on IR® x IR and set

gi(@,8) = gi(w) + bi(x,§)0.  i=12 ©)
For a generic (for the C* topology) choice of the b; s, the lifted system
defined by §1, §2 on IR" = IR® will have growth vector (2,3,5,6) at
(0, 0). Hence, this system satisfies the LARC and has no singular point
in a neighborhood ﬁ'm of (x0,0).

Consider the first eight elements of a P. Hall basis as given in Sec-
tion IV and the evaluation map FE’; assigning to each element of the
Lie Algebra in the indeterminates { X, X2} the vector field obtained
by plugging in the g;, 7 = 1, 2, for the corresponding X;. Denoting by
g3, - .., gs the vector fields given by §; = E3(X;),j = 3,...,8, we
can also write

gi(x, &) = gi(x) + bi(x,€)0k, i=3,...,06.
Reducing (if needed) ﬁxo so that ﬁro C Vis X IR, and using the
genericity of b; and b2, we can assume that {1 (x,£), ..., ge(,€)}
has rank 6 at any point (x, &) € U.,,.

Let (21,0) € LN"IO. We want to compute privileged coordinates in
IR® around (z;, 0) for the lifted control system, and compare them
with z1,..., z5,&, where the z;’s are the coordinates constructed in
Section V. To this end, we follow Steps 1-4 of the procedure given in
Section V.

1) Set the weights to 1, 1, 2, 3, 4, 4.
2) For the choice of the vector fields, note first that, being x; €
V.6, We have

gs(z1) = prgi(x) + ...+ pagalxr) + pge(z1) (10)

where p = 0 if 24 is singular. Set 5 = g5 — p1G1 — ... — paga

and choose vector fields g1, - .., g5, gs- At (z1, 0), we have
Gi(1.0) = gi(21,0) + b0k,
5 (x1,0) = pge(x1,0) + b3 e

where b = b;(21,0),7 = 1,...,6. Note that 8 = bJ — pb is
nonzero.
3) Compute local coordinates § = (%1, . .

g:f‘,1<l’—£$1)

where I is the matrix whose columns are the values of the vector

. 7y6> as

fields g1,..., g6 at (z1, 0). Being ¢ — 1 = 'y y, where y =
(y1,-..,ys5) and ['yg is the 5 x 5 matrix whose columns are the
values of g1, ..., 94, g at x1, we obtain

¥i =Yj, j=1,....4

. 1

g5 = (€ = boys — bays — ... = biy)

Y6 = Y5 — %(f — bgys — biya — ... — bYy1) = ys — pis.
4) Define privileged coordinates (Z1,...,2¢) around (z1,0)

using (3). Since g;y; = g;y; for i < 4, we have z; = z; for
7 < 4. The last two coordinates have the form

1)

nh

The privileged coordinates provided by A P,5" led to an expression
of Z¢ depending only on 25 and Z5. The same coordinates are now used
to derive an estimate of d.

Theorem 2: Let S C Vi be a compact set. There exist ¢, C' and
€ > 0 such that, for all z; € S and all z with d(z;,2) < e

cf'(z) < d(wr.x) < COf'(2) (12)

1/3
./|:s|l“> (13)

with p = det(T',)/ det(T'46) and T, the 5 X 5 matrix whose columns
are the values of ¢1,..., g5 at xy.

Proof: Consider z0 € V4. We first prove the result for a com-
pact neighborhood .., of o such that N, x {0} C U, . Atany point
21 = (1,0) € Nz, x {0}, the Ball-Box Theorem guarantees the ex-
istence of &, Cy and & > 0 such that an inequality like (5) holds for d
if ci(;il, x) < €1. Moreover, (x1, 0) is a regular point and, by construc-
tion, Z1,.. ., Z¢ around (x1, 0) vary continuously with x . Then, ¢;, él
and €, are continuous functions of x| and have finite, nonzero extrema
on the compact set NV, . Hence, there exist &, C' and ¢ > 0 such that,
forany oy € N,, and any & = (x,¢) such that d(i,, &) < ¢, itis

where

F )=z ]+ 2] + |z3|”2+|:4|“3+mm<‘%

Gf(2) < d(in. ) < Cf(2) (14)

where f(2) = 21| + [Z2] + |27 + |27 + |5]° + |51
According to (8), it is

d(wi,x) = gg;{riuxnox(m,@)-

Being 0%5 /0¢ = 1//3 nonzero and using (11), we may write

1/3 1/3

inf fE=int (Jaal ol 5 s = o5l ).
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The infimum is attained at Z5 = z5/p if |25]| < p* and at 35 = 0 if
|z5| > p*. This, together with the estimate (14) of d, gives the estimate
of d(xy, ), with ¢ = ¢ and C' = C. The expression of p is easily
derived from (10).

Having proven the result on a compact neighborhood V.., of each
29 € Vis, let now S be a compact subset of Vi6. The union of the
interiors V., of N.,, @0 € 5, is a covering of S by open sets, from
which we can extract a finite covering UV;; equation (12) holds on each
V; with constants ¢;, C; and ¢;. Setting ¢ = min; €;, ¢ = min; ¢;, and
C' = max; C}, the thesis follows. |

Note the following points.

* The estimate does not depend on the choice of the lifting.

* When z; is a singular point, the continuous function p equals
zero and Theorem 2 is simply the Ball-Box Theorem at a singular
point. On the other hand, when x, is regular and far enough from
the singular locus, it may be certainly assumed that p > € (re-
ducing e if needed). In this case, condition (1, z) < € implies

25| < p*, and Theorem 2 turns out to be the Ball-Box Theorem
at a regular point.

* A uniform estimate of the form (12)—(13) holds for compact sub-
sets of the generic V;;, with the privileged coordinates defined by
AP{}h and p;; = det '/ det T';; in place of p. The same is true
on compact subsets of V., with the privileged coordinates defined
by AP, and p = p,, = 1 in place of p; in this case, the estimate
(12)—(13) coincides with that of the classical Ball-Box theorem.

If Ve covers the whole state space, Theorem 2 directly provides a
uniform estimation of d on IR”. Even in the general case, however, it
is possible to obtain the same result; in fact, given any compact subset
K C IR, we can write K = U ; & ) U Ky, having set Ky; =
K ND;; and K, = K N'D,. Estimate (12)—(13) holds on K, as well
as each K;;; a uniform distance estimation over K is then obtained
by computing the appropriate extremal values of ¢, C' and € over the
subset.
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Control With Disturbance Preview and
Online Optimization

Zachary Jarvis-Wloszek, Douglas Philbrick, M. Alpay Kaya,
Andrew Packard, and Gary Balas

Abstract—We present a intuitive and self-contained formulation of a sta-
bility preserving receding horizon control strategy for a system where lim-
ited preview information is available for the disturbances. The simplicity of
the derivation is due to (and its benefits somewhat offset by) a set of strin-
gent and highly structured assumptions. The formulation uses a suboptimal
value function for terminal cost, and relies on optimization strategies that
only require a trivial improvement property, allowing implementation as
an “anytime” algorithm. The nature of this strategy’s performance is clar-
ified with linear examples.

Index Terms—Anytime, disturbance preview, model predictive control,
receding horizon control.

[. INTRODUCTION

Performance advances in microprocessors have spurred the interest
in receding horizon, also termed model predictive, control strategies.
An excellent review of the growth of the field is given in [1]. Of par-
ticular interest to this note are [2], [3], especially [4], [5], and the sub-
optimality results of [6].

We extend the methods of receding horizon control to the case where
a discrete nonlinear dynamic system is driven by disturbances, and
where consistent finite length previews of these disturbances are avail-
able. We consider the problem as a dynamic game between control
and disturbance. From this perspective, it is generally the case that ad-
vanced knowledge of the disturbance is both desirable and expensive.
Hence, in some cases a limited preview will be available through ad-
ditional sensors, intelligence, or short term predictive models (e.g., the

Manuscript received December 5, 2001; revised September 10, 2002 and June
9, 2003. Recommended by Associate Editor A. Bemporad. This work is sup-
ported by DARPA under the Software Enabled Control program, and by the
United States Air Force under Contract F33615-99-C-1497. The DARPA SEC
Program Manager is Dr. J. Bay, with Mr. W. Koenig and Mr. R. Bortner (AFRL)
providing technical support. Mr. D. Van Cleave (AFRL) is the Technical Mon-
itor for this contract.

Z. Jarvis-Wloszek, M. A. Kaya, and A. Packard are with the Department
of Mechanical Engineering, University of California, Berkeley, CA 94720
USA (e-mail: zachary@jagger.berkeley.edu; alpay@jagger.berkeley.edu;
pack@jagger.berkeley.edu).

D. Philbrick is with the Naval Air Warfare Center, China Lake, CA 93555
USA (e-mail: philbrickdo@navair.navy.mil).

G. Balas is with the Department of Aerospace Engineering and Mechanics,
University of Minnesota, Minneapolis, MN 55455 USA (e-mail: balas@
aem.umn.edu).

Digital Object Identifier 10.1109/TAC.2003.822876

0018-9286/04$20.00 © 2004 IEEE



