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A SENSITIVITY APPROACH TO OPTIMAL
SPLINE ROBOT TRAJECTORIES

A. De Luca, L. Lanari, G. Oriolo and F. Nicolo

Dipartimento di Informatica e Sistemistica, Universita di Roma “La Sapienza”,
Via Eudossiana 18, 00184 Roma, Italy

Abstract. A robot trajectory planning problem is considered. Using interpolating cubic splines as joint space
trajectories, the path is parametrized in terms of the n-1 time intervals between the n knots. A minimum time
optimization problem is formulated under maximum dynamic torque and maximum velocity constraints and
solved by means of a first order derivative-type algorithm for semi-infinite nonlinear programming. Feasible
directions in the parameter space are generated using sensitivity coefficients of the active constraints.
Numerical simulations for a two-link Scara robot are reported. This approach can be used also for more
general objective functions and including different types of constraints.
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Introduction

The optimal planning of robot trajectories is a relevant problem
for improving robotic performance in industrial applications.
Difficulties arise in the robot motion planning and control due to
the integrated nature of the problem, with interacting geometric,
kinematic and dynamic issues.

Essentially, there are two different types of tasks to be tackled
by the robot trajectory planner: moving from point to point and
moving along a given path. In both cases, a common objective
is to minimize the total traveling time. Other general criterions
combine minimization of time with fuel or energy consumption.

It has been recognized that inclusion of robot dynamics into the
traditionally purely kinematic phase of path planning allows to
specify feasible or even optimal reference trajectories to be
tracked in real time by the robot controller (Brady, 1982).
Methods which explicitly consider bounds on the input torques
need to take into account this dynamics in the optimization.

Several techniques have been proposed for solving the point-
to-point minimum time problem, using the manipulator full
dynamics. They differ in the algorithmic approach followed: an
adaptive selection of switching times (Gawronski et al., 1981), a
modified gradient-type optimal control algorithm (Weinreb and
Bryson, 1985), the multiple-shooting technique for nonlinear
TPBVP (Geering et al.,1986), or a dynamic programming
scheme (Sahar and Hollerbach, 1986). Issues related to the
existence of time-optimal solutions and of singular arcs have
been investigated by Ailon and Langholz (1985). All these
numerical methods are computationally intensive. Moreover,
the introduction of state constraints, like joint limits or maximum
velocity bounds, brings in additional complexity.

The time-optimal behavior between the initial and final points is
unpredictable and possibly dangerous. Therefore, a sequence
of via points is usually assigned, which have to be interpolated
in an optimal way. Other robotic tasks explicitly require that the
arm follows a given geometric path, typically in minimum time.
In these cases, most solution methods are based on a
continuous parametrization of the path.

Hollerbach (1984) used constant time scaling on parametric
robot trajectories in order to recompute feasible torques for
moving on the path. The generalization to time-varying scaling
has brought to the successful method of Bobrow et al. (1985)
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and of Shin and McKay (1985) for finding exact minimum-time
motion on the given path. In the phase-plane of scalar position
and velocity along the path, an efficient solution algorithm is
derived under maximum torque constraints. A closely related
technique allowing more general objective functions is due to
Pfeiffer and Johanni (1986).

An appealing choice for the parametrization of paths is to use
spline functions. These are general purpose piecewise cubic
polynomials interpolating a sequence of points, called knots,
with smoothness requirements and with a minimum curvature
property (de Boor, 1978). In the robotic applications, they have
been used to generate minimum-time trajectories under purely
kinematic constraints (Lin et al., 1983). Relaxing the continuity
of the second derivative (i.e. acceleration), splines are an
appropriate tool for on-line trajectory generation (Chand and
Doty, 1985). Rajan (1985) used them in an iterative procedure
for approximating the point-to-point minimum-time path, under
dynamic torque constraints. The same approach is followed by
Lin and Chang (1985), but considering the class of splines with
continuous acceleration and parametrizing the path in terms of
the time intervals between knots. Their minimization algorithm,
as well as the one used in (Lin et al., 1983), is the Nelder-Mead
flexible polyhedron search; being based only on function
evaluations, it is slow and may stop in false local constrained
minima.

In this paper, a new algorithm is presented for the optimal
timing along a smooth path in the joint space. The work is an
outgrowth of (De Luca and Nicold, 1985). The trajectory is a C2-
spline passing through n knots in the joint space, with boundary
conditions on initial and final velocity. The n-1 time intervals
between the knots parametrize uniquely the path. A minimum
time problem with both maximum joint velocity and torque limits
will be considered.

For cubic splines, the set of instants where maximum velocity is
achieved is finite and known (Lin et al., 1983). It is enough then
to check the feasibility of the velocity in these instants. On the
other hand, no specific pattern arises for the computed torques
along the spline trajectory: the torque constraint has to be
checked for satisfaction in all instants along the path. This turns
to be a infinite dimensional constraint and the optimization
problem has to be formulated as a semi-infinite programming
one, with both conventional and functional constraints.
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For its solution a slight modification of an efficient algorithm
proposed by Gonzaga et al. (1980) will be used. This is a
method of feasible directions in the parameter space, in which
the functional constraints are treated by a proper discretization.
The main advantage of this algorithm is that it belongs to the
class of first order methods, i.e. based on gradient information,
which are usually faster and safer than those using function
evaluations only. Moreover, after a certain number of iterations
the current point becomes feasible and remains such until
optimality is reached. It is worth noting that many engineering
design problems have been solved using this numerical
method (Tits et al., 1986).

The algorithm requires the knowledge of the gradients of the
constraints which are active at a given iteration. In other words,
sensitivity functions of the constraints in terms of parameters'
variations are needed. As an intermediate step, the sensitivity of
the spline functions has to be computed. Explicit expressions of
the sensitivities will be derived; these have their own interest
and relevance also for other applications.

The paper is organized as follows. The construction of a spline
trajectory will be recalled first, together with the recursive
scheme for computing the spline accelerations at the knots. The
minimum-time optimization is then formulated as a semi-infinite
nonlinear programming problem, and the basic algorithm of
Gonzaga et al. (1980) summarized. Next, a sensitivity analysis
of the spline and the torque profiles with respect to variations of
the path parameters will be presented. A discussion of the
numerical results obtained for a two-link Scara robot arm and of
the possible extensions of the method completes the paper.

Spline robot trajectories

Let the robotic task be specified in the N-dimensional joint
space by a sequence of n joint position values, dj1s Gj2s-++» Gjns
for j = 1,...,N, to be assumed at unspecified time instants ty,
to,..., ty, with ty = 0. The desired initial and final joint velocities,
vjy and vj,, are given. Lethj=t,¢ - t;, fori=1,...,n-1, be the time
intervals between the knots and h = [hy, ..., hy.4]T.

For the generic joint j, a trajectory will be constructed by
interpolating the data via a C2 - spline Qj(t), a piecewise cubic
polynomial with continuity up to the second derivative. Each of
the n-1 cubics Qj(t) constituting the spline can be written as (Lin

etal., 1983):

Qj(t) =

¢ 9 @t)? 9., ho g, ho

i+1 i vt MOt i %
=Ten, @tTeh, Gt T 1R g

for t e [t t,1]. @ is the acceleration at the i-th knot of the j-th
joint. The continuity of the second derivative follows from

,=Q, t)=0Q

i = Qi (t), fori=2,...,n-1.

n
The interpolating spline function is completely specified when a
given timing (i.e. vector h) is assigned and the associated knots
accelerations wj; are determined. Let Q; be the n-dimensional
acceleration vector relative to the j-th joint. Qj is found by
solving the following tridiagonal linear system of n equations,
obtained imposing the two boundary conditions and the n-2
continuity conditions on the first derivative at the internal knots:

AQ =b, Q)
J
where
2h,  h,
h, 2(h+h,) h,
A=
hn-z 2(hn-2+hn-1) hn-1
hn-1 2hn-1

.
%2791 i k-1 i1 Yk2 9" Gjn-1
b=[6(F—-v,p) .. L K K2y gy Tty |
! hy O Py P2 ey

It can be shown that, if h > 0 (i.e. hj> 0, i = 1,...,n-1), the solution
is unique and continuous as a function of h. Note that the matrix
Ais the same for all joints. This system can be efficiently solved

by a Gauss-type algorithm without pivoting (Stoer and Bulirsch,
1980). The components of the solution Qjcan be found by

forward and backward substitution as:

W= O, mji=mli-Kim”+1, i=n-1,..,1
with
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These expressions will be used later for computing the spline
sensitivity to variations in the vector parameter h.

As a result, a unique set of N joint spline trajectories Qj(t,h) is
built for a given h. Let these splines be organized into a vector
Q(t,h). It should be noted that by changing one or more of the
discrete parameters h;, the whole interpolating spline will be
different unless a uniform scaling is performed on all the
components of h (Hollerbach, 1984, Lin et al., 1983).

In order to evaluate the torques needed to travel along the
spline trajectory, the dynamics of the robot arm will be used:

D(q) g+ ¢(q.q) + e(q) =u

q are the generalized joint coordinates, u the joint torques, D is
the inertia matrix, ¢ are Coriolis and centrifugal terms (quadratic
in q'), e is the gravitational contribution. The torque u; arising at
joint j along a given spline trajectory q = Q(t,h) is computed
through the above inverse dynamics as

d ]T [Qth)] Qt.h) + O(t,h)TCj [Q(th)] Q(th) + ¢ [QLM)] = u, (L)

where d; is the j-th column of the symmetric matrix D.

Optimization problem formulation

Assume for simplicity that the given bounds on maximum joint
velocity and torque are constant and symmetric:

QUMY Tuyth) <Y, j=1,..N.

Since the spline velocity is a piecewise quadratic function, its
maximum value is attained either at the knots or where
acceleration is zero. The first constraint is then satisfied for all
instants t of interest if and only if it is satisfied in a prespecified
finite set of instants. Velocity has to be checked only at the knot
instants t;, i = 1,...,n, and at intermediate instants ti e [t tiq]
such that Q"j(tji',h) = 0 (Lin et al., 1983). These intermediate
instants exists only when j; ®ji.4 < 0 (for joint j) and their
expression is tj" =t + @ji / (w; - ®;i,.1). The same reasoning does
not apply to the torques. In fact, the maximum may be attained
everywhere along the spline trajectory. In principle, the torque
constraint has to be evaluated at all path points.

As a result, the minimum time optimization problem can be
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formulated in the following way:
n-1
min tn=z1‘hi
I=
st 1Qt,h)[-V;<0, i=1..n,
19,1 -V;<0, i=1...n1,

max {|u](t,h)! -U}<0;
te [0.t,] l

forj=1,...,N.

This form of the torque constraints is usually referred to as an
infinite-dimensional or functional one. The resulting problem is
a semi-infinite nonlinear programming one, with conventional
and functional constraints. The expressions of the spline

position, velocity and acceleration should be used above. In
particular, the velocity at the instant ;" is

a.(t) h; @) 0,4 L Ji” q; h

( Y =- —
|
= 20 h, 6

(@,4- @)

In order to ensure the existence of a solution to the tridiagonal
system (1) defining the interpolating spline, the constraint h > 0
has to be added to the problem formulation. This noncompact
constraint can be replaced by a lower bound on the parameter
vector h derived from the velocity limits, namely
1951 - 9y
w-h<0, w; = max {M},
j=1,..N v
For efficiency reasons, this simple constraint will be treated
separately from the other conventional ones.

A solution algorithm

The optimization problem formulated in the previous section is
an instance of the class

min f o(h),

st.gih)<0,j={1,..,p}=p, fi(h)<0,j={1,..,m}=m
in which
fi(h) = max 77 ¢i(z,h)

where h e R(™1) is the vector of design parameters with respect
to which we are optimizing, gl are the conventional constraints,
fi are the functional ones, and T is a closed interval in R. The
scalar continuous variable T spans the domain T over which
the functional constraints have to be satisfied. The functions
involved in the minimum time problem formulation satisfy the
following assumptions: f°(h) and gi(h) are C' - functions; ¢!'(1,h)
are continuous in both arguments, while the gradient Vp¢l(t,h)
is continuous w.r.t. h.

For the above class of semi-infinite programming problems,
Gonzaga et al. (1980) developed an efficient algorithm of
solution which is a combined phase | - phase Il method of
feasible directions with proven convergence properties. There
is no need of a feasible starting point, since feasibility is
achieved anyway after a finite number of iterations. In the
process of recovering feasibility (phase |), the algorithm already
considers the objective function that has to be minimized in the
feasible region (phase Il). To generate a search direction d in
the space of the parameters h, a small quadratic programming
subproblem is solved at each iteration. In this QP, directional
derivatives of the objective function and of the e-active (i.e.
active or almost) constraints are used. The implementable
version of the algorithm requires a proper discretization of the

infinite-type constraints: the continuous domain T has to be
substituted by a set T, (of cardinality g) of discrete "instants".

To briefly state the algorithm, some definitions are needed:

j
fy(h) = max ¢q‘(¢, h)

€ Tc|

RC—Q*

v,(h) =max {gih), j € p; f)(h),j e m)

Let yq,0(h) = max {0,yq(h)} 2 0 be the value of the most violated
constraint. The indices of the e-most active constraints are then:

Joel(h) = {je m|fg(h) 2 yqoh) - &}
Jo.d(h) ={je plg(h) = yqoh) -}
The set of 7's where the j-th torque constraint is e-most active is:

Tq,ej(h) ={1e Tq | ¢qj(11h) 2 Wq,o(h) -¢e}

A suitable search direction d in the parameter space follows
from the solution of the following QP problem:

1 2 0 . i 9.
ﬁq’e(h)=n‘1;n{§||d|| +max {<Vf (h),d>- Wq,o(h)' <Vg (h),d>,je qus,
j N |
Ve e T Ljed 1}

The directional derivatives of the objective function, of the
conventional and of the functional constraints should be
available; the last ones have to be evaluated only at te T.

The algorithm consists of the following formal steps:

Algorithm (Gonzaga et al., 1980).
Given aninitial h°, an integer q and coefficients y> 1, € > 0,
ando.e (0,1), seti=0.
Step 1 Compute the set of instants Tg J(hi), je m.
Step 2 Compute a direction dq‘e(hi) solving the QP problem
and let 94 ¢(h!) be the optimal value.
Step 3 1f 9q.(hi) <- ¢, go to 5; else, go to 4.
Step 4 Ife<1/29and yqo(hi) < 1/29, setq=g+1 andgo to 1;
elsesete=¢/2andgoto 1.
Step 5 Along the search direction dg ((hi):
if wq,0(h) = O (feasible region), compute a step AM>0s.t:
fo(hi + A dg (1)) - fO(hi) < - 0 e A,
githi+ Aidg((h)) <0, jep,
fqi(hi+ Aidg (h)) <0, jem;
else if ‘I’q,o(hi) > 0 (unfeasible region), compute Al > 0 s.t.:
Vg (hi+ Aidg o(hi) - yq () < - oe M
Step 6 Sethi+! = hi+ A dg(hi),i=i+1,andgoto 1.
In this algorithm, step 4 provides an internal loop that increases
the discretization grid and/or modifies the e-active rule. Step 5
implements an Armijo-type line search rule. An additional test is
included at this point in order to satisfy the constraint w - h < 0.
In general, the design vector parameter h and the continuous
variable T are not related each to other. However, in the above
minimum time problem they both take on values in the time
domain (i.e. Tt = t). Moreover, T = [0, t,] so that the continuous
domain of interest is itself a function of the chosen h. This
requires an adaptive iteration-varying strategy for discretizing T
into Ty, as opposed to an uniform one. At iteration k, the
following set of mesh points is used:
(K)o (k) (k) (k) . .

Tq ={tin [ty =t +o h;m=01,..q; i= 1,001}

where o, = m/q. In this way each subinterval [t, t;,4] is uniformly
sampled and the knots t, (where the acceleration is maximum)
are always included in the current discretization.
This interdependence between t and h should be carefully
considered also in the evaluation of V,¢i(t,h), the gradient with
respect to h of the torque constraint. For determining the
sensitivity of ¢i(t,h) to changes in h, the values of the constraint
before and after a small perturbation of h should be compared
at the same mesh point in the discretization.

Sensitivity analysis

For solving the minimum time optimization problem using the
previous algorithm the following directional derivatives are
needed:
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n-1
<vih)d> = X, d
i=1
j & 34 (s.h) . .
<Vg(h),d> = :k=1 T d,, withs=t; or t].i
n-1
du(s,h)
<Vpd(s.h).d> = :2——‘h—— d, withs=t,
k=1 Kk

The = signs arise from the modulus in the constraints. Note that
the quantities above are computed only at the knots t; or at the
intermediate instants t;" or, for the functional constraints ¢l, at
mesh points t . Using the inverse dynamics, the sensitivity of

the robot torques takes the form:

N N e a
ki Ty ) S TR s R e B
oh, = 5={9Qoh, "r "iroh, "0Q, ohy ac)rahk 0Q, oh,

As a result, the following quantities are needed:

a) the sensitivity of the dynamic terms in the robot model with
respect to variations of the joint coordinates q and q', evaluated
along the spline (i.e. for gj = Q;, qi' = Qy); this depends on the
specific robot arm, but programs are available which compute
the sensitivity of the dynamic model in a closed symbolic form
(Neuman and Murray, 1984);

b) the sensitivity of the splines Q;, and of their first and second
derivatives Q;' and Q", with respect to changes of the time
intervals hy; no results seem to have been reported previously
on this aspect.

In the following analysis, a preliminary result is needed
concerning the sensitivity of the solution to the tridiagonal
system (1) (i.e. of the knots accelerations wy) w.r.t. variations of
h, which appears in the system coefficients and in the right-
hand-side term. This sensitivity will be denoted by

o 2%
T

and the actual expressions are reported in the Appendix.
The spline sensitivity has to be computed at a generic mesh
point t, € [t;, ti,1] and at the instants t;” where maximum velocity
may occur. Dropping the joint index j in the i-th cubic Q; this
can be rewritten at t;, as:

2

3 3
Qi(tim)=?I (o) o+ o, -0.0,-(1-oJol+a g, +(1-a)q;
The sensitivity of the spline position at a mesh point is then:

30, (tr)
ah,

i 3 (k) 3 (kK (k) (k)
e [(1-0 ) @ + 0 -0 - (1- 0o 1+

¥ §ik[; (- °‘m)3‘°i+ Olarn‘*"m“"m"’m' (1-op) ‘”i]]-
fori=1,.,n-1, m=0,1,..,q, k = 1,...,n-1. §jc is the Kronecker
delta. Note that for o= 0 and a4 = 1, the sensitivity is zero.
These values correspond to the instants at the knots, where the
spline trajectory should pass in any case (i.e. for all h).
In a similar way, the spline velocity becomes at t;,:

. h 2 2 GG iy~ ©)
Qi(tim)=5|[am°3m'(1'°‘m) o]+ hiZ . 6
which gives
. (k) (k)
NQti) hy 2 2 ), hlo,- o)
—h" 7 lmo (- ag) 0 - ————
2 2
@ - (1-a ) @ Qiy=Q) @54~ 0
+ 8yl > - 2 T g
, h
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Again, this expression goes to zero at the initial and final
instants t; and t,,. For the spline velocity at the instant ti’, where

acceleration may go to zero:

'Q(t*) . hj ;0,4 , q'm‘qi_ hi(o,4- o)
Vi 2((0#1_(00 k2 hi 6
The sensitivity is:
ou K K 2 K 2 [
aQ(t;) _ hiley- o) hi(oy, 0 - 0 o)
Iy 6 204~ 0)°

O =0 Qg -G OOy
-0, [ 5+ +

= s
h; @y, q - O

Finally, for the spline acceleration

Q= o0+ (-0 )o;
the sensitivity is:
aQ,(t,.)
iV (k) (k)
3h =o o+ (1-0 o

k
fori=1,.,n-1,m=0,..,q, k = 1,...,n-1. It can be shown that all
the above sensitivity expressions satisfy the smoothness
assumptions in the region h >w > 0.

Numerical simulations

The optimization method has been tested on a two-link planar
SCARA-type robot arm. The values of the robot parameters are:
my=mo= 1 Kg, |1 = lz =0.5m, J1 = J2 =0.0214 Kg m2. The limit
values are V=V, = 2 rad/sec for the velocity at the joints, and
Uy =7 Nm, U, = 2 Nm for the torques. Details on the dynamic
model and on the sensitivity computations can be found in (De
Luca et al., 1988). The arm is required to move in minimum time
along a smooth trajectory (with continuous acceleration) which
interpolates a sequence of six position knots in the joint space:

q4y=0 q,,=.5q;3=75 q;,=1 q,5=1.25 qig=1.5

Up1=0 Qpp=-5 Gp=-1 Gy =-1.5 Qp=-1 Gyq=.5

(in rads). Initial and final velocity are set to zero (v4 = vg = 0). A
program which implements the optimal spline approach has
been written in Fortran 77 and runs on a IBM-AT personal
computer. At each iteration, the routine EO4NAF of the NAG
Workstation Library is used for solving the small quadratic
programming subproblem that defines the search direction.

In correspondence to the chosen initial design parameters

h=[t 5 5 5 5], t, =3 sec

the plots of spline positions and velocities, and of the computed
torques along this trajectory are shown in Figures 1-3. Velocity
and torque at the second joint are both unfeasible, reaching the
values of 4 rad/sec and -3 Nm, respectively. After 9 iterations
the algorithm recovers full feasibility with

h'-[62 .37 37 37 197], t -37sec
Note that, if the feasibility recovery rule of (Lin and Chang,
1985) were applied to the initial h, a higher total traveling time,
t, = 6 sec, would have been found. Figures 4-6 refer to the final
solution obtained after 40 iterations and a computing time of
approximately 4 minutes. The optimal design parameter vector
and the total time are:

h'=[37 25 34 43 1.07], t, = 2.46 sec

The plots shows that both torques are saturated at the initial
time instant, while the velocity of the second joint saturates
twice, around the second and the fourth trajectory knots. The
same final solution was obtained by letting the algorithm start
from a feasible initial vaiue of h.
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It is known that the minimum-time torque profile along a
parametrized trajectory is such that at least one actuator gives
maximum torque at each instant (Bobrow et al., 1985). The
reason for the absence of saturated flat tops in the obtained
profiles is two-fold. First, the presence of velocity bounds may
prevent the torques from reaching their maximum values.
Second, the requirement of a continuous acceleration excludes
a bang-bang form for the torques.

Conclusions

A new method for minimizing the total traveling time along a
spline trajectory under kinematic and dynamic constraints has
been presented. Inclusion of both velocity and torque bounds,
and the continuity hypothesis on the trajectory acceleration,
give rise to new interesting optimal time profiles.

The numerical algorithm used for solution is very robust and
efficient, being based on gradient information. The sensitivity of
the spline behavior with respect to changes of the time intervals
between the knots was computed. The derived expressions can
be used also in purely kinematic approaches to robot trajectory
planning, and may prove helpful in other applications too.

With little additional complexity, the method can be extended to
the optimization of more general objectives under different
types of constraints, like velocity dependent bounds on the
torques or jerk limits. Finally, nondifferentiable functions may be
included following the theoretical developments of the same
basic algorithm, as presented in (Polak et al., 1983).
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Appendix

The sensitivity of the spline accelerations w;; at the knots is
computed here. For i = 1,...,n, j are the components of the
solution to the tridiagonal linear system (1). The recursive form
for obtaining such a solution will be used in the following. For
compactness, the index j relative to the considered joint is
dropped. The sensitivity functions

© 0w,

) :=a_h; fori=l1,...,n; k=1,..n-1

are iteratively derived as:
oor(':) =% k=1,...,n-1

mn
oK.
coi(k)= ¥ Kmﬁ-aTm i=n-1,.,1; k=1,...,n-1
The overbarred expressions are obtained conversely from:
- 3v, 6(a,-qy)
ol e —21 . gM-0, k=2,..n1;
3
hy h;
M= (k)
Malbgh, @i @]
P L =1,...i2
] 2(h+hl1) h|1 i-1
6(q;-;) — ),
— 0y 1o T+ (K +hI1ah -2)
= (i-1) Ny
2(hi+hig) -hi Ky
(qi'qM) 2%
. h? '
Z)i(')=—'——, "")—o k =i+1,...,n-1;
2(hi+hy ) - hiKi
(fori=2,...,n-1)
aKn-1— +Z)(k)
-1
w_ M " k=1,..0-2
n ’ = yoeey il
2-K .,
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hm (2-Ky)

To complete the computation, the terms 9K;/ohy are needed:

—=0, k=1,..n-1;

ahk
oKi.4
h.h  ——
aKi i ahk
Shc T % k=1,...,i-2,
ko [2(hprhy ) - hy 4K
1.6 | ' o
rad ’_
i J
[
i. Joint 1
L
L
' //
L Joint 2
-1.6
0 ) ) 3 sec
Fig.1 - Initial Spline
4_]rad/.sec‘ i _
r /
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0 Fig.2 - Initial Velocity 3 sec
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0 Fig.3 - Initial Torque 3 sec

oK
K hi(Ki_1+hi_1—ahi_1 2 h.,@-K.)
R > e,
Mer 2(hrhy )-h Kl N [2(hieh)ohy K]
oK,
a_hk=o, k=i+1,...,n-1; fori=2,...,n-1.

Use of these equations in the proper order gives the required
sensitivities w;(k).
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