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placement, combined with the specification of a null-space
vector according to the chosen objective. Liégeois [6] recog-
nized this scheme to be the transposition of the Projected
Gradient (PG) method to the robot inverse kinematic prob-
lem. The major flaw of this optimization algorithm is that it
requires a considerable amount of computations. This limit
was pointed out by several authors who provided various
improvements. In particular, Klein and Huang |7] suggested
the use of a Gaussian climination technique within this ap-
proach; Khalil and Chevallercau [8] proposed a different
way for computing the pseudoinverse, while Dubey et al. [9]
implemented a faster numerical scheme for a seven-dof robot
with a spherical wrist.

An alternative and more efficient approach is presented in
this paper, based on the Reduced Gradient (RG) method for
nonlinear constrained optimization. The resulting scheme
solves redundancy in a natural way. In fact, only the extra
degrees of [reedom are used for optimization, while the re-
maining joint variables are in charge of the task satislaction.
This allows for large computational savings. In the follow-
ing, the redundancy resolution problem will be formally
revisited as an optimization problem. Comparison between
the RG and PG methods will be carried out both analytical-
ly and numerically. showing the inherent benefits of the
proposed approach.

2 Optimal redundancy resolution

For a redundant robot arm the optimal choice of joint con-
figurations can be defined by the lollowing nonlinear opti-
mization problem:

max H(g), s.L
q

flg—p=0. (3)

H (q) is a generic objective function, while the vector con-
straint in (3) follows from the direct kinematics of the arm.
Typically, this optimization problem cannot be solved in a
closed-form and an iterative process has to be devised. Start-
ing from an initial point ¢° in the joint space, an update is
defined as:

¢ =g +dg". @)

If ¢” is the actual arm configuration at some initial instant,
the iterates (4) generated by the chosen optimization al-
gorithm can be taken as reference values to be tracked by a
closed-loop robot controller.

When p is constant, the solution (3) is the optimal posture
q* for the specified end-effector location. The optimization
process will produce a sequence of intermediate joint config-
urations providing a self-motion of the arm. This is true as
long as the constraint is never violated.

Il'a time-varying p is specified, i.e. a trajectory for the end-
effector, (3) is transformed into a succession of subproblems
obtained by discretization of the end-effector path into a
sequence | p*). Letting dp* =p* "' —p*. the k-th subproblem
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becomes of the form:

max H (" +dg). st [ +dg—(p+dph)=0. (5
Any optimization algorithm can be used for solving (5). In
general, some iterations will be needed to find an exact
solution to each subproblem, so that use of this scheme in
real-time is possible only if the algorithm is extremely fast.
Therefore, dg* in (4) is usually chosen as the first iterate
computed toward the optimum of (5).

One way of determining dg* is given by the Projected
Gradient method [10], namely by projecting the gradient of
H (g) onto the tangent space of the constraint. Since R =
A(J) @ 2 (J7) holds, the displacement dg* is obtained as
the sum of two vectors belonging to these complementary
subspaces. The projection matrix in the null-space of the
Jacobian is P£1—J7J, where J* is the unique pseudoinverse
of J (Boullion and Odell, 1971). Hence, the PG update re-
sults in

qu —J dpk-f-“ ,,JTJ] [Z;H(qk) X (6)

where V, H=(0H/3¢)" and all matrices are evaluated at ¢~

The computations involved in (6) arc quite cumbersome
for redundant robots with several degrees of freedom. In fact,
the pseudoinverse of J is obtained in general via a singular
value decomposition technique. When the Jacobian has
full row rank. J* can be evaluated more directly as J'=
JT(JJ") ' However. this still requires a product of matrices
and a M x M matrix inversion. Moreover, the N x N projec-
tion matrix P has rank equal to (N — M) - the rank deficiency
being a considerable waste of information.

3 The reduced gradient method

An alternative method for solving (5) is based on the obser-
vation that the actual number of free variables in the prob-
lem is only N —M. Therefore, the search for an optimal
displacement dg* can be more efficiently performed within a
reduced space of joint variables. This leads to the Reduced
Gradient method, for which a preliminary assumption is
needed.

Nondegeneracy Assumption. Al every specilied p, there
exists a ¢ € R" such that f (g)=p, for which a partition can
be found

4=q,.q9,). q,eR”, g,eR"M,

yielding a nonsingular matrix

V. fla =0, (g).

This assumption restricts the admissible end-effector poses,
discarding those for which the Jacobian necessarily looses
full row rank. According to the partition of ¢, the Jacobian

matrix is decomposed into two blocks (J,, J,), so that the
differential relation (2) can be rewritten as

dp=J,(q dq,+J,(q) dg, . (7)















