
Robotics and Autonomous Systems 168 (2023) 104495

D

c
m
i
i
o

M
s
s
o
e
r
a

i
p
l
e
S
w
s
t

m
g

h
0

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Humanoidmotion generation in aworld of stairs
Michele Cipriano, Paolo Ferrari, Nicola Scianca ∗, Leonardo Lanari, Giuseppe Oriolo
ipartimento di Ingegneria Informatica, Automatica e Gestionale, Sapienza Università di Roma, Italy

a r t i c l e i n f o

Article history:
Received 14 July 2022
Received in revised form 16 March 2023
Accepted 18 July 2023
Available online 24 July 2023

Keywords:
Humanoid robot
Footstep Planning
Gait Generation
MPC
Uneven ground
Sensor-based

a b s t r a c t

Consider the problem of generating humanoid motions in an environment consisting of horizontal
patches located at different heights (world of stairs). To this end, the paper proposes an integrated
scheme which combines footstep planning and gait generation. In particular, footsteps are produced by
a randomized algorithm that guarantees both feasibility and quality of the plan according to a chosen
criterion; whereas for 3D gait generation we devise an ad hoc extension of the Intrinsically Stable MPC
scheme. In its basic form, the proposed scheme addresses the off-line case (known environments),
but a sensor-based adaptation is developed for the on-line case (unknown environments) based on
an anytime version of the footstep planner. In order to validate the proposed approach, we present
simulations in CoppeliaSim for the HRP-4 humanoid robot navigating scenarios of different complexity,
both in the on-line and off-line case.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Humanoid robots, thanks to their ability to perform legged lo-
omotion, are in principle capable of moving through 3D environ-
ents, for which complex motions might be required. These can

nclude stepping over or onto obstacles, climbing and descend-
ng stairs, moving through surfaces located at different height,
vercoming gaps, and so on.
Walking on uneven ground, however, is a challenging task.

anagement of the footstep locations is subject to several con-
traints that are completely absent in flat ground locomotion,
uch as the necessity to avoid placing the feet over the edge
f a stair step, or determining whether a given feature of the
nvironment should be considered useful surface onto which the
obot can step or simply regarded as an obstacle and avoided
ltogether.
Also from a control standpoint, walking on uneven ground

ntroduces complications in the dynamic model that are not
resent in flat ground locomotion. In fact, traditional humanoid
ocomotion is realized by approximating the dynamics using lin-
ar models, which are relatively accurate in many application.
traight up extending these models to 3D environments can lead,
ithout additional considerations, to nonlinearities which can
everely impact the performance and theoretical guarantees of
he controller.

In this paper we consider the problem of generating a hu-
anoid motion in a world of stairs, a specific kind of uneven
round consisting of horizontal patches located at different heig-

∗ Corresponding author.
E-mail address: scianca@diag.uniroma1.it (N. Scianca).
ttps://doi.org/10.1016/j.robot.2023.104495
921-8890/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a
hts. In order to successfully achieve this, it is necessary to plan
a footstep sequence and a whole body motion for the humanoid
realizing such sequence. We choose to approach the problem by
keeping these two stages separate. The reason for this choice is
that in this way we can better control the quality of the produced
motions. In fact, the quality of the footstep plan can be evaluated
based on global requirements, such as the number of steps taken,
or a different performance index. As for the quality of the motion
itself, this should be mainly addressed by its capability to satisfy
all the required constraints, in order to avoid falls and instabili-
ties. Maintaining a separation between planning and control also
greatly simplifies the tuning because the domain in which any
given parameter has effect is reduced.

Keeping planning and control separated is relatively straight-
forward when the planning is done off-line. However, it might
be more difficult to realize if one wants to allow for on-line
planning and replanning. In this paper, we will discuss an on-line
architecture that achieves this by having short planning stages
interleaved with the motion, in such a way that the planning can
fully utilize sensor information gathered by the robot as it moves,
and that the robot itself can take advantage of the on-line planner
to find more efficient and safe footstep sequences.

In the following, we present a review of the state-of-the-art
by separating the literature that is more focused on the planning
aspect from the literature about gait generation and humanoid
robot control. Subsequently, we will describe the contributions
of the paper, focusing on the improvements with respect to the
state-of-the-art.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.robot.2023.104495
https://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2023.104495&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:scianca@diag.uniroma1.it
https://doi.org/10.1016/j.robot.2023.104495
http://creativecommons.org/licenses/by/4.0/

M. Cipriano, P. Ferrari, N. Scianca et al. Robotics and Autonomous Systems 168 (2023) 104495

1

1

b

o
d
r
a
v
i
g
a
A
p
s
w
t

c
a
d
a

u
a
t
i
w
e
t

a
T
g
e
t
f

r
e
t
s
p
t

o
g
t
p
A
r
m
p
o
t
q
c
d
t
a
b
s
i

.1. Related work

.1.1. Footstep planning
Footstep planners can be subdivided in two broad categories

ased on whether they employ continuous or discrete techniques.
Planners based on continuous techniques compute sequences

f footsteps via optimization, treating their poses as continuous
ecision variables. Several methods in this category (e.g., [1–3])
ely on the implicit assumption that the ground is completely flat
nd, therefore, are not tailored for motion generation in 3D en-
ironments. Explicit account of 3D environment is instead made
n [4]: the ground surface is decomposed as a set of convex re-
ions (with the aid of a manual initialization phase) and footsteps
re placed by solving a Mixed-Integer Quadratic Program (MIQP).
more recent work [5] casts the MIQP into a l1-minimization

roblem: to reduce the computational complexity, a suboptimal
olution is found by considering only those regions that intersect
ith the reachable workspace of the feet along a pre-planned
rajectory for the floating base of the robot.

Planners based on discrete techniques find a solution by sear-
hing among particular sequences of footsteps. These sequences
re generated by concatenation of primitives. A primitive is a
isplacement between two consecutive footsteps, selected among
finite number of possible displacements from a catalogue.
To search among all possible sequences, one possibility is to

se a deterministic approach, which is typically represented by
variant of A*. Although this is possible and has been applied

o 3D environments [6], the approach suffers from two main
ssues: the performance strongly depends on the chosen heuristic,
hich is often difficult to design, and node expansion can be very
xpensive when using a large set of primitives, because it requires
he evaluation of all possible successors.

An alternative option is to use a randomized approach such as
variant of the Rapidly-exploring Random Tree (RRT) algorithm.
his has been applied in simple 3D environments [7], showing
ood performance both in planning and replanning for dynamic
nvironments. Clearly the disadvantage of RRT over a determinis-
ic approach is that it does not account, at least in its basic form,
or the quality of the footstep plan.

So far, it was assumed that a complete knowledge of the envi-
onment is available from the start, or that, in case of dynamic
nvironment, changes to the latter are readily communicated
o the planner. However, this is not often the case in practical
ituations. In fact, the environment could be unknown, either
artially or completely, and it must be reconstructed online with
he aid of on-board sensors.

Many existing methods exploit information acquired through
n-board sensors to identify planar surfaces that define safe re-
ions where the robot can step onto. Such environment represen-
ation was used in combination with different kinds of footstep
lanners, for example, based on simple geometric criteria [8],
* [9] and MIQP [10]. Other methods maintain a more complete
epresentation of the environment by employing an elevation
ap. Examples can be found in [11,12], where ARA*-based ap-
roaches are used to plan footsteps on uneven ground; the use
f on-line information is aimed at improving the plan during
he execution, and not for replanning/extension using newly ac-
uired information. To achieve more flexibility in the on-line
apabilities, [13] proposed to use adaptive sets of possible foot
isplacements in an A*-based planner, which proved to be effec-
ive in relatively simple scenarios. Alternatively, [14] proposed
two-stage method that first finds a collision-free path for a
ounding occupancy volume and then computes a compatible
equence of footsteps, which is a suitable technique as long as
t is not necessary to traverse narrow passages.
2

1.1.2. Gait generation
Once a footstep sequence has been planned, a whole-body

motion must be generated in order to let the robot move by
stepping over said sequence without falling. On flat ground, it is
common to enforce dynamic balance by requiring that the Zero
Moment Point (ZMP, the point with respect to which horizontal
components of the momentum of contact forces are zero) is al-
ways contained inside the convex hull of contact surfaces, i.e., the
support polygon. The ZMP cannot be controlled directly, but its
dynamics can be related to the position and acceleration of the
CoM. The traditional approach is to assume a constant CoM height
and a negligible derivative of the angular momentum around the
CoM, which leads to a Linear Inverted Pendulum (LIP) [15] model.
The LIP has seen widespread use, also thanks to the fact that it
allows to perform Model Predictive Control (MPC) using linear–
quadratic optimization techniques, enforcing balance by means
of constraints on the ZMP. However the constant CoM height
assumption limits its ability to be employed for motion on uneven
ground.

Traditionally, conditions on the ZMP implicitly assume that the
latter is located on the ground, making these conditions obviously
unsuitable to the 3D case where there is no univocally defined
ground surface. In this work, we adopt an extension [16] of the
basic criterion, in which the ZMP is instead a point in 3D space.
According to this modified criterion, the 3D ZMP must belong to
a pyramidal region whose extent is defined by the position of the
Center of Mass (CoM) and the contact surfaces.

By letting the CoM height be a variable quantity, the CoM-ZMP
relation takes the form of a Variable Height Inverted Pendulum
(VH-IP) [17], where the stiffness of the pendulum itself is a
control input. This model is nonlinear, which is usually a problem
when trying to perform fast MPC, unless further approximations
are introduced. However, it is possible to restrict the allowed
trajectories of the CoM in such a way that the dynamics are linear
and 3D motions are allowed [18,19]. To do this, the pendulum
stiffness is picked a priori, and the ZMP/CoM trajectories are
generated in such a way to satisfy a linear relation.

A common problem in the field of humanoid gait generation
is given by the fact that humanoid dynamics are unstable. This is
seen in the LIP by the presence of an unstable mode, and signifies
that even if one were to determine a gait such that the ZMP
trajectory is always within the appropriate bounds, this might
still not be enough, as the associated CoM trajectory might be
divergent, rendering the resulting motion infeasible in practice.
This issue is crucial and must be accounted for when designing
the gait generation module, by providing appropriate guarantees
against the divergence of the generated trajectories.

1.2. Contribution and paper organization

In this paper, we consider planning both in off-line situations,
in which the environment is completely known, and on-line
situations, in which the geometry of the environment is not
known in advance and must be reconstructed by the robot itself
during motion using on-board sensors. In this case, planning and
execution are interdependent: the former clearly requires the
latter in order to determine where to place the footsteps, but
the converse is also true, as the real-time motion of the robot
is necessary to acquire information about the environment.

With respect to the previously reviewed contributions, our
work improves the following points:

• the proposed footstep planner finds sequences of footsteps
that are optimal with respect to a chosen optimality cri-
terion, whereas most of the literature that makes use of
randomized methods does not in any way consider the

M. Cipriano, P. Ferrari, N. Scianca et al. Robotics and Autonomous Systems 168 (2023) 104495

v
r
v

a
o
t
Z
a
t

p
p
c
t
m
t
S
p
S
v
b
p
a
f

2

i

o

e
r
r
h
t
b

Fig. 1. An instance of the considered problem. The robot must reach the
goal region (in yellow) by traversing a world of stairs. Patches that are not
isible correspond to infinitely deep holes or trenches. For interpretation of the
eferences to colour in this figure caption, the reader is referred to the web
ersion of this article.

quality of the produced sequences [7]; we do this by using
a planner based on RRT*, which is a probabilistic method
with guarantees of asymptotic convergence to an optimal
solution;
• in our formulation, optimality does not significantly com-

promise performance, unlike techniques that make use of
A*-based algorithms [9,11,13], or others that make use of
quadratic optimization [4];
• we propose a scheme capable of working both with off-line

planning, in known environments, and in on-line situations;
• to generate a gait that realizes the footstep plan we adopt

and improve our Intrinsically Stable MPC (IS-MPC) scheme
[20]. IS-MPC incorporates an explicit stability constraint in
order to deal with the instability in the humanoid robot
dynamics. Along with the stability constraint, we enforce a
ZMP position constraint and a ZMP velocity constraint, and
show that the combination of all the imposed constraints
guarantees satisfaction of the balance condition in 3D.

Compared to our previous work on the subject, [19], the main
dditions presented in this paper consist of the introduction of
ptimality criteria in the planner, the extension to on-line situa-
ions with the use of on-board sensors, and the inclusion of the
MP velocity constraint in the IS-MPC. We validate the proposed
rchitectures for the off-line and on-line case via simulations on
he HRP-4 humanoid robot in scenarios of different complexity.

The paper is structured as follows. Section 2 formulates the
roblem both in the off-line and in the on-line case. Section 3
resents in detail the off-line case by discussing its general ar-
hitecture in Section 3.1, describing the footstep planner and
he scenarios used for testing in Section 3.2, the gait generation
odule together with theoretical developments in Section 3.3,

he localization module in Section 3.4 and the simulations in
ection 3.5. Section 4 extends the work to the on-line case,
resenting its architecture in Section 4.1, the mapping module in
ection 4.2, the sensor-based footstep planner in Section 4.3, the
isual task generation module in Section 4.4 and simulations in
oth static and dynamic environments in Section 4.5. Section 5
uts the paper in perspective with respect to the state of the
rt, and Section 6 concludes the paper with mentions to possible
uture work.

. Problem formulation

In the situation of interest (Fig. 1), a humanoid robot moves
n a world of stairs, a specific kind of uneven ground consisting
 e

3

of horizontal patches that (i) are located at different heights, and
(ii) constitute a partition1 of R2. Depending on its elevation with
respect to the neighboring areas, a patch may be accessible for the
humanoid to climb on from an appropriate direction; otherwise,
it actually represents an obstacle to be avoided. Any accessible
patch may be stepped on, stepped over or even circumvented,
depending on the generated motion.

The mission of the robot is to reach a certain goal region
G, which will belong in general to a single patch (Fig. 1). In
particular, this locomotion task is accomplished as soon as the
robot places a footstep inside G.

We want to devise a complete framework enabling the hu-
manoid to plan and execute a motion to fulfill the assigned
task in the world of stairs. This requires addressing two fun-
damental problems: finding a 3D footstep plan and generating
a variable-height gait that is consistent with such plan. Foot-
step planning consists in finding both footstep placements and
swing foot trajectories between them; overall, the footstep plan
must be feasible (in a sense to be formally defined later) for
the humanoid, given the characteristics of the environment. Gait
generation consists in finding a CoM trajectory which realizes the
footstep plan while guaranteeing dynamic balance of the robot at
all time instants. From the trajectories of the CoM and the feet, a
whole-body motion may be computed using inverse kinematics
methods.

In particular, we will address two versions of the above prob-
lem, henceforth referred to as the off-line and on-line case. In
the first, the geometry of the environment is completely known
in advance, while in the second it is reconstructed by the robot
itself as it moves. In the following we describe the architectures
designed for the off-line and on-line case supposing that the
environment is static. However, we will also show that the latter
can be used effectively in dynamic environments, thanks to its
fast replanning capabilities.

The problem will be solved under the following assumptions.

A1 Information about the environment is maintained in an
elevation map Mz , i.e., a 2.5D grid map of equally-sized cells
that, whenever needed, can be queried as z = Mz(x, y), to
provide the height of the ground at the cell having coordi-
nates (x, y) [21]. In the off-line case, Mz is available a priori,
while in the on-line case it must be incrementally built by
the humanoid based on sensory information.

A2 The humanoid is equipped with a head-mounted RGB-D
camera, which is used for localization in both the off-line
and on-line cases, and also updating the elevation map Mz
in the latter.

A3 The humanoid is endowed with a localization module which
provides an estimate of the camera pose at each time in-
stant, based on information gathered by the RGB-D camera.
This is used in both the off-line and on-line cases.

A4 The friction between the robot feet and the ground is suffi-
ciently large to avoid slipping at the contact surfaces.2

In the off-line case, a complete footstep plan leading to the
goal region G will be computed before the humanoid starts to

1 This implies that the whole volume of space below any horizontal patch is
ccupied.
2 Since our objective is to generate walking gaits in a world of stairs, we
xpect that the horizontal components of the ground reaction forces will be
ather limited with respect to the vertical components, making this assumption
easonable. To support this claim, we explicitly verified that Assumption A4
olds in our simulations, see the related comment towards the end of Sec-
ion 3.5. Nevertheless, the constraint that ground reaction forces must always
e contained in the friction cone can be incorporated in our formulation; this
xtension would be required in the case of non-horizontal contact surfaces.

M. Cipriano, P. Ferrari, N. Scianca et al. Robotics and Autonomous Systems 168 (2023) 104495

m
d

p

Fig. 2. Block scheme of the proposed solution approach for the off-line case.
f
I

S

w

S

t
e
f
s
f
s
t

f
S
h
t
w
d
s
i
c

i
m
o
p
p
F
g

ove. In the on-line case, the footstep plan will instead be up-
ated during motion, based on new information added to Mz .
In the following, we first address in full detail the off-line

case and then proceed to extending the proposed approach to the
on-line case.

3. The off-line case

We start this section by describing the general structure of
the proposed method. Then we will describe in detail its main
components, i.e., the footstep planner and the gait generation
scheme based on IS-MPC. Some simulation results will also be
presented.

3.1. General architecture

To solve the described problem in the off-line case, we adopt
the architecture shown in Fig. 2, in which the main compo-
nents are the footstep planning, gait generation and localization
modules.

In the following, we denote by f = (xf , yf , zf , θf) the pose of
a certain footstep, with xf , yf , zf representing the coordinates of
a representative point, henceforth collectively denoted as pf , and
θf its orientation.3 Moreover, a pair (f swg, f sup) defines a stance,
i.e., the feet poses during a double support phase after which
a step is performed by moving the swing foot from f swg while
keeping the support foot at f sup.

The footstep planner receives in input the initial humanoid
stance4 (f iniswg, f

ini
sup) at t = 0, the goal region G, a time budget

∆T , and the elevation map Mz representing the environment.
The time budget represents the time given to the planner to

find a solution. When this time runs over, the algorithm either
returns a solution or ends with a failure. Explicitly specifying
this time as input to the algorithm allows us to evaluate the
performance of the planning module, but also proves to be useful
for the extension to the on-line case, where the time budget is

3 To represent the footstep orientation we only use the yaw angle, as roll and
itch are always zero thanks to the piecewise-horizontal ground assumption.
4 The initial support foot can be chosen arbitrarily.
4

set equal to the duration of a step in order to meet the real-time
requirement.

The planner works off-line to find, within ∆T , an optimal
ootstep plan P∗ = {Sf , Sϕ} leading to the desired goal region G.
n P∗, we denote by

f = {f 1, . . . , f n}

the sequence of footstep placements, whose generic element f j is
the pose of the jth footstep, with f 1 = f iniswg and f 2 = f inisup. Also,
e denote by

ϕ = {ϕ
1, . . . ,ϕn−2

}

he sequence of associated swing foot trajectories, whose generic
lement ϕj is the jth step, i.e., the trajectory leading the foot from
j to f j+2. Its duration T j

s is split in T j
ss and T j

ds, respectively the
ingle and double support phases. The timestamp of a generic
ootstep indicates the beginning of the jth step, i.e., of the jth
ingle support phase; thus, f j has an associated timestamp t js =
j−1
s + T j−1

s , with t1s = 0.
Once the footstep plan has been generated, the sequence of

ootsteps Sf is sent to a gait generator based on Intrinsically
table MPC (IS-MPC), which computes in real time a variable-
eight CoM trajectory that is compatible with Sf and guaranteed
o be stable (i.e., bounded with respect to the ZMP). In particular,
e denote by pr

c the current reference position of the CoM pro-
uced by IS-MPC. Also, let ϕr be the current reference pose of the
wing foot, obtained by sampling the appropriate subtrajectory
n Sϕ . Then, pr

c and ϕr are passed to a kinematic controller which
omputes the joint commands q̇r for the robot.
Visual information, gathered by the head-mounted camera

n the form of RGB-D images, is provided to the localization
odule, which continuously updates the estimate ŝ of the pose
f the camera frame. From this, and using joint encoder data, it is
ossible to obtain estimates for the CoM position and swing foot
ose (p̂c and ϕ̂, respectively) through kinematic computations.
inally, these estimates are used to provide feedback to both the
ait generation and kinematic control modules.

M. Cipriano, P. Ferrari, N. Scianca et al. Robotics and Autonomous Systems 168 (2023) 104495

v

v
t
s

t
f
f
l
i
s

r
p
s
a

3

f

s
l

Fig. 3. An example catalogue U of primitives, containing a finite set of landings
for the swing foot with respect to the left or right support foot.

3.2. Footstep planning

The input data for this module are the initial robot stance
(f iniswg, f

ini
sup), the goal region G, the time budget ∆T and the eleva-

tion map Mz . Given an optimality criterion, the footstep planner
returns the best footstep plan P∗ leading to G found within ∆T .

The planning algorithm builds a tree T , where each vertex
= (f swg, f sup) specifies a stance, and an edge between two

ertexes v and v′ = (f ′swg = f sup, f
′

sup) indicates a step between
he two stances, i.e., a collision-free trajectory such that one foot
wings from f swg to f ′sup and the other is fixed at f sup.
The expansion process makes use of a catalogue U of primi-

ives, which allows to generate new footsteps by selecting them
rom a finite set of displacements with respect to the support
oot. The catalogue is split in two subsets, one for the case of
eft support and the other for the case of right support; at each
nstant, the appropriate subset is used. An example catalogue is
hown in Fig. 3.
Each branch joining the root of the tree to a generic vertex v

epresents a footstep plan P . The sequences Sf and Sϕ for this
lan are respectively obtained by taking along the branch the
upport foot poses of all vertexes and the steps corresponding to
ll edges.

.2.1. Footstep feasibility
Footstep f j = (xjf , y

j
f , z

j
f , θ

j
f) ∈ Sf is feasible if it satisfies the

ollowing requirements:

R1 f j is fully in contact within a single horizontal patch. To
guarantee this, each cell of Mz belonging to, or overlapping
with, the footprint at f j must have the same height z jf . In
practice, one typically uses an enlarged footprint to ensure
that this requirement will still be satisfied in the presence
of small positioning errors.

R2 f j is kinematically admissible from the previous footstep
f j−1 (this is actually stance feasibility). The admissible region
(a submanifold of R3

× SO(2)) for placing f j next to f j−1 is
defined by the following constraints:

−

(
∆−x

∆−

)
≤ RT

j−1

(
xjf − xj−1f
j j−1

)
±

(
0
ℓ

)
≤

(
∆+x

∆+

)
(1)
y yf − yf y o

5

Fig. 4. The 3D admissible region identified by the first two kinematic constraints
of requirement R2, i.e., Eqs. (1)–(2). Footstep orientation is not represented.

−∆−z ≤ z jf − z j−1f ≤ ∆+z (2)

−∆−θ ≤ θ
j
f − θ

j−1
f ≤ ∆+θ . (3)

Here, Rj−1 is the planar rotation matrix associated with
θ
j−1
f and the ∆ symbols are lower and upper maximum
increments, see Fig. 4.

R3 f j is reachable from f j−2 through a collision-free motion
(this is actually step feasibility). Since information about the
whole-body motion of the robot is not yet available during
footstep planning (it will only be defined in the subsequent
gait generation phase), this requirement can only be tested
conservatively. In particular, we say that R3 is satisfied if (i)
there exist a collision-free swing foot trajectory ϕj−2 from
f j−2 to f j generated by the engine of Section 3.2.3, and (ii) a
suitable volume B accounting for the maximum occupancy
of the humanoid upper body at stance (f j−1, f j) is collision-
free. More precisely, B is a vertical cylinder whose base has
radius rb and center at (xm, ym, zm + zb), where xm, ym, zm
are the coordinates of the midpointm between the footsteps
and zb is a vertical offset representing the average distance
between the ground and the hip (Fig. 5). Note that any
nonzero height can be used for the cylinder in view of the
world of stairs assumption, which implies that B is collision-
free5 if each cell of Mz belonging to, or overlapping with, its
ground projection has height smaller than zm + zb.

3.2.2. Vertex identity, neighbors and cost
The identity of a vertex v = (f swg, f sup) indicates whether f swg

refers to the left (L) or the right (R) foot:

id(v) =
{
L if id(vparent) = R
R if id(vparent) = L,

where vparent is the parent vertex of v. This definition deter-
mines the identity of each vertex, once the identity of the root
is assigned.

We also define the set of neighbors of v = (f swg, f sup)

N (v) = {v′ = (f ′swg, f
′

sup) ∈ T : γ (f sup, f
′

sup) ≤ rneigh}

5 Even though the volume for checking the upper body collision is cho-
en conservatively, this does not guarantee obstacle avoidance because the
ower body is not considered. However, whole-body collision avoidance can be
btained by including appropriate constraints in the kinematic controller [22].

M. Cipriano, P. Ferrari, N. Scianca et al. Robotics and Autonomous Systems 168 (2023) 104495

r
w
t
v

w

γ

h

c

t

i
c

l

d
a
v

s

a
f
c
t
c

g
e
p
t
e
l

g
v

t
t
s

t
v
v
v

r

c

Fig. 5. Visual representation of the process for checking requirement R3. The
ed cylinder accounts for the maximum occupancy of the humanoid upper body,
hile the yellow line represents the swing foot trajectory. For interpretation of
he references to colour in this figure caption, the reader is referred to the web
ersion of this article.

here rneigh is a threshold distance and

(f , f ′) = ∥pf − p′f ∥ + kγ |θf − θ ′f | (4)

is a footstep-to-footstep metric, with kγ ≥ 0.
Assume that the edge between two vertexes va and vb of T

as a cost l(va, vb). The cost of a vertex v is defined as

(v) = c(vparent)+ l(vparent, v)

and represents the cost of reaching v from the root of T . Then,
he cost of a plan P ending at a vertex v is c(P) = c(v).

In particular, we will consider three possibilities for the cost
of an edge. The first is

l1(va, vb) = 1, (5)

for all edges in T . The corresponding vertex cost will be denoted
by c1(v) and represents the length of the corresponding plan in
terms of number of edges (i.e., steps).

The second edge cost represents the net height variation of the
swing foot during a step:

l2(va, vb) = |zbf ,sup − zaf ,swg|, (6)

where zaf ,swg and zbf ,sup are the z-component of, respectively, the
swing foot at va and the support foot at vb. The correspond-
ng vertex cost will be denoted by c2(v) and represents the
umulative height variation along the corresponding plan.
Finally, we also consider as edge cost

3(va, vb) =
1

σ (f bsup)
, (7)

where σ (f bsup) is the clearance of the support foot f bsup at vb,
efined as the distance between the representative point of f bsup
nd the closest point in Mz w.r.t. which the absolute height
ariation is larger than max{∆−z ,∆

+
z }.

6 This cost penalizes steps

6 This information may be precomputed from the elevation map Mz and
stored in a clearance map.
 (

6

that bring the swing foot too close to a drop or to a vertical sur-
face leading to a contiguous higher patch, while still allowing to
approach accessible patches such as staircases. The corresponding
vertex cost, denoted by c3(v), represents the cumulative inverse
clearance along the corresponding plan.

Other kinds of cost functions can be considered. For exam-
ple, one could penalize unnecessary rotations of the next foot-
step with respect to the support footstep in order to obtain
smoother plans. In general, it may be advisable to use a weighted
combination of several optimality criteria for better practical
performance.

3.2.3. Algorithm
At the beginning, T is rooted at (f iniswg, f

ini
sup), the initial stance of

the humanoid. Then, T is expanded using an RRT*-like strategy.
The generic iteration consists of: selecting a vertex for expansion,
generating a candidate vertex, choosing a parent for the new
vertex and rewiring the tree. These individual steps are described
in the following, see also Fig. 6.

Selecting a vertex for expansion: A point prand
xy is randomly

elected on the xy-plane, and the vertex vnear that is closest to
prand
xy is identified. To this end, we define a vertex-to-point metric

as

µ(v, pxy) = ∥mxy(v)− pxy∥ + kµ|ψ(v, pxy)|,

where mxy(v) represents the planar position of the midpoint
between the feet at stance v, kµ is a positive scalar, and ψ(v, pxy)
is the angle between the robot sagittal axis (whose orientation is
the average of the orientations of the two footsteps) and the line
joining mxy to pxy. ◀

Generating a candidate vertex: After identifying the vertex
vnear = (f nearswg , f

near
sup), a candidate footstep is first generated using

the catalogue U (see Fig. 3). In particular, we set the support
foot to f nearsup and randomly select one element from the subset
of U associated to the identity of vnear, which may be L (left)
or R (right). Note that all elements of U are chosen so as to
utomatically satisfy conditions (1)–(3) of requirement R2. Call
cand
sup the chosen candidate footstep. The z coordinate to be asso-
iated to the footstep f candsup is then retrieved from Mz , and both
he requirement R1 and the last condition (2) of R2 can now be
hecked.
To test the last requirement R3, we invoke an engine that

enerates a swing foot trajectory ϕnear from f nearswg to f candsup . Such
ngine uses a parameterized trajectory which, given the end-
oints, can be deformed7 by varying the maximum height h along
he motion. Using the elevation map and increments of ∆h, the
ngine tries growing values of h in a certain range [hmin, hmax

]

ooking for a collision-free trajectory.
If all requirements have been satisfied, a candidate vertex is

enerated as vcand = (f candswg , f
cand
sup), with f candswg = f nearsup ; however,

cand is not added to T because the planner first needs to identify
he best parent for it. If any requirement among R1–R3 is violated,
he current expansion attempt is aborted and a new iteration is
tarted. ◀
Choosing a parent: Although vcand was generated from vnear,

here might be a different vertex in the tree that leads to the same
ertex with a lower cost. To find it, the planner checks for each
ertex v′ = (f ′swg, f

′

sup) ∈ N (vcand) whether setting v′ as parent of
cand satisfies requirements R2-R3, and whether this connection
educes the cost of vcand, that is

(v′)+ l(v′, vcand) < c(vnear)+ l(vnear, vcand).

7 As a deformable trajectory we used a polynomial, but other choices
e.g., B-splines and Bezier curves) are possible.

M. Cipriano, P. Ferrari, N. Scianca et al. Robotics and Autonomous Systems 168 (2023) 104495

v

Fig. 6. The four steps of a generic iteration of the footstep planner. From left to right: selecting a vertex for expansion, generating a candidate vertex, choosing a
parent, rewiring.
The vertex vmin
= (f min

swg, f
min
sup) that allows to reach vcand with

minimum cost is chosen as its parent. If vmin
= vnear, then vcand

can be added to the tree together with the edge joining it to
vnear. However, if a different parent vmin

̸= vnear is chosen, the
candidate vertex vcand must be modified by relocating its swing
footstep to the support footstep of vmin. To this end, a new vertex
vnew = (f newswg , f

new
sup) with f newswg = f min

sup and f newsup = f candsup is
generated and added to T as child of vmin. The edge between vmin

and vnew corresponds to the swing foot trajectory ϕmin. ◀
Rewiring: This final step checks whether vnew allows to reach

with a lower cost some vertex already in T , and updates the tree
accordingly. In particular, for each v′ = (f ′swg, f

′

sup) ∈ N (vnew), the
procedure checks whether setting v′ as a child of vnew satisfies
requirements R2-R3, and whether this connection reduces the
cost of v′, that is

c(vnew)+ l(vnew, v′) < c(v′).

If this is the case, v′ is modified (similarly to what was done when
choosing a parent) by relocating its swing footstep to f newsup , and
then reconnected to T as a child of vnew. The edge between vnew
and v′ corresponds to the swing foot trajectory ϕnew. Finally, for
each child v′′ = (f ′′swg, f

′′

sup) of v
′, the swing foot trajectory ϕ′ from

the relocated f ′swg to f ′′sup is generated and the edge between v′

and v′′ is accordingly updated.8
Note that, although N (vnew) can contain ancestors of vnew, no

cycle will be generated by rewiring. In fact, it can be easily shown
that any ancestor of vnew will have a cost lower or equal than
c(vnew), so that it will never be set as its child. ◀

When the assigned time budget ∆T runs out, tree expansion
is stopped. The set Vgoal of vertexes v such that pf ,sup ∈ G is
retrieved. The vertex v∗ with minimum cost is selected as

v∗ = argmin
v∈Vgoal

c(v) (8)

and the corresponding footstep plan P∗ is retrieved from the
branch of T joining the root to v∗.

Clearly, the larger the time budget, the better the quality
of the obtained footstep plan. We conjecture that our planner
inherits the asymptotic optimality property of the general RRT*
algorithm [23], although we do not have a formal proof yet.

3.2.4. Planning results
To assess the performance of the proposed footstep planner,

we performed a campaign of planning experiments through our
C++ implementation on an Intel Core i7-8700K CPU running at

8 In case the engine fails to find such trajectory, the subtree rooted at vertex
′′ (including v′′ itself) is simply removed from T .
7

3.7 GHz. The tree constructed by the planner is stored in a k-
d tree structure [24], which allows to efficiently perform search
and insertion operations. The used robot is HRP-4, a 1.5 m tall
humanoid with 34 degrees of freedom by Kawada Robotics.

We considered the five different scenarios (see Fig. 7) of dif-
ferent complexity described in the following.

• Rod. A thin straight obstacle, which does not provide a
large enough surface to step on, must be overcome before
ascending and descending a staircase.
• Ditch. A ditch can only be entered from the left and exited

from the right, because the platform in the middle of it is
too low to be accessed directly.
• Corridor. A corridor must be exited before ascending and

descending a staircase.
• Maze. A maze must be navigated, including ascending and

descending a staircase, to reach the goal region.
• Spacious. The goal region can be reached either by traversing

a flat ground or ascending and descending a staircase.

The height of each step is 8 cm for all scenarios except Ditch
where the height is 10 cm.

In all scenarios, the robot has to reach a circular goal region of
radius 0.5 m. The catalogue of primitives U is generated by listing
all possible combinations of the following parameters: longitu-
dinal displacement {−0.08, 0.00, 0.08, 0.16, 0.2} [m], lateral dis-
placement {0.20, 0.30} [m] for right support and {−0.20,−0.30}
[m] for left support, angular displacement {0.00, 0.40} [rad] for
right support and {0.00,−0.40} [rad] for left support (see Fig. 3).
In the off-line footstep planner we have set kµ = 1, kγ = 0,
hmin = 0.02 m, hmax = 0.24 m, ∆h = 0.02 m, ∆−x = 0.08 m,
∆+x = 0.24 m, ∆−y = 0.07 m, ∆+y = 0.07 m, ∆−z = 0.16 m,
∆+z = 0.16 m, ∆−θ = 0.3 rad, ∆+θ = 0.3 rad, ℓ = 0.25 m,
zb = 0.3 m, hb = 1.2 m, and rb = 0.25 m. The elevation map Mz
has a resolution of 0.02 m. The three quality criteria described in
Section 3.2.2 are considered in each scenario.

Tables 1–3 show the performance of the planner in each sce-
nario, for different values of the time budget, when choosing the
three optimality criteria described in Section 3.2.2, respectively.
In each table, each row reports the results obtained over 100 runs
on a combination of scenario and time budget. A total of six per-
formance indexes are tracked and averaged over the total number
of successful runs. In particular, a run is considered unsuccessful
if the planner terminates without placing any footstep in the goal
region. Note that all unsuccessful cases are due to inappropriate
time budget. Examination of the table confirms that increasing
the time budget both solves this problem by ensuring a high
success rate, and improves the quality of the plan in terms of the
average cost (Avg Cost). This result supports our conjecture about
the asymptotic optimality of the proposed footstep planner.

M. Cipriano, P. Ferrari, N. Scianca et al. Robotics and Autonomous Systems 168 (2023) 104495

s
i
a
D
c
r
t
o
S
m
t
a
m
i
w

Fig. 7. The considered scenarios, from left to right: Rod, Ditch, Corridor, Maze, Spacious.
Fig. 8. Examples of footstep plans found in the scenarios Rod, Ditch, Corridor and Maze, respectively, when minimizing the number of steps.
Fig. 9. Examples of footstep plans found in the scenario Spacious when minimizing the number of steps, minimizing the height variation and maximizing the
clearance, respectively.
Table 1
Performance of the off-line footstep planner when minimizing the number of steps.
Scenario Time budget

[s]
Avg cost Min cost Max cost Iters Tree size Successes

Rod

1 22.938 15.000 35.000 6393.8 2948.7 96/100
5 19.810 15.000 28.000 21537.8 9863.0 100/100
10 18.050 15.000 25.000 34758.2 15705.5 100/100
25 16.600 15.000 24.000 62862.0 27944.5 100/100

Ditch

1 40.364 30.000 51.000 5966.7 2119.5 33/100
5 36.450 27.000 47.000 18632.4 7100.4 100/100
10 33.420 25.000 42.000 29195.2 11503.3 100/100
25 30.940 25.000 38.000 52090.5 20755.6 100/100

Corridor

1 57.823 51.000 68.000 6131.4 1880.7 17/100
5 60.213 46.000 86.000 21589.9 5068.1 89/100
10 55.687 42.000 81.000 36426.8 8068.1 99/100
25 49.700 42.000 60.000 70242.7 14415.3 100/100

Maze

1 74.773 62.000 89.000 5813.2 2264.9 22/100
5 70.949 54.000 94.000 21482.0 8695.5 99/100
10 65.520 53.000 80.000 35986.2 15327.2 100/100
25 58.240 50.000 76.000 67507.5 28891.7 100/100

Spacious

1 47.156 37.000 68.000 5749.5 2971.2 96/100
5 41.700 35.000 55.000 20899.7 10630.8 100/100
10 39.290 33.000 55.000 34665.6 17412.8 100/100
25 36.570 31.000 46.000 65308.0 31889.3 100/100
3

s
t
s
m

a
i
T
p

o
m
t

Fig. 8 shows the plans generated by minimizing the number of
teps in the scenarios Rod, Ditch, Corridor and Maze. In particular,
n Rod the plan allow to correctly pass over the thin obstacle
nd walk the stairway, eventually reaching the goal region; in
itch the plan reaches the left patch before traversing the low
entral patches; in Corridor the plan manages to exit the first
oom, reaching the stairway and avoiding the obstacles; in Maze
he plan takes the left path among the two available, which is the
ptimal one. Fig. 9 compares the plans generated in the scenario
pacious for each considered cost function. In particular, when
inimizing the number of steps the plan goes straight towards

he goal region; when minimizing the height variation, the plan
voids the stairway; when maximizing the clearance the plan first
oves away from the wall placed on the left flank of the robot at

ts starting configuration, and then moves towards the goal region
hile keeping the other obstacles at a safe distance.
8

.3. Gait generation via IS-MPC

The gait generation module receives the planned footstep
equence Sf as input, and it is in charge of producing a CoM
rajectory that the robot can safely track in order to step over
aid footstep sequence. Along the entire motion, dynamic balance
ust be maintained.
On flat ground, it is common to ensure dynamic balance as

geometric criterion, by requiring that the ZMP must always be
nside the convex hull of contact surfaces, i.e., the support polygon.
raditionally, the ZMP is assumed to be located on the ground
lane, which is uniquely defined when the environment is flat.
In non-flat environments, there is no unique ground surface

n which the ZMP can be assumed to be. However, the afore-
entioned criterion can be extended to these cases by allowing

he ZMP to move in 3D [16]. The balance criterion is satisfied as

M. Cipriano, P. Ferrari, N. Scianca et al. Robotics and Autonomous Systems 168 (2023) 104495

t
p
t

Z
r
b
w
c
p
o
b

p
F
p
c

s

Table 2
Performance of the off-line footstep planner when minimizing the height variation.
Scenario Time budget

[s]
Avg cost Min cost Max cost Iters Tree size Successes

Rod

1 0.450 0.420 0.480 6634.0 3186.5 96/100
5 0.431 0.420 0.480 20559.8 9883.2 100/100
10 0.425 0.420 0.480 31652.4 15140.0 100/100
25 0.423 0.420 0.480 53598.0 25297.7 100/100

Ditch

1 0.640 0.640 0.640 6218.1 2294.4 34/100
5 0.640 0.640 0.640 17250.0 6750.3 100/100
10 0.640 0.640 0.640 25333.2 10171.4 100/100
25 0.640 0.640 0.640 42419.5 17402.7 100/100

Corridor

1 0.400 0.400 0.400 6437.1 2035.2 26/100
5 0.400 0.400 0.400 20834.9 5288.8 92/100
10 0.400 0.400 0.400 33405.4 8035.9 99/100
25 0.400 0.400 0.400 61279.5 13747.2 100/100

Maze

1 0.480 0.480 0.480 6170.1 2455.4 24/100
5 0.480 0.480 0.480 20751.2 8991.1 99/100
10 0.480 0.480 0.480 33049.3 14808.7 100/100
25 0.480 0.480 0.480 57441.5 26592.6 100/100

Spacious

1 0.346 0.000 0.400 5961.4 3254.5 97/100
5 0.248 0.000 0.400 20470.8 11047.0 100/100
10 0.212 0.000 0.400 32485.0 17641.2 100/100
25 0.168 0.000 0.400 57866.5 30630.2 100/100
Table 3
Performance of the off-line footstep planner when maximizing the minimum clearance.
Scenario Time budget

[s]
Avg cost Min cost Max cost Iters Tree size Successes

Rod

1 30.060 20.556 58.287 4925.5 2143.6 92/100
5 25.480 18.266 42.102 16219.7 6785.2 100/100
10 23.142 17.586 36.173 26342.3 10602.8 100/100
25 20.331 17.627 27.902 48444.6 18275.1 100/100

Ditch

1 78.095 58.308 98.540 4200.6 1446.2 10/100
5 72.377 54.725 99.004 13681.3 4456.7 96/100
10 64.840 49.282 83.708 21817.8 7302.6 100/100
25 55.466 44.438 71.903 39632.2 13139.3 100/100

Corridor

1 94.234 72.764 112.454 4538.3 1376.9 12/100
5 97.323 73.304 139.995 15477.9 3418.1 82/100
10 88.866 66.266 139.700 26354.5 5314.1 98/100
25 78.178 64.615 102.587 52076.3 9236.0 100/100

Maze

1 107.971 95.340 127.139 4374.8 1744.1 8/100
5 106.620 81.630 149.408 16037.0 5919.7 88/100
10 99.264 73.844 133.529 27154.9 10394.0 100/100
25 84.433 65.234 119.569 52035.2 19752.6 100/100

Spacious

1 52.476 32.652 85.874 4467.9 2286.9 97/100
5 47.138 30.160 70.100 15879.2 7689.2 100/100
10 43.535 28.001 66.777 26325.6 12425.1 100/100
25 38.048 27.357 57.544 49981.9 22038.9 100/100
long as the ZMP is inside a three-dimensional support region Z
hat takes the shape of a pyramid (see Fig. 10). The vertex of this
yramid is the robot CoM, and the edges are the lines connecting
he CoM to the vertexes of the convex hull of the contact surfaces.

In MPC, dynamic balance is enforced via constraints on the
MP position. However, the 3D support region Z cannot be di-
ectly employed to enforce a ZMP constraint, because this would
e nonlinear, meaning that the resulting optimization problem
ould not be in a standard linear–quadratic formulation. The
ause of this nonlinearity is given by the fact that the vertex of the
yramid Z is the CoM. Since both the ZMP and the CoM depend
n the decision variables of the QP, this would result in product
etween the decision variables themselves.
In order to avoid this, we will define a smaller region, inde-

endent of the CoM position, where the ZMP is allowed to be.
urthermore, we will prove that this region conservatively ap-
roximates the actual support region Z , and thus that the balance
ondition is always satisfied under the imposed constraints.
In this subsection we will describe the MPC gait generation

cheme that is used in the proposed formulation. In particular,
9

we will derive the prediction model and define the constraints
that ensure stability and dynamic balance. Finally, we will state
the QP problem to be solved at each iteration, and give a sketch
of the complete algorithm.

3.3.1. Prediction model
Control of the ZMP is achieved using a dynamic model relating

the position of the latter to the position and acceleration of the
CoM. This dynamic model can be derived by balancing moments
on the humanoid as a whole, and assuming that the rate of change
of angular momentum around the CoM can be neglected. With
this in mind, denoting the CoM as pc = (xc, yc, zc) and the ZMP
as pz = (xz, yz, zz), we get

(zc − zz)ẍc = (xc − xz)(z̈c − g)
(zc − zz)ÿc = (yc − yz)(z̈c − g),

(9)

where g is the gravity acceleration.
This model exhibits a nonlinear coupling between the vertical

and the horizontal components of pc and p̈c . On flat ground,
this nonlinearity is usually handled by assuming a constant CoM

M. Cipriano, P. Ferrari, N. Scianca et al. Robotics and Autonomous Systems 168 (2023) 104495

h
t
i
s

D
t

p

a

P
|

w
i
w

P

f

η

c
r

eight, which leads to the well-known LIP model [15]. In order
o allow for vertical movement of the CoM, a different choice
s made here, which is to constrain the motion of the CoM to
atisfy the relation (z̈c − g)/(zc − zz) = η2, where η is a constant
parameter. The resulting dynamic model can be expressed in the
form

p̈c = η
2(pc − pz)− g, (10)

where g = (0 0 g)T is the gravity acceleration vector. This model
features a LIP-like dynamic behavior along all three axes. The only
difference with respect to a standard LIP is given by the gravity
vector g acting as a constant drift. This causes the system not to
be in equilibrium when the CoM and ZMP coincide, but rather
when they are displaced by g/η2.

The choice of restricting the available trajectories to those
resulting in a constant η allows to make the prediction model
linear. If this restriction is removed, the model is referred to as
Variable-Height Inverted Pendulum, which can be treated either
as nonlinear or time-varying. This can allow for more general
motions to be generated, e.g., running [25], at the cost of a slightly
more complex architecture. For the present case, where only
walking is considered, the simpler model is preferred.

In order to obtain smoother trajectories, model (10) is dynam-
ically extended to have the derivative of the ZMP ṗz as the input.
The gait generation scheme works over discrete time-steps of
duration δ, over which the input ṗz is assumed to be constant,
i.e., ṗz(t) = ṗk

z for t ∈ [tk, tk+1). This prediction model is used
to forecast the evolution of the system over a receding horizon
window called the control horizon, spanning a time Tc = Cδ.
The number of steps that are contained, either fully or partially,
within this control horizon is denoted as F .

3.3.2. Stability constraint
Model (10) has a positive eigenvalue η, reflecting the intrinsic

instability of the humanoid dynamics. Given this instability, it is
not sufficient to generate a gait such that the ZMP is inside the
support region, because the associated CoM trajectory might be
divergent, making the motion unrealizable by the humanoid. The
role of the stability constraint is to enforce a condition on the
unstable component of the dynamics in order to guarantee that
the CoM trajectory does not diverge with respect to the ZMP.

The unstable component of system (10) is highlighted by
the coordinate pu = pc + ṗc/η, also referred to as Divergent
Component of Motion (DCM) or Capture Point (CP), that evolves
according to the dynamics

ṗu = η(pu − pz)−
g
η
. (11)

espite the instability, the evolution of the system is bounded if
he following stability condition is satisfied

k
u = η

∫
∞

tk

e−η(τ−tk)pz(τ)dτ +
g
η2
, (12)

s stated by the following proposition.

roposition 1. Consider system (10). If the ZMP velocity is bounded,
ẋz | ≤ vmax, |ẏz | ≤ vmax, |żz | ≤ vmax, for some vmax > 0, and
condition (12) is satisfied, then the following bound holds:

g
η2
−
vmax

η
1 ≤ pc − pz ≤

g
η2
+
vmax

η
1, (13)

here 1 is a vector with all components equal to 1. Moreover, (13)
mplies that the system is internally stable, i.e., the CoM is bounded
ith respect to the ZMP.

roof. See Appendix.
10
Condition (12) is non-causal as it requires knowledge of the
future ZMP trajectory pz up to infinity. In order to derive a causal
implementation, we split the integral at tk+C . Of the two separate
integrals that result, the first, over [tk, tk+C), can be expressed
in terms of the MPC decision variables. A value for the second
integral, over [tk+C ,∞), can be obtained by conjecturing a ZMP
trajectory using information coming from the footstep plan. This
conjectured trajectory is called anticipative tail and is denoted
with x̃z . In [20], the anticipative tail was used to prove recursive
easibility and stability of the MPC scheme.

The stability constraint is then written as∫ tk+C

tk

e−η(τ−tk)pzdτ = pk
u − c̃k −

g
η2
. (14)

where c̃k is given by

c̃k = η
∫
∞

tk+C

e−η(τ−tk)p̃zdτ . (15)

Note that in [20] we considered the footstep plan to be avail-
able over a receding window called the preview horizon. Here
there is no need to make such an assumption, as the footstep plan
is provided in its entirety, and once the goal is reached the robot
comes to a complete stop.

Enforcing constraint (14) allows, similarly to what stated in
Proposition 1, to bound the displacement between CoM and ZMP.
In fact, the value of the bound is almost identical in most practical
situation, especially in view of the fact that the preview horizon
is unlimited because the plan is completely known. Because of
this fact, we will assume in the following that Proposition 1 is
valid as stated, even though a small numerical correction should
be applied to make up for the difference between the stability
condition and the stability constraint.

3.3.3. ZMP velocity constraint
This constraint imposes a limit on how fast the ZMP can move,

i.e.,

|ẋz | ≤ vmax, |ẏz | ≤ vmax, |żz | ≤ vmax (16)

Enforcing such limit allows to indirectly control the maximum
CoM/ZMP displacement, by using the result of Proposition 1. This
will be useful when defining the ZMP position constraint, as will
be made clear in the following paragraphs.

3.3.4. ZMP position constraint
As already noted, the humanoid is balanced as long as the

ZMP is inside the pyramid Z , which is a nonlinear condition
due to the vertex of the pyramid being at the CoM (Fig. 10). To
preserve linearity we consider a smaller allowed region for the
ZMP, consisting in a box of fixed size with changing center and
orientation. We refer to this as themoving box,9 and we will prove
that it conservatively approximates the support region, meaning
that it is always contained inside the pyramid Z .

The center pmc and orientation θmc of the moving box are taken
to be consistent with the pose of footstep f j during the jth single
support phase. In the following double support phase they will
gradually slide in order to reach the pose of the next footstep

9 Approximating the pyramidal region Z with a box might seem overly
onservative. However, we argue that the neglected portion of the pyramid
egion is not crucial here, because large displacements of the ZMP in the z
direction would only be required to generate large vertical accelerations, which
are not necessary in the considered setting (walking in a world of stairs). Clearly,
less conservative approximations can still be envisaged and used for generating
more dynamic motions.

M. Cipriano, P. Ferrari, N. Scianca et al. Robotics and Autonomous Systems 168 (2023) 104495

F
i

f

e
a
o

θ

w
l
f

w
t
c
a

i
e

P
v
t

v

w

v

f

a

N
e
i

b

Fig. 10. Balance condition in 3D: the ZMP must lie inside the yellow pyramid.
or interpretation of the references to colour in this figure caption, the reader
s referred to the web version of this article.

Fig. 11. The red rectangle represents a section of the moving box in the x− z
plane. This region is fully contained inside the yellow pyramid as long as the
CoM belongs to the blue region. Here, two scenarios are considered: one in
which the CoM is well within the blue region, and a worst-case scenario in
which the CoM is in a lower vertex of the blue region. For interpretation of
the references to colour in this figure caption, the reader is referred to the web
version of this article.

f j+1, with a linear10 timing law. At each time t , the center of the
moving box pmc is expressed as

pmc(t) =
{

pj t ∈ [t js, t
j
s + T j

ss)

(1− αj(t))pj
+ αj(t)pj+1 t ∈ [t js + T j

ss, tk+1s)
(17)

10 The timing law can be arbitrarily chosen as long as it leads the moving box
rom one footstep to the next within the duration of the double support phase.
11
where j = 0, . . . , F is a index over the footsteps within the
control horizon, and αj(t) = (t − t js − T j

ss)/T
j
ds denotes the time

lapsed since the start of the double support phase, expressed as
fraction of the duration of the double support phase itself. The
rientation of the moving box θmc can be similarly expressed as

mc(t) =
{

θ j t ∈ [t js, t
j
s + T j

ss)

anglin(θ j, θ j+1, αj(t)) t ∈ [t js + T j
ss, tk+1s)

(18)

here j = 0, . . . , F , and anglin is a function11 that computes a
inear combination of angles in such a way to correctly account
or wrapping around ±π .

The ZMP position constraint is expressed as

− d̃/2 ≤ RT
k+i(p

k+i
z − pk+i

mc) ≤ d̃/2 (19)

here pk+i
z and pk+i

mc respectively denote the ZMP and the center of
he moving box sampled at time tk+i, d̃ = (d̃x, d̃y, dz)T is a vector
ollecting the dimensions of the moving box along all three axes,
nd Rk+i is the rotation matrix associated with θ k+imc .
The size of the moving box d̃ = (d̃x, d̃y, dz)T is determined

n such a way to always be contained inside the pyramid Z , as
xpressed by the following proposition.

roposition 2. Assume the stability constraint (14) and the ZMP
elocity constraint (16) are enforced. If vmax is chosen in such a way
hat
max
≤ min{vmax

y , vmax
x }, (20)

here vmax
x and vmax

y are given by the following compact expression

max
x,y = η

(
g/η2 − dx,y

dz
dx,y − d̃x,y

)(
1+

dz
dx,y − d̃x,y

)−1
, (21)

with dx and dy denoting the size of the actual footprint, then the
moving box is always contained in the pyramid Z .

Proof. Consider the geometric construction in Fig. 11. This con-
struction shows a projection of the pyramid Z in the x− z plane
during a single support phase. The red area represents a cross
section of the moving box, with dimensions d̃x and dz . The blue
area represents the region where the CoM can be found, given
the CoM/ZMP bounds (13). In the figure two different possibilities
are depicted for the CoM position (identified by the point C).
Among them, consider the worst-case scenario, in which the CoM
is in the bottom-right corner of the blue region.12 A condition for
which the red region is always fully contained inside Z can be
found by imposing that the slope of the segment AB is less than
the slope of the segment AC , i.e.,

dz/2

dx/2− d̃x/2
≤

g/η2 − dz/2− vmax
x /η

dx/2+ d̃x/2+ vmax
x /η

, (22)

which, after simple manipulations, leads to (21). During double
support phases the construction of Fig. 11 is not accurate any-
more, as the pyramid Z is much larger than the one represented.

11 For two generic angles θa and θb , linearly combined with a weight α, the
unction anglin can be defined as

nglin(θa, θb, α) = atan2(sin((1− α)θa)+ sin(αθb),

cos((1− α)θa)+ cos(αθb)).

ote that this definition is meaningless when the two angles are separated by
xactly π , but this can never occur as the angle between consecutive footsteps
s limited by requirement R2.
12 An equivalent symmetrical scenario would occur if the CoM were in the
ottom-left corner.

M. Cipriano, P. Ferrari, N. Scianca et al. Robotics and Autonomous Systems 168 (2023) 104495

H
p
c
i
v

3⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
d
Z
b
w

p
C
g
k

3

i
i
s
M
v
f
i
a
m
i
s
(

S
m
p
g
c

3

t
i
w
t
b

(

f
a

owever, it is not necessary to repeat the reasoning, as a smaller
yramid, analogous to that shown in Fig. 11, can always be
onstructed and will always be contained inside Z . The last step
s to repeat the construction in the y − z plane in order to find
max
y , which proves the thesis. ■

.3.5. QP problem
At a generic time tk, IS-MPC solves the following QP problem

min
ṗkz ,...,ṗ

k+C−1
z

C−1∑
i=0

(
∥ṗk+i

z ∥
2
+ β∥pk+i

z − pk+i
mc ∥

2)
subject to:

• stability constraint (14)
• ZMP velocity constraint (16)
• ZMP position constraint (19)
The cost function minimizes the decision variables (ZMP

erivative) as a regularization term, and attempts to bring the
MP close to the center of the moving box, which is typically
eneficial as it produces a more robust walking pattern. β is a
eight on the second term.
In typical MPC fashion, the first sample of the ZMP velocity

˙
k
z is used to integrate the 3D LIP dynamics (10). The resulting
oM trajectory pc is sent, together with the swing foot trajectory
enerated by the footstep planner and sampled at time tk, to the
inematic controller.

.4. Localization

The localization module is continuously fed with the RGB-D
mages gathered by the head-mounted camera. Based on such
nformation, it is in charge of updating in real time the estimate
ˆ of the pose of the camera frame. To this end, it uses RTAB-
ap [26], an open source visual SLAM library. In particular, the
isual odometry and graph optimization tool are employed. The
irst tracks the features automatically extracted from the RGB-D
mages, while the second minimizes the odometry error through
graph-SLAM algorithm and a loop closure detector. It is worth
entioning that our architecture is independent from the specific

mplementation of the localization module, hence any off-the-
helf visual SLAM method can be employed in place of RTAB-Map
see assumption A3 in Section 2).

Given the pose ŝ of the camera frame estimated through visual
LAM and the measured joint positions, the direct kinematics
odule produces the estimates p̂c and ϕ̂ of, respectively, the CoM
osition and swing foot pose. These are then provided to the gait
eneration and kinematic control module to achieve closed-loop
ontrol.

.5. Simulations

We performed simulations on the HRP-4 humanoid robot in
he CoppeliaSim environment. We tested our off-line framework
n multiple environments (Fig. 7). For the gait generation module
e have set η = 3.6 s−1, the single support duration Tss = 0.6 s,
he double support duration Tds = 0.4 s, the size of the moving
ox d̃zx = d̃zy = dzz = 0.05 m, β = 1000, C = 100 and δ = 0.01 s.

To solve the QP problems we used hpipm, which requires less
than 1 ms to solve each QP and is thus able to run in real-time
with an ample margin.

Fig. 12 shows the robot traversing the scenario Ditch. The
robot starts by moving to its left (first snapshot), approaching the
accessible patch (second snapshot). It then accesses the platform
in the middle correctly avoiding the obstacle (third and fourth
snapshots), eventually reaching the goal region by climbing the
12
final two patches (fifth and sixth snapshots). Fig. 13 shows the
robot moving inside the scenario Corridor. The robot first exits the
room in which it starts (first and second snapshots), approaching
the stairway (third snapshot). Then, it goes up and down the
staircases avoiding the obstacles (fourth and fifth snapshots),
finally reaching the goal region (sixth snapshot).

In order to verify the validity of Assumption A4, we com-
puted the ground reaction forces associated with the generated
trajectories, and verified that the no-slipping condition is always
satisfied. Indeed, in our simulations the ratio between the hor-
izontal and vertical components of the ground reaction force
peaks around 0.1, which is a completely acceptable value under
normal circumstances (e.g., steel-concrete friction coefficients are
normally not lower than 0.5 [27]).

We invite the reader to watch the accompanying video, which
includes clips related to the above simulations as well as addi-
tional cases.

4. The on-line case

We now extend the proposed method to the on-line case.
This section starts with a description of the general architec-
ture which, compared to that proposed for the off-line case,
includes two additional modules, i.e., the mapping and visual
task generation module, and employs a sensor-based version of
the footstep planner, which will now work on-line; all the other
modules, in particular gait generation, remain instead identical.
Then, we describe the mentioned components and present some
simulation results.

4.1. General architecture

The proposed architecture for the on-line case is given in
Fig. 14, where the additional modules and feedback signals are
shown in red.

At the beginning, the map Mz is initialized combining some
limited exogenous knowledge about the starting location of the
robot and information available by the head-mounted camera at
its initial pose. Such initial map M0

z , together with the initial
humanoid stance (f iniswg, f

ini
sup), the goal region G and a preassigned

time budget ∆T , is provided to the footstep planner to find a first
possibly partial) footstep plan P1,∗

= {S1
f , S

1
ϕ}.

After this initial off-line phase, all the modules run in parallel,
generating the humanoid motions in a sensor-based, closed-loop
fashion. The mapping module incrementally builds the elevation
map Mz using the RGB-D images acquired by the humanoid
while walking and the estimate ŝ of the camera pose produced
by the localization module. To account for changes in Mz and
take advantage of newly acquired information, the footstep plan
is on-line updated and/or extended by repeatedly invoking the
footstep planner at every step of the humanoid, with the ultimate
objective of reaching G.

More precisely, consider the generic timestamp t js, i.e., the be-
ginning of the jth step. Let (f̂

j
swg, f̂

j
sup) be the current stance, with

ˆ
j
swg and f̂

j
sup the estimates of the swing and support foot poses

t t js, and P j,∗
= {S j

f , S
j
ϕ} be the current footstep plan – computed

during the previous ((j − 1)th) step – where the sequences of
footstep placements and associated swing trajectories are defined
as

S j
f = {f

j|j, . . . , f j+n|j},

S j
ϕ = {ϕ

j|j, . . . ,ϕj+n−2|j
}

with their generic elements f j+i|j and ϕj+i|j denoting, respectively,
the (j + i)th footstep and trajectory produced by the jth planner

M. Cipriano, P. Ferrari, N. Scianca et al. Robotics and Autonomous Systems 168 (2023) 104495

Fig. 12. The robot reaches the goal going through the ditch, which can only be accessed from the left and exited from the right.

Fig. 13. The robot reaches the goal avoiding the corridor, climbing and descending the staircase while avoiding the obstacles.

Fig. 14. Block scheme of the on-line case. The red blocks and arrows highlight the additional modules and signals compared to the off-line case. For interpretation
of the references to colour in this figure caption, the reader is referred to the web version of this article.

13

M. Cipriano, P. Ferrari, N. Scianca et al. Robotics and Autonomous Systems 168 (2023) 104495

i

m
c
t
f

f
o

4

i
c
b
n

u
i
E
r
a
o
i
o

t
a
m
a

4

p
e
d

z

nvocation, f j|j ≈ f̂
j
swg, f

j+1|j
≈ f̂

j
sup and the last footstep f j+n|j

henceforth referred to as subgoal. Also, let (f j+1swg, f
j+1
sup) be the

stance that the humanoid is supposed to achieve at t j+1s = t js +
T j
s , with f j+1swg = f̂

j
sup and f j+1sup = f j+2|j, after performing the

swing trajectory ϕj|j having duration T j
s . Then, during the time

interval [t js, t
j+1
s), motion execution and footstep planning take

place simultaneously as follows.

• At any time instant t ∈ [t js, t
j+1
s), the current reference

position pr
c of the CoM is produced by the gait generator,

based on the sequence S j
f , similarly to the off-line case;

the current reference pose ϕr of the swing foot is obtained
by sampling the trajectory ϕj|j; moreover, the visual task
generator produces the reference pose sr of the camera
frame, given its current estimate ŝ and the sequence S j

f , that
allows to direct the gaze towards the subgoal extracted from
S j
f , and then to enlarge Mz in the area of the current des-

tination. References pr
c, ϕ

r , sr , together with their estimates
p̂c, ϕ̂, ŝ, are passed to the kinematic controller to compute
the joint commands q̇r for the robot.
• At t js, the footstep planner is invoked providing in input the

stance (f j+1swg, f
j+1
sup), the goal region G, a time budget equal

to T j
s , and the elevation map Mj

z currently available by the
mapping module. At t j+1s , the planner returns a new footstep
plan P j+1,∗

= {S j+1
f , S j+1

ϕ }, where the sequences S j+1
f and

S j+1
ϕ are defined similarly to S j

f and S j
ϕ , f

j+1|j+1
= f j+1swg and

f j+2|j+1 = f j+1sup . The first element ϕj+1|j+1 of S j+1
ϕ will define

the next ((j+ 1)th) step of the humanoid.

Note that, while the footstep planner will make use of a fixed
ap Mj

z during the time interval [t js, t
j+1
s), the map Mz will

ontinuously be updated by the mapping module during the same
ime interval, which will generally provide a different map Mj+1

z
or the next invocation of the planner.

Clearly, in the on-line case, only the quality of the partial
ootstep plans can be accounted for, ultimately leading to an
verall plan that is globally suboptimal.

.2. Mapping

At the generic time instant, the mapping module receives
n input the last RGB-D image acquired by the head-mounted
amera and the current estimate ŝ of the camera pose produced
y the localization module. It is responsible for integrating such
ewly acquired information into the elevation map Mz .
First, the depth data extracted from the RGB-D image are

sed to construct a point cloud. Then, the latter is given in
nput, together with the estimate ŝ and a sensor noise model, to
levation Mapping [28], an open source framework designed for
ough terrain mapping; this accordingly updates a local (limited
round the robot) representation of the environment in the form
f a 2.5D grid map (see Assumption A1). Finally, such local map is
ntegrated into Mz in order to maintain a global representation
f the explored area of the environment.
The mapping module, at the time t js of the generic jth invoca-

ion of the footstep planner, provides it with a copy Mj
z of the

vailable map Mz . Meanwhile, during the planner operation, the
ap Mz is continuously updated through the process described
bove.

.3. Sensor-based footstep planning

This module consists in a sensor-based version of the footstep
lanner proposed in Section 3.2 which works using the knowl-
dge about the environment incrementally acquired by the robot
uring motion.
14
The input data for the jth invocation of the footstep planner
are the next robot stance (f j+1swg, f

j+1
sup), the goal region G, the time

budget ∆T j and the elevation map Mj
z . Given an optimality cri-

terion, the footstep planner returns the best footstep plan P j+1,∗,
found within ∆T j, either leading to G or terminating in proximity
of the frontier of Mj

z . The latter case is typical whenever G is not
included in Mj

z , e.g., due to occlusions or simply being placed far
from the robot.

The planning algorithm builds a tree T j+1 reusing portions of
the tree T j built up to the previous invocation. In this tree, ver-
texes and edges are defined as described in Section 3.2, with the
only difference that a vertex v = (f swg, f sup) can contain a sup-
port footstep f sup whose z-coordinate is unspecified, indicating
thatMj

z does not provide enough information (in a sense formally
defined in the following) about the ground under the foot at f sup.
Vertexes with this characteristic represent stances located on the
frontier of Mj

z and thus indicate a possible direction for further
exploration of the environment. The generic invocation consists
of: initializing, updating and expanding the tree. These individual
steps are described in the following.

Initializing: The vertex vroot = (f rootswg, f
root
sup) of T

j that is closest
to (f j+1swg, f

j+1
sup) is identified. To this end, we define a stance-to-

stance metric as

ζ (v, v′) = γ (f swg, f
′

swg)+ γ (f sup, f
′

sup) (23)

where γ (·) is the footstep-to-footstep metric defined in (4). The
subtree of T j rooted at vroot is extracted (including vroot itself) and
represents the initial version of T j+1. To match the stance that the
humanoid is supposed to reach at the end of the simultaneously
executed step, vroot is modified by relocating f rootswg to f j+1swg and f rootsup
to f j+1sup . ◀

Updating: At this point, requirements R1–R3 are satisfied by
construction in T j+1 according to the previous map Mj−1

z . Then,
R1–R3 must now be checked in T j+1 using the most recent map
Mj

z , consequently updating vertexes and edges in order to satisfy
them. To this end, we perform a pre-order traversal of T j+1 as
described in the following.

When a vertex v = (f swg, f sup) is visited, it is modified13 by
relocating its swing footstep to the support footstep f parentsup of its
parent vparent = (f parentswg , f parentsup), and setting the z coordinate zf ,sup
of f sup according to Mj

z . In particular, consider the cells of Mj
z

belonging to, or overlapping with, the footprint at f sup; let nk
and nu be the number of these cells whose height is known and
unknown, respectively. If the rate of cells with known height is
larger than a predefined threshold n̄, i.e.,

nk

nk + nu
> n̄,

f ,sup is set to the average value of the nk known heights. Other-
wise, zf ,sup is left unspecified.

Once v has been updated, requirements R1–R3 are checked
similarly to what was done in the off-line case, with the only two
differences described in the following.

• If zf ,sup is unspecified, requirements R1–R3 are checked con-
jecturing that it is equal to the z-component zf ,swg of f swg.
• Requirement R1 is considered satisfied if for each of the nk

known heights, the net variation from zf ,sup does not exceed
a predefined threshold z̄, i.e.,

|zk − zf ,sup| ≤ z̄.

with zk the generic known height among the nk available.

13 This modification is not made on vroot as it corresponds to the stance that
the robot must reach at the end of the simultaneously executed step.

M. Cipriano, P. Ferrari, N. Scianca et al. Robotics and Autonomous Systems 168 (2023) 104495

i
T
f
m

e
t
i

M

∆

v
f
V
c

v

w
b
f
b

T
b
b
a
–

4

s
g
S
o
a
r
f
t
e
t
t
p

b
v

If any requirement among R1–R3 is violated, vertex v is re-
moved from T j+1, along with its descendants. Otherwise, the
edge connecting v to vparent is replaced by the trajectory ϕparent

generated while checking R3; the set Vchild of child vertexes of v
s retrieved, and the procedure is recursively invoked on them.
o guarantee on-line performance and save time to be used
or expanding T j+1, recursion is stopped on vertexes having a
aximum depth κ̄ . ◀
Expanding: Once T j+1 has been updated, it can be further

xpanded in the map Mj
z . Let ∆T e be the time elapsed since

he beginning of the current invocation of the footstep planner,
.e., the time spent in initializing and updating T j+1. The expan-
sion of T j+1 works iteratively as described in Section 3.2.3 using
the remaining portion of the time budget ∆T j

−∆T e and the map
j
z , with the following modifications.

• The choice of the z-coordinate for a candidate footstep f candsup
and the check of requirements R1–R3 are done exactly as
when updating a generic vertex.
• A vertex whose support footstep has unspecified z-coordi-

nate cannot be set as parent of another vertex. Then, such
vertexes are excluded both when selecting the vertex vnear
for an expansion attempt and when choosing a parent for a
candidate vertex vcand. ◀

Similarly to the off-line case, when the assigned time budget
T j runs out, tree expansion is stopped and the set Vgoal of

vertexes v such that pf ,sup ∈ G is retrieved. If Vgoal is not empty,
the vertex v∗ with minimum cost is selected as in (8). Otherwise,
if Vgoal is empty, the planner retrieves the set Vfron containing all
ertexes of T j+1 having at least one child vertex whose support
ootstep has unspecified z-coordinate. In practice, vertexes in
fron contain stances located in proximity of the frontier of the
urrent map Mj

z . Then, the vertex v∗ is selected as
∗
= argmin

v∈Vfron

c(v)+ g(v) (24)

here g(v) represents the cost-to-go of vertex v, i.e., a lower-
ound on the minimum cost to reach G from v. A possible choice
or g(v) when minimizing the number of steps along the plan will
e described in Section 4.5.
Finally, the footstep plan P j+1,∗ is retrieved from the branch of

j+1 joining the root to v∗. Clearly, if Vgoal is not empty, P j+1,∗ will
e a complete footstep plan leading to G; otherwise, P j+1,∗ will
e a partial footstep plan leading in the direction of an unknown
rea of the environment whose exploration is considered useful
according to the adopted cost-to-go – to proceed towards G.

.4. Visual task generation

At any time instant during the execution of the generic jth
tep, given the current estimate ŝ of the camera pose and the sub-
oal f j+n|j, which is readily extracted from the current sequence
j
f of footstep placements, the visual task generator is in charge
f producing a suitable reference sr of the camera pose which
ims at directing the gaze towards the current destination of the
obot. The rationale beyond this choice is that, since the current
ootstep plan terminates in an area on the frontier of the map Mz
hat is considered promising for goal-oriented exploration of the
nvironment, looking in the direction of f j+n|j allows to enlarge
he map in that particular area. In principle, whenever possible,
his will privilege further extension of the footstep plan in that
romising direction.
To compute sr , one possibility consists in adopting an image-

ased visual servoing scheme [29]. In particular, one may define a
irtual feature in the image plane of the camera at ŝ associated to

the representative point pj+n|j of the subgoal footstep f j+n|j. Then,
f

15
the reference pose sr of the camera frame can be computed so as
to keep such feature at the center of the image plane.

The produced reference pose sr is passed to the kinematic
controller which, in practice, only controls the camera yaw and
pitch angles.

4.5. Simulations

In this section we present simulations obtained with the dis-
cussed architecture for the on-line case. Parameters are set to the
same values of Sections 3.5 and 3.2.4, with the only exception
of setting kγ = 1 in (4) when used in (23), n̄ = 0.9, z̄ = 0.02
and κ̄ = 5. For each jth invocation of the footstep planner the
time budget ∆T j is set to Tss + Tds. In all performed simulations,
the quality criteria considered by the footstep planner is the
number of steps, while the cost-to-go of each vertex v is an
underestimation of the number of steps needed to reach the goal
region G from the double support configuration specified by v.
This value is computed as the distance between the position of
the support foot specified by v and G, divided by the longest step
among the catalogue of primitives U .

Fig. 15 shows the robot walking in the scenario Corridor to-
gether with the reconstructed elevation map. Here, the planner
continuously receives an updated version of the map, which is
built while the robot moves. Initially (first snapshot) the robot
starts exploring its surrounding environment, moving towards
the end of the corridor (second snapshot). As soon as the footstep
planner realizes that the room is closed, it replans a sequence
of footsteps which brings the robot outside the corridor (third
snapshot). The robot keeps exploring the environment, going up
and down the stairs and avoiding the obstacles placed along the
path (fourth and fifth snapshot). Finally, the robot reaches the
desired goal region (sixth snapshot).

Fig. 16 shows the robot accomplishing the locomotion task in
the scenarioMaze. In this case the scenario was rendered dynamic
by manually moving the obstacles at runtime. Here, the planner
is facing the additional challenge of operating under continuous
changes in the elevation map, which reflects the new locations
of the obstacles. The robot starts by moving outside the initial
room (first snapshot), choosing the path on its right (second
snapshot). The footstep plan is invalidated by placing obstacles in
front of the robot, forcing the robot to choose the other direction
(third snapshot). The footstep planner correctly drives the robot
towards the other area of the maze (fourth snapshot), making it
go up and down the staircase (fifth snapshot), avoiding another
obstacle which is placed in front of the robot right before reaching
the goal region (sixth snapshot).

Fig. 17 shows a situation, again in a dynamic version of the
scenario Maze, in which the planner reaches a point in which is
not able to find a new subgoal. This occurs when, once the time
budget expires, both Vgoal and Vfron are empty. For example, this
may happen when the humanoid must exit a long corridor or
when dynamic obstacles invalidate large portion of the created
tree. In this specific situation, a simple solution consists in keep-
ing the portion of the current footstep plan that is still valid after
the updating step of the planner. If this happens multiple times in
a row, the robot reaches the subgoal and stops. At this point, the
footstep planner is invoked with an unlimited time budget and
terminates as soon as a new subgoal is found. As before, the robot
starts by moving outside the initial room, moving towards its left
(first and second snapshots). The footstep plan is invalidated by
moving an obstacle in front of the robot (third snapshots), which
stops its motion upon reaching the current subgoal (fourth snap-
shot). As soon as the footstep planner finds a new subgoal, the
robot starts moving again (fifth snapshot), eventually reaching
the desired goal region (sixth snapshot).

Clips of the described simulations are included in the accom-
panying video.

M. Cipriano, P. Ferrari, N. Scianca et al. Robotics and Autonomous Systems 168 (2023) 104495

Fig. 15. The on-line footstep planner in the scenario Corridor minimizing the number of steps. Here the planner finds a footstep sequence of 54 steps.

Fig. 16. The on-line footstep planner in the environment Maze minimizing the number of steps. The environment is dynamic, namely the elevation map can be
changed by moving obstacles around. Here the planner finds a footstep sequence of 106 steps.

Fig. 17. The on-line footstep planner in the dynamic environment Maze minimizing the number of steps. Here the planner finds a footstep sequence of 103 steps.

16

M. Cipriano, P. Ferrari, N. Scianca et al. Robotics and Autonomous Systems 168 (2023) 104495

d
o
r
c

w
a
g
t
b
b
a
i
w
w

l
f
S
t
(
m
p
b

s
t
w
d
b
T
s
a
b
2
l

p
e
s
t
s

n
e
t
r
e
b

b

D

c
t

D

A

A

n
p

Table 4
Performance of the off-line weighted A∗ footstep
planner when minimizing the number of steps
(w = 5.0).
Scenario Cost Iters Tree size

Rod 22.0 650 4049
Ditch Fail 11687 21911
Corridor Fail 12343 22483
Spacious 31.0 34 546
Maze Fail 9546 22333

5. Discussion

The proposed approach integrates several components and is
esigned to work both off-line and on-line. Since, to the best of
ur knowledge, no existing method can address the same wide
ange of situations, we focus in the following on the two main
omponents (footstep planning and gait generation) separately.
As a representative of the state of the art in footstep planning,

e selected the algorithm in [6], which uses a weighted A∗
lgorithm to search for optimal footstep sequences on uneven
round.14 At each iteration, the vertex providing the lowest es-
imate for the path cost is expanded. This estimate is computed
y adding to the cost of the vertex a heuristic cost-to-go, given
y the distance to the goal divided by the maximum step length
nd multiplied by a weight w ≥ 1, which can be used to
ncrease the bias towards the goal region. The main difference
ith respect to our approach lies in the expansion mechanism,
hich is deterministic in [6] and probabilistic in our method.
Both our scheme and the weighted A∗ approach use a cata-

ogue of primitives. In order to perform a fair comparison, we use
or the weighted A∗ approach the same catalogue described in
ection 3.2.4. As for the optimality criterion, we aim to minimize
he number of footsteps, corresponding to an edge cost given by
5). In order to allow for the possibility that our implementation
ight not be the most efficient, we assigned to the weighted A∗
lanner a time budget of 100 s, which is four times the largest
udget used when testing our planner.
The results obtained showed that standard A∗ search, corre-

ponding to w = 1, is unable to find solutions within the allotted
ime budget in any of the considered scenarios. By increasing w,
eighted A∗ performs rather well in scenarios where the solution
oes not involve considerable backtracking (Rod and Spacious),
ut fails to find the solution in any other scenario. In particular,
able 4 collects the results obtained for w = 5. These results
hould be compared to those in Table 1, which show that our
pproach has a 100% success rate with a fourth of the time
udget. We also ran tests with larger weights (w = 10, w =
5), obtaining results that are essentially identical, with slightly
onger paths and no increase in the success rate.

Indeed, the outcome of the above comparison was rather
redictable. It is well known that weighted A∗ works quite well in
nvironments where the path leading to the goal does not deviate
ignificantly from a straight line. However, as acknowledged by
he authors of [6], its performance may degrade severely in the
cenarios that require even mild amounts of backtracking.
As for the gait generation component, there are several alter-

atives to our method that employ MPC on reduced-order mod-
ls. The advantage of the proposed approach lies in the introduc-
ion of the stability constraint, which allows to prove rigorously
ecursive feasibility and internal stability of the MPC scheme. The
ffectiveness of this approach was extensively analyzed in [20],
y means of comparisons to state-of-the-art schemes. What we

14 The algorithm in [6] actually contemplates the possibility of tilted surfaces,
ut obviously works in a world of stairs as a particular case.
17
proposed in this paper is an extension accounting for the fact
that the CoM height changes. Based on the additional theoretical
results which we proved (namely, Propositions 1 and 2), we can
claim that our 3D gait generation retains the same properties of
the original 2D scheme.

6. Conclusions

In this paper, we addressed the problem of motion generation
for a humanoid robot that must reach a certain goal region walk-
ing in an environment consisting of horizontal patches located
at different heights, called world of stairs. We considered two
versions of such problem: the off-line and on-line case. In the
first, the geometry of the environment is completely known in
advance, while in the second, it is reconstructed by the robot itself
during motion using an on-board sensor. In both cases, available
information about the environment is maintained in the form of
an elevation map.

For the off-line case, we proposed an architecture working
in two main stages: footstep planning and gait generation. First,
a feasible footstep plan leading to the goal region is off-line
computed using a randomized algorithm that takes into account
the plan quality specified by a given optimality criterion. Then, an
intrinsically stable MPC-based scheme computes a CoM trajectory
that realizes the found footstep sequence, while guaranteeing
dynamic balance and boundedness of the CoM w.r.t. the ZMP at
all time instants.

For the on-line case, we proposed an extension of the archi-
tecture for the off-line case where footstep plans are computed in
parallel to gait generation and map building. To this end, we pre-
sented a sensor-based version of the footstep planner that uses
the knowledge about the environment incrementally acquired by
the robot during motion.

We validated the proposed architectures by providing simu-
lation results obtained in CoppeliaSim on the HRP-4 humanoid
robot in scenarios of different complexity.

Our future work will explore several directions, such as

(1) providing a formal proof of asymptotic optimality of the
proposed footstep planner;

(2) developing a more general version of the proposed ap-
proach to deal with arbitrary terrains, removing the world
of stairs assumption;

(3) implementing the presented architectures on a real hu-
manoid robot;

(4) extending them to the case of large-scale and multi-floor
environments.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

Data will be made available on request.

ppendix A

.1. Pseudocode

We report here a pseudocode description of the footstep plan-
ers presented in Sections 3.2 and 4.3, along with the relevant
rocedures.

M. Cipriano, P. Ferrari, N. Scianca et al. Robotics and Autonomous Systems 168 (2023) 104495

u

p

I

p

S
b

Algorithm 1: FootstepPlanner
Input: (f iniswg, f

ini
sup),G,∆T ,Mz

Output: P∗

1 vini ← (f iniswg, f
ini
sup);

2 AddVertex(T , ∅, vini, ∅);
3 ExpandTree(T , ∆T , Mz);
4 P∗ ← RetrieveBestPlan(T ,G);
5 return P∗;

Procedure 1: ExpandTree
Input: T ,∆T ,Mz

Output: none

1 while not TimeExpired(∆T) do
2 prand

xy ← SamplePoint();
3 vnear ← NearestVertex(T , prand

xy);
4 f candsup ← GenerateCandidateFootstep(f nearsup ,U,Mz);
5 if R1(f candsup) and R2(f candsup , f

near
sup) then

6 ϕnear
← SwingTrajectoryEngine(f nearswg , f

cand
sup);

7 if R3(ϕnear, (f nearsup , f
cand
sup)) then

8 vcand ← (f nearsup , f
cand
sup);

9 N ← Neighbors(T , vcand);
10 (vmin,ϕmin)←

ChooseParent(T ,N , vnear, vcand,ϕnear);
11 vnew ← (f min

sup , f
cand
sup);

12 AddVertex(T , vmin, vnew,ϕmin);
13 ReWire(T ,N , vnew);
14 end
15 end
16 end
17 return;

Procedure 2: SwingTrajectoryEngine
Input: f a, f b
Output: ϕa

1 h← hmin;
2 while h ≤ hmax do
3 ϕa

← DeformTrajectory(f a, f b, h);
4 if CollisionFree(ϕa) then
5 return ϕa;
6 end
7 h← h+∆h;
8 end
9 return ∅;

A.2. Proof of Proposition 1

Starting from the initial condition pu(tk) described by (12), the
nstable coordinate pu evolves as

u(t) = η
∫
∞

t
e−η(τ−t)pz(τ)dτ +

g
η2
. (25)

ntegrating (25) by parts gives

u(t)− pz(t)−
g
η2
=

∫
∞

t
e−η(τ−t)ṗzdτ . (26)

ince by hypothesis the ZMP velocity ṗz is component-wise
ounded, i.e., |ẋ | ≤ vmax, |ẏ | ≤ vmax, |ż | ≤ vmax, then the
z z z

18
Procedure 3: ChooseParent
Input: T ,N , vnear, vcand,ϕcand

Output: vmin,ϕmin

1 vmin
← vnear;

2 ϕmin
← ϕcand;

3 cmin
← c(vnear)+ l(vnear, vcand);

4 foreach v′ ∈ N do
5 if R2(f candsup , f

′

sup) then
6 ϕ′ ← SwingTrajectoryEngine(f ′swg, f

cand
sup);

7 if R3(ϕ′, (f ′sup, f
cand
sup)) and c(v′)+ l(v′, vcand) < cmin then

8 vmin
← v′;

9 ϕmin
← ϕ′;

10 cmin
← c(v′)+ l(v′, vcand);

11 end
12 end
13 end
14 return (vmin, ϕmin);

Procedure 4: ReWire
Input: T ,N , vnew

Output: none

1 foreach v′ ∈ N do
2 if R2(f ′sup, f

new
sup) then

3 ϕnew
← SwingTrajectoryEngine(f newswg , f

′

sup);
4 if R3(ϕnew, (f ′swg, f

′

sup)) and c(vnew)+ l(vnew, v′) < c(v′)
then

5 UpdateVertex(T , v′, (f newsup , f
′

sup));
6 UpdateEdge(T , vnew, v′,ϕnew);
7 Vchild ← ChildVertexes(T , v′);
8 foreach v′′ ∈ Vchild do
9 ϕ′ ← SwingTrajectoryEngine(f ′swg, f

′′

sup);
10 if ϕ′ ̸= ∅ then
11 UpdateEdge(T , v′, v′′,ϕ′);
12 else
13 RemoveSubtree(T , v′′);
14 end
15 end
16 end
17 end
18 end
19 return;

Algorithm 2: SensorBasedFootstepPlanner
Input: (f j+1swg, f

j+1
sup),G,∆T j,Mj

z

Output: P j+1,∗

1 (T j+1, vroot)← InitializeTree(T j, (f j+1swg, f
j+1
sup));

2 Vchild ← ChildVertexes(T j+1, vroot);
3 foreach v′ ∈ Vchild do
4 UpdateTree(T j+1, v′,Mj

z);
5 end
6 ExpandTree(T j+1,∆T j

−∆T e,M
j
z);

7 P j+1,∗
← RetrieveBestPlan(T j+1,G);

8 return P j+1,∗;

following upper bound is obtained

pu(t)− pz(t)−
g
≤ vmax1

∫
∞

e−η(τ−t)dτ ,

η2 t

M. Cipriano, P. Ferrari, N. Scianca et al. Robotics and Autonomous Systems 168 (2023) 104495

S

p

S
g
t

−

w

p

−

B
t

Procedure 5: InitializeTree
Input: T j, (f j+1swg, f

j+1
sup))

Output: T j+1, vroot

1 vroot ← NearestVertex(T j, (f j+1swg, f
j+1
sup));

2 T j+1
← ExtractSubtree(T j, vroot);

3 UpdateVertex(T j+1, vroot, (f j+1swg, f
j+1
sup));

4 return (T j+1, vroot);

Procedure 6: UpdateTree
Input: T j+1, v,Mj

z

Output: none

1 vparent ← ParentVertex(T j+1, v);
2 zf ,sup ← DetermineFootstepHeight(f sup,M

j
z);

3 UpdateVertex(T j+1, v, (f parentsup , (xf ,sup, yf ,sup, zf ,sup)));
4 if R1(f sup) and R2(f sup, f

parent
sup) then

5 ϕparent
← SwingTrajectoryEngine(f parentswg , f sup);

6 if R3(ϕparent, (f swg, f sup)) then
7 UpdateEdge(T j+1, vparent, v,ϕparent);
8 if Depth(T j+1, v)) = κ̄ then
9 return;

10 end
11 Vchild ← ChildVertexes(T j+1, v);
12 foreach v′ ∈ Vchild do
13 UpdateTree(T j+1, v′,Mj

z);
14 end
15 else
16 RemoveSubtree(T j+1, v);
17 end
18 else
19 RemoveSubtree(T j+1, v);
20 end
21 return;

along with a similar lower bound. The two bounds can be com-
bined in the following expression

−
vmax

η
1 ≤ pu(t)− pz(t)−

g
η2
≤
vmax

η
1. (27)

Define now the coordinate ps = pc − ṗc/η. This coordinate
pertains to the stable eigenvalue of system (10), and its dynamics
can be expressed as

ṗs = η(−ps + pz)+
g
η
.

tarting from an initial time t0, the coordinate ps evolves as

s(t) = ps(t0)e
−η(t−t0) + η

∫ t

t0

e−η(t−τ)
(
pz(τ)+

g
η2

)
dτ .

imilarly to pu, the above expression can manipulated using inte-
ration by parts, and the resulting integral can be bounded using
he hypothesis on the ZMP velocity. The resulting expression is
vmax

η
1+ s0 ≤ ps(t)− pz(t)−

g
η2
≤
vmax

η
1+ s0,

here s0 = ps(t0)−pz(t0)−g/η2. Since at t0 the robot is typically
in static equilibrium, corresponding to pc(t0) = pz(t0)+ g/η2 and
˙ c(t0) = 0, then s0 = 0. This leads to
vmax

η
1 ≤ ps(t)− pz(t)−

g
η2
≤
vmax

η
1. (28)

y noting that 2pc = pu+ps, combining Eqs. (27) and (28) proves
he thesis.
19
Appendix B. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.robot.2023.104495.

References

[1] A. Ibanez, P. Bidaud, V. Padois, Emergence of humanoid walking behaviors
from mixed-integer model predictive control, in: 2014 IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems, 2014, pp. 4014–4021.

[2] Y.-D. Hong, Y.-H. Kim, J.-H. Han, J.-K. Yoo, J.-H. Kim, Evolutionary mul-
tiobjective footstep planning for humanoid robots, IEEE Trans. Syst. Man
Cybern. C 41 (4) (2011) 520–532.

[3] M. Kasaei, A. Ahmadi, N. Lau, A. Pereira, A modular framework to generate
robust biped locomotion: from planning to control, SN Appl. Sci. 3 (2021)
1–18.

[4] R. Deits, R. Tedrake, Footstep planning on uneven terrain with mixed-
integer convex optimization, in: 2014 IEEE-RAS Int. Conf. on Humanoid
Robots, 2014, pp. 279–286.

[5] D. Song, P. Fernbach, T. Flayols, A.D. Prete, N. Mansard, S. Tonneau, Y.J.
Kim, Solving footstep planning as a feasibility problem using L1-norm
minimization, IEEE Robot. Autom. Lett. 6 (2021) 5961–5968.

[6] R.J. Griffin, G. Wiedebach, S. McCrory, S. Bertrand, I. Lee, J. Pratt, Footstep
planning for autonomous walking over rough terrain, in: 2019 IEEE Int.
Conf. on Robotics and Automation, 2019, pp. 9–16.

[7] H. Liu, Q. Sun, T. Zhang, Hierarchical RRT for humanoid robot footstep
planning with multiple constraints in complex environments, in: 2012
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2012, pp. 3187–3194.

[8] K. Okada, T. Ogura, A. Haneda, M. Inaba, Autonomous 3D walking system
for a humanoid robot based on visual step recognition and 3D foot
step planner, in: 2005 IEEE Int. Conf. on Robotics and Automation, 2005,
pp. 623–628.

[9] J. Chestnutt, Y. Takaoka, K. Suga, K. Nishiwaki, J. Kuffner, S. Kagami,
Biped navigation in rough environments using on-board sensing, in: 2009
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2009, pp. 3543–3548.

[10] M.F. Fallon, P. Marion, R. Deits, T. Whelan, Continuous humanoid locomo-
tion over uneven terrain using stereo fusion, in: 2015 IEEE-RAS Int. Conf.
on Humanoid Robots, 2015, pp. 881–888.

[11] D. Maier, C. Lutz, M. Bennewitz, Integrated perception, mapping, and
footstep planning for humanoid navigation among 3d obstacles, in: 2013
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2013, pp. 2658–2664.

[12] A. Stumpf, S. Kohlbrecher, D.C. Conner, O. von Stryk, Supervised footstep
planning for humanoid robots in rough terrain tasks using a black box
walking controller, in: 2014 IEEE-RAS Int. Conf. on Humanoid Robots, 2014,
pp. 287–294.

[13] P. Karkowski, S. Oßwald, M. Bennewitz, Real-time footstep planning in 3D
environments, in: 2016 IEEE-RAS Int. Conf. on Humanoid Robots, 2016,
pp. 69–74.

[14] T. Yamamoto, T. Sugihara, Responsive navigation of a biped robot that
takes into account terrain, foot-reachability and capturability, Adv. Robot.
35 (8) (2021) 516–530.

[15] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H.
Hirukawa, Biped walking pattern generation by using preview control of
zero-moment point, in: 2003 IEEE Int. Conf. on Robotics and Automation,
2003, pp. 1620–1626.

[16] T. Sugihara, K. Imanishi, T. Yamamoto, S. Caron, 3D biped locomotion
control including seamless transition between walking and running via 3D
ZMP manipulation, in: 2021 IEEE Int. Conf. on Robotics and Automation,
2021, pp. 6258–6263.

[17] S. Caron, A. Escande, L. Lanari, B. Mallein, Capturability-based pattern
generation for walking with variable height, IEEE Trans. Robot. 36 (2)
(2019) 517–536.

[18] A. Zamparelli, N. Scianca, L. Lanari, G. Oriolo, Humanoid gait generation
on uneven ground using intrinsically stable MPC, IFAC-PapersOnLine 51
(2018) 393–398.

[19] P. Ferrari, N. Scianca, L. Lanari, G. Oriolo, An integrated motion plan-
ner/controller for humanoid robots on uneven ground, in: 18th European
Control Conference, 2019, pp. 1598–1603.

[20] N. Scianca, D. De Simone, L. Lanari, G. Oriolo, MPC for humanoid gait
generation: Stability and feasibility, IEEE Trans. Robot. 36 (4) (2020)
1171–1178.

[21] W. Burgard, M. Hebert, M. Bennewitz, World modeling, in: Springer
Handbook of Robotics, Springer, 2016, pp. 1135–1152.

[22] A. Escande, N. Mansard, P.-B. Wieber, Hierarchical quadratic programming:
Fast online humanoid-robot motion generation, Int. J. of Robot. Res. 33 (7)
(2014) 1006–1028.

https://doi.org/10.1016/j.robot.2023.104495
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb1
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb1
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb1
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb1
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb1
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb2
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb2
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb2
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb2
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb2
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb3
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb3
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb3
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb3
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb3
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb4
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb4
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb4
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb4
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb4
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb5
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb5
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb5
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb5
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb5
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb6
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb6
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb6
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb6
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb6
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb7
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb7
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb7
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb7
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb7
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb8
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb8
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb8
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb8
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb8
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb8
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb8
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb9
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb9
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb9
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb9
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb9
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb10
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb10
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb10
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb10
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb10
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb11
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb11
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb11
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb11
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb11
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb12
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb12
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb12
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb12
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb12
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb12
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb12
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb13
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb13
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb13
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb13
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb13
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb14
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb14
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb14
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb14
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb14
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb15
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb15
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb15
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb15
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb15
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb15
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb15
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb16
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb16
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb16
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb16
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb16
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb16
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb16
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb17
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb17
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb17
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb17
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb17
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb18
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb18
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb18
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb18
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb18
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb19
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb19
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb19
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb19
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb19
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb20
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb20
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb20
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb20
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb20
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb21
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb21
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb21
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb22
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb22
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb22
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb22
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb22

M. Cipriano, P. Ferrari, N. Scianca et al. Robotics and Autonomous Systems 168 (2023) 104495
[23] S. Karaman, E. Frazzoli, Sampling-based algorithms for optimal motion
planning, Int. J. of Robot. Res. 30 (7) (2011) 846–894.

[24] A. Yershova, S.M. LaValle, Improving motion-planning algorithms by
efficient nearest-neighbor searching, IEEE Trans. Robot. 23 (1) (2007)
151–157.

[25] F.M. Smaldone, N. Scianca, L. Lanari, G. Oriolo, From walking to running:
3D humanoid gait generation via MPC, Front. Robot. AI 9 (2022).

[26] M. Labbé, F. Michaud, RTAB-map as an open-source lidar and visual si-
multaneous localization and mapping library for large-scale and long-term
online operation, J. Field Robotics 36 (2) (2019) 416–446.

[27] B.G. Rabbat, H.G. Russell, Friction coefficient of steel on concrete or grout,
J. Struct. Eng. 111 (1985) 505–515.

[28] P. Fankhauser, M. Bloesch, M. Hutter, Probabilistic terrain mapping for
mobile robots with uncertain localization, IEEE Robot. Autom. Lett. 3 (4)
(2018) 3019–3026, http://dx.doi.org/10.1109/LRA.2018.2849506.

[29] F. Chaumette, S. Hutchinson, P. Corke, Visual servoing, in: Springer
Handbook of Robotics, Springer, 2016, pp. 841–866.

Michele Cipriano received the master’s degree in ar-
tificial intelligence and robotics in 2020 from Sapienza
University of Rome, Italy, where he is currently a Ph.D.
student in control engineering. His research interests
include motion planning and control algorithms for
locomotion of humanoid robots.

Paolo Ferrari received the master’s degree in arti-
ficial intelligence and robotics and the Ph.D. degree
in control engineering from Sapienza University of
Rome, Italy, respectively in 2016 and 2021. His research
focuses on motion planning and control for articulated
robots, with particular emphasis on humanoids.
20
Nicola Scianca received his Ph.D. in control engineering
from Sapienza University of Rome, Italy, in 2020. He
is currently a Researcher at the Department of Com-
puter, Control and Management Engineering (DIAG).
In 2019, he was a Visiting Student with the Model
Predictive Control Laboratory, University of California
at Berkeley, CA, USA. His research interests include
model predictive control for humanoid robots.

Leonardo Lanari received the Ph.D. degree in control
engineering from Sapienza University of Rome, Italy,
in 1992. He is currently with the Department of Com-
puter, Control and Management Engineering (DIAG),
Sapienza University of Rome, as an Associate Professor
in automatic control. His research interests are in the
general area of planning and control of robotic systems,
with an emphasis on humanoid control and robots with
elastic joints and links.

Giuseppe Oriolo received his Ph.D. degree in Control
Engineering in 1992 from Sapienza University of Rome,
Italy. He is currently with the Department of Com-
puter, Control and Management Engineering (DIAG) of
the same university, where he is a Full Professor of
Automatic Control and Robotics and the director of
the DIAG Robotics Lab. His research interests are in
the general area of planning and control of robotic
systems. Prof. Oriolo has been Associate Editor of the
IEEE Transactions on Robotics and Automation from
2001 to 2005 and Editor of the IEEE Transactions on

Robotics from 2009 to 2013. He is a Fellow of the IEEE.

http://refhub.elsevier.com/S0921-8890(23)00134-3/sb23
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb23
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb23
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb24
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb24
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb24
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb24
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb24
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb25
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb25
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb25
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb26
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb26
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb26
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb26
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb26
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb27
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb27
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb27
http://dx.doi.org/10.1109/LRA.2018.2849506
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb29
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb29
http://refhub.elsevier.com/S0921-8890(23)00134-3/sb29

	Humanoid motion generation in a world of stairs
	Introduction
	Related Work
	Footstep Planning
	Gait Generation

	Contribution and Paper Organization

	Problem Formulation
	The off-line Case
	General Architecture
	Footstep Planning
	Footstep feasibility
	Vertex identity, neighbors and cost
	Algorithm
	Planning Results

	Gait Generation via IS-MPC
	Prediction Model
	Stability Constraint
	ZMP Velocity Constraint
	ZMP Position Constraint
	QP Problem

	Localization
	Simulations

	The on-line Case
	General Architecture
	Mapping
	Sensor-based Footstep Planning
	Visual Task Generation
	Simulations

	Discussion
	Conclusions
	Declaration of competing interest
	Data availability
	Appendix A
	Pseudocode
	Proof of Proposition 1

	Appendix B. Supplementary data
	References

