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In humanoid robotic soccer, many factors, both at low-level (e.g., vision and motion control) and at high-
level (e.g., behaviors and game strategies), determine the quality of the robot performance. In particular,
the speed of individual robots, the precision of the trajectory, and the stability of the walking gaits, have a
high impact on the success of a team. Consequently, humanoid soccer robots require fine tuning, especially
for the basic behaviors. In recent years, machine learning techniques have been used to find optimal
parameter sets for various humanoid robot behaviors. However, a drawback of learning techniques is
time consumption: a practical learning method for robotic applications must be effective with a small
amount of data. In this article, we compare two learning methods for humanoid walking gaits based on
the Policy Gradient algorithm. We demonstrate that an extension of the classic Policy Gradient algorithm
that takes into account parameter relevance allows for better solutions when only a few experiments are
available. The results of our experimental work show the effectiveness of the policy gradient learning
method, as well as its higher convergence rate, when the relevance of parameters is taken into account
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1. Introduction

In order for robots to be useful for real-world applications, they
must adapt to novel and changing environments and situations.
However, the ability to deploy a fully autonomous robot in an
unstructured, dynamic environment over an extended period of
time remains an open challenge in the field of robotics. For
this purpose, a popular research activity is the annual RoboCup
competition, where different kinds of robots compete on standard
reference testbeds in soccer, rescue and @home scenarios. Among
the RoboCup disciplines, we focus here on humanoid robot
soccer, and among the capabilities that a humanoid robot needs
for playing soccer, walking is obviously the most important.
Consequently, the speed, stability and precision of the walking gait,
are crucial factors that determine the success of a team.

At first, gait improvements for legged robots centered around
hand-tuning. However, in case of a change of robot hardware
and/or of walking surface (e.g., the carpet, or the floor), the
motion parameters need to be re-calibrated, and this is a process
that can easily take several hundred trials for an expert. One
alternative to hand-tuning a parameterized gait, while enabling
the robot to adapt to changes in its surroundings, is to use
machine learning to automate the search for good parameters.
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In the past, various machine learning techniques have proved
useful in improving control policies for a wide variety of robots,
as reported in Section 2. In fact, machine learning approaches
generate solutions with little human interaction, and explore the
search space of possible solutions in a systematic way, whereas
humans are often biased towards exploring a small part of the
space.

Learning in the robotic soccer domain has to overcome several
challenges, such as a continuous multi-dimensional state space,
noisy sensing and actions, multiple agents (including adversaries),
and the need to act in real-time. Nevertheless, this approach
has been somewhat fruitful: for example, since the inception of
the RoboCup legged league in 1998, the speed of the quadruped
robots has increased significantly [ 1]. In most cases, the knowledge
achieved in the Four-Legged League can be transferred to the
Humanoid League [2]. Despite this growing interest, considerable
work remains to be done, due to the difficulties associated
with applying machine learning in the real world. Compared
to other machine learning scenarios, such as classification or
action learning in simulation, learning on physical robots must be
effective with a small amount of data, and should converge in short
time [1]. Indeed, it is often prohibitively difficult to generate large
amounts of data due to the maintenance required on robots, such
as battery changes, hardware repairs, and, usually, constant human
supervision.

Following up on all these considerations, in this article, we
present a learning method for humanoid walking gaits based on
Policy Gradient [3]. We focus on learning a specific humanoid
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robot task (namely, curvilinear biped walking), that requires, at the
same time: a relatively small set of parameters, and high precision
from a control viewpoint. To learn this task, we compare Policy
Gradient with an extension that takes into account parameter
relevance [4], showing, through experiments on a 3D simulator,
the higher convergence rate of the extended policy gradient
method and, through experiments on real robots, the performance
of Policy Gradient learning algorithms and the effective use of
the results of learning on the simulator. While Policy Gradient
learning methods have been compared on a quadruped robot in [4],
the main contribution of the present article is the application of
these algorithms to biped walking. We have successfully applied
the presented learning method in preparation of RoboCup 2008,
within the Standard Platform League (two-legged division)' using
Aldebaran NAO robots.?

The remainder of this article is organized as follows. Section 2
surveys existing approaches for generating and optimizing legged
gaits. Section 3 presents the static parameterized biped motion
control scheme that we used to generate curvilinear trajectories
with a humanoid robot. In Section 4, we describe the policy
gradient learning algorithms. Section 5 defines the learning
scheme applied to curvilinear walking gait, while experimental
results are discussed in Section 6. We close with a discussion and
possible avenues for future work in Section 7.

2. Related work

In this section, we provide a brief survey in the field of
legged robot gait learning. In particular, we focus on two aspects:
gait generation (in particular, we focus on biped gaits), and gait
learning. For each aspect, we first review the existing literature,
and then outline the original contribution of our work.

2.1. Gait generation

The design of controllers enabling biped robots to walk
autonomously on uneven and variable terrains in a robust way
(e.g. in daily life) remains a crucial research topic in robotics.
Recent works in the field of legged robot gait modeling and control
have been surveyed in [5,6]. In summary, two main classes of
methods have been used for biped gait control: static and dynamic
control approaches.

The most commonly used dynamic approaches are based on the
zero moment point (ZMP). ZMP refers to the location within the
base of support of the center of pressure of the floor reaction force.
By controlling this location, the robot may induce forward motion
while maintaining dynamic balance. In the dynamic walking
pattern used in [7], for instance, ZMP is used during the double
support phase to guarantee stability. In [8], ZMP is integrated in
a whole body cooperative dynamic biped walking, that includes
trunk motion to compensate for the moment generated by the
motion of the whole body (lower, as well as upper limbs). For
a survey of the history and characteristics of ZMP, the reader is
referred to [9].

In static approaches, instead, some a priori definition of the
desired trajectories to follow is used. Standard and ad-hoc control
techniques have been developed to cope with model uncertainties,
obstacles and disturbances, in order to prevent the robot from
falling. The desired (also called reference) trajectories can be either
obtained from the capture of human motions, or purely computer-
generated. In the second case, the usual approach includes two
steps. First, a set of output variables (generally, the 3D coordinates
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of a few selected points on the robot) with adequate dimension
is chosen. Second, after parametrization (e.g., under the form of
splines) the desired trajectories of these variables are computed,
for every phase of the gait. Computer-generated trajectories have
been used in [10-13]. In [14], the trajectories are designed using
Central Pattern Generators, similar to bio-inspired self-oscillating
systems.

In this work, we utilize a static parameterized biped gait model
to control the legs and arms in order to make NAO track arbitrary
curvilinear trajectories. We have decided to adopt a static gait
model, since no accurate dynamic model of NAO is available at
this time. The trajectories are defined by the requested velocity
command (v,w) € RZ? with v the forward linear velocity,
and w the angular velocity, as for non-holonomic (e.g., wheeled)
robots. Our gait model is similar to the one presented in [11].
The model is based on arbitrary parameterized joint trajectories,
and does not explicitly consider stability aspects; hence, the
gait model performance must be assessed through its practical
application. However, in contrast with most of the aforementioned
works, which focus uniquely on pure rectilinear walks (with the
exceptions of [11] and [12]), the motion control scheme that we
propose is valid for generic curves of radius R = v/w. This includes
the particular cases of pure rectilinear (w null, thus R = o0) and
pure rotational (v null, thus R = 0) walks. With this approach,
our walk reproduces a natural-looking human walk. Indeed, the
close relationship between the shape of human walking paths
in goal-directed movements and the kinematics model of a non-
holonomic mobile robot has been shown in [15] (humans ‘do not
walk sideways’). From a comparative analysis, the authors of [15]
infer that some constraints (mechanical, anatomical ...) act on
human bodies restricting the way humans track trajectories, and
that the trunk can be considered as a kind of steering wheel for
the human body. Following up on these considerations, and on
the fact that the NAO trunk is not actuated, we utilize the arms
to add momentum for rotation, in contrast with the other (rare)
curvilinear motion control schemes presented in the literature
[11,12], which exploit only the lower limbs for rotations.

2.2. Gait learning

Robots should be able to respond to changes in the surround-
ings by adapting both their low-level skills (e.g., vision or motion
control parameters) and the higher-level skills (e.g., the behaviors)
which depend on them. Such adaptation should occur as au-
tonomously as possible. However, in all cases where the complete
analytical model is unknown, this is not trivial. Thus, machine
learning techniques have been used in many robotic applica-
tions, both for finding optimal parameter sets of specific behaviors
(parameter learning), and for determining the best choice of
behaviors required to accomplish a task (behavior learning ), when-
ever the model cannot provide an optimal solution to such prob-
lems. Clearly, one of the primary application areas of parameter
learning is robot motion control, since the mathematical model
is approximated, and traditional optimization methods cannot be
used. In particular, gait optimization for legged soccer robots is not
straightforward: creating effective motions is a challenging task,
since there are many parameters to be set, and since successful
motions strongly depend on many factors, which cannot be mod-
eled with precision: playing surface, robot hardware, and game
situation. For these reasons, in recent years, machine learning tech-
niques have been used to find optimal parameter sets for legged
gait optimization.

Hexapod robot walk generation has been solved in [16], with a
Genetic Algorithm. Similar methods have been used for optimiza-
tion of the vector of quadruped walk parameters, while avoiding
the need for gradient approximation in [17-19]. Kohl and Stone,



810 A. Cherubini et al. / Robotics and Autonomous Systems 57 (2009) 808-818

from the University of Texas at Austin [20], empirically compared
four different machine learning algorithms for quadruped walk
optimization, and in [21], genetic algorithms were extended in
order to improve omnidirectional gaits by switching and inter-
polating between vectors of parameters. A common feature of
these approaches is that the robots time themselves walking across
a known, fixed distance, thus eliminating the need for human
supervision, other than battery changes. Parameter learning has
proved very effective for improving other motion control tasks,
such as robot grasping. This task is achieved in [22] by applying the
layered learning paradigm [23]: grasping parameters rely on pre-
viously learned walk parameters. Similar approaches have been
used for learning on humanoid platforms. Humanoid walk param-
eters are automatically learned using: various evolutionary strate-
gies in [11], a particle swarm approach in [13], and Reinforcement
Learning (RL) in [24]. Sato and others [14] design a new RL algo-
rithm for central pattern generators, in order to improve biped gait
stability. A method for optimally generating stable bipedal walk-
ing gaits, based on a Truncated Fourier Series Formulation, with
coefficients tuned by a Genetic Algorithm, is presented in [25].
Policy gradient RL, and particle swarm optimization are compared
in [26] for improving a biped gait. Morimoto and Atkeson [27]
present a model-based RL algorithm for biped walking, in which
the robot learns to appropriately modulate an observed walking
pattern. In [10], a method for acquisition of highly energy-efficient
walking, based on a two-stage genetic algorithm, is presented: in
the first phase, the fitness function consists of a walking distance
(longer is better), whereas in the second phase, the fitness func-
tion consists of a walking distance (longer) and energy consump-
tion (less). Fundamental soccer skills for a real humanoid robot are
improved, by extending standard RL with imitation of a teacher,
and reevaluation of past experiences, in [28]. A humanoid robot,
able to learn how to interact with the environment, and how to
develop its perceptual, motor and communication capabilities, has
been designed in the research project RobotCub [29]. Researchers
at the University of Padova have developed an interface for teach-
ing new motions to humanoid robots through touching, by directly
manipulating the limbs of the robot [30].

Following up on these works and on our previous work on
the Sony AIBO [4,31], in this article we propose an original
parameter learning approach for improving curvilinear biped
walks. In [31], we have shown the effectiveness of the layered
learning approach [23], that is suitable with the large dimensions
of the search space in complex robot learning scenarios. We
have also studied how to use a 3D simulator for speeding up
robot learning, and we have shown that the learned low-level
parameters are strongly related to the desired behavior. In [4],
we have proposed an extension of the policy gradient algorithm
introduced in [3], that has been successfully used to optimize
quadruped gait of AIBO robots. Our approach guarantees a higher
convergence rate than the standard policy gradient, by exploiting
additional information on the system properties, such as the
contiguities between strategies, and the relevance of the behavior
parameters. As reported in [4], the extended policy gradient has
been tested in the application example of an attacker robot in
the RoboCup Four-Legged League. Referring to the cited works,
the original contribution of this article, from the learning point of
view, is the experimental comparison between the policy gradient
from [3], and the extended version introduced in [4], carried out for
the first time on a biped platform. Moreover, in contrast with the
algorithm presented in [4], in this article we only exploit parameter
relevance, and not strategy contiguity, since the article focuses on
parameter learning rather than behavior learning.
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Fig. 1. The Aldebaran NAO robot with its 21 degrees of freedom, and reference
frame Fg (X, Y, Z) with origin in the robot center of mass.

3. Motion control
3.1. Outline

The robot used in this work is NAO from French manufacturer
Aldebaran. It has been selected for the soccer competitions of the
RoboCup Standard Platform League. NAO has a total of 21 degrees
of freedom, shown in Fig. 1: 2 in the head, 4 in each arm, 1 in the
pelvis (Hyp) and 5 in each leg. We define the reference frame %5
(also shown in the figure) with origin in the robot center of mass,
X axis in the sagittal plane and pointing forward, Y axis orthogonal
to the sagittal plane and pointing to the left side of the robot, and Z
axis orthogonal to the ground and pointing upwards. In this work,
we assume for simplicity that, throughout the gait, the robot center
of mass stays in a fixed position with respect to the robot trunk.

The control software of the robot is based on the OpenRDK
software framework.? [32] In the OpenRDK architecture, the Mo-
tionControl module is responsible for implementing all requested
velocity commands, which are defined as (v, w) € R%, with v the
forward linear velocity along the X axis, and w the angular veloc-
ity around the Z axis (positive counterclockwise). In the rest of
this section, we describe the parameterized biped curvilinear gait
model used in the MotionControl module. Our gait model (which is
inspired by the model presented in[11]) has been designed in order
to keep the number of parameters (and consequently the search
space dimension for parameter optimization) as small as possible.
It is based on arbitrary parameterized joint trajectories, and does
not explicitly consider stability issues; its soundness will therefore
be proved in practical applications.

The act of biped walking involves, for each gait cycle (i.e., for
each step), both a single support (or swing) phase, and a double
support phase. Therefore, two fundamental parameters of the step,
are:

e Ty, : the total duration of a step,
e ssy € 0, 1[: the ratio between single support duration and total
step duration.

In the following, we describe the motion control task by
dividing it into four subtasks: The design of the foot trajectories
in the X-Z plane, the design of the center of mass trajectory in the
lateral direction, the Hip Yaw/Pitch joint control used to make the
robot turn, and the arm control.

3 openrdk.sf.net.
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Fig. 2. Right foot trajectory in the X-Z plane, and characteristic parameters. Left to right: right foot swing, double support phase, and start of left foot swing. The right

shoulder pitch movement is also outlined.

3.2. Foot trajectories in the X-Z plane

Here, we present the foot trajectory design for rectilinear walks
(v, 0). We show in the following that generic curvatures can be
obtained by combining such trajectories with the appropriate Hip
Yaw/Pitch control law necessary for pure rotations (0, w). Since
we focus on rectilinear walks, the foot trajectories belong to the
X-Z plane. The legs move in two phases: the phase when the foot
(stance foot) is on the ground to push the body forward, and the
phase when the foot (swing foot) is in the air to prepare the next
step. We design the trajectory of the stance foot in £ as a straight
line, and the ¥z swing trajectory as a semi-elliptical trajectory
(see Fig. 2). The joint angles required to enable the feet to track
the rectilinear and semi-elliptical trajectories shown in Fig. 2 are
calculated by means of inverse kinematics. Since the trajectories
belong to the X-Z plane, the three leg pitch joints (hip, knee and
ankle) are sufficient to control each foot during each phase.

As illustrated in Fig. 2, the foot trajectories depend on the
following 5 parameters:

o Xo:: the total length of a step, which is related to the requested
linear velocity v and to the step duration Ty, by equation:

Xiot = U Teor (1)

e X,0: the Fz abscissa of the swinging foot at the beginning of
the single support phase,

e Xgs: the portion of X, covered during one double stance phase,

e Z: the stance foot altitude in £z,

e Z,: the maximum height from the ground reached by the
swinging foot.

3.3. Using the leg roll joints to control the center of mass and the trunk

In order to guarantee stability during the single support phase,
the robot must ‘swing’ sideways during motion, as is commonly
done in static biped gaits [ 11,13]. This is done by shifting the center
of mass of the robot in the direction of the stance foot, which
is still on the ground. A qualitative representation of the desired
trajectory for the projection of the center of mass in the X-Y
plane during rectilinear walks is shown in Fig. 3(a). This trajectory
comprises a sinusoid above the stance foot area during single
support, and a linear trajectory during double support, which
moves the center of mass to the next swinging foot, in order to
prepare the next step.? This trajectory is obtained by moving the

4 Sinusoidal trajectories have been chosen here (and elsewhere in our gait model)
for their smoothness and energetic efficiency.

stance feet in £5. We have seen that gait stability is also increased
by letting the robot trunk roll around the X axis during the gait;
this is done using a sinusoidal time law of amplitude Kg, which is
driven by the stance hip roll joints. We have designed the foot and
trunk movements by using the 6 parameters: X;or, Xgs, Yft, Yss, Yas,
and K. The first two parameters have been defined in Section 3.2.
The four other parameters are:

e Yj;: the distance between the feet during the gait,

e Y: the maximum £ ordinate of the feet during the single
support phase,

e Yy the maximum F5 ordinate of the feet during the double
support phase,

e K: the amplitude of the trunk roll sinusoidal law.

3.4. Exploiting the NAO Hip Yaw/Pitch joint for turning

In order to implement rotational motions around Z (i.e., in order
to realize velocity requests with w # 0), we utilize the single
NAO Hip Yaw/Pitch joint Hyp (see Fig. 1). The movement is done
by alternatively increasing and decreasing the joint value during
consecutive single support phases (see Fig. 4), and locking it during
the double support phases. The rotational movement is designed
directly in the joint space, as opposed to the movements described
previously, which were designed in the Cartesian space, and then
mapped to the joint space via inverse kinematics.

Consider two consecutive steps. During the first swing phase,
the Hip Yaw/Pitch joint value is increased smoothly (using a
cosinusoidal law) from 0 to a fixed value Hypy;, whereas, during the
following step, the yaw pitch joint value is decreased (again, using
a cosinusoidal law) to restore parallelism (i.e., Hyp = 0) between
the feet. Since the rotation axis of the NAO Hip Yaw-Pitch joint is
the bisectrix of the Y and Z axis, the total angular width of a double
rotation step driven by the above time laws is HY% Thus, Hypy; is

related to the requested angular velocity w and to the step duration
Tor Dy:

Hypy = —2v/2 || Toor. )

Note that the sign of Hypy is always negative. The sign of w is
determined by the initial foot swing (e.g., in Fig. 4, negative w is
obtained by swinging the right foot first). To countervail the effect
of the NAO Hip Yaw-Pitch joint value Hyp (t) on the foot trajectories
in the X-Z plane, we subtract, throughout the gait cycle, Hyp©

from the hip pitch joints calculated with the method described in
Section 3.2.
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Fig. 3. Characteristic parameters of the leg roll joint control used for moving the center of mass sideways. (a) Top view, with qualitative trajectory of the projection of the
center of mass in the X-Y plane and initially right foot (dotted) swinging. (b) Rear view during single support (left) and double support (right) phases.

Hyp=0
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Fig. 4. Bottom view showing how the NAO Hip Yaw/Pitch joint is used for turning at @ < 0 over two steps (the swinging foot is dotted). Left to right: double support, right
swing, double support, left swing, double support. The verse of the angular momentum induced by shoulder pitch movement is also indicated by the curved arrows.

3.5. Arm control

As the human walk shows, arm movement synchronized with
leg movement can improve gait performance. Similarly to leg
yaw-pitch control, we have decided to design the arm movement
directly in the joint space. We only consider the pitch shoulder
joints, and lock the 4 elbow and the 2 shoulder roll joints. Since
conservation of angular momentum implies that for rotating
bodies, a decrease in the radius is accompanied by an increase in
the angular velocity (e.g., the ice skater spins faster when the arms
are drawn in, and slower when the arms are extended), we lock
the shoulder and elbow roll joints to the zero positions, and fix the
elbow yaw joint to 90°.

We design shoulder pitch movements coupled with the leg
movement and symmetric with respect to the vertical downward
arm position. Two different arm control laws are designed for pure
rectilinear walks and pure rotations, and the linear combination
of such laws is used for curvilinear walks. For rectilinear walks,
the angular momentum induced by the arms must cancel the
undesired momentum around the Y axis generated by leg
swinging. We use a sinusoidal time law during the swing phases,
and lock the shoulder pitch joint, during the double support phases.
The arm corresponding to the swinging leg moves backward and
vice-versa, as shown in Fig. 2. Instead, for pure rotations, the
angular momentum induced by the arms should enhance the
momentum around Z that is used to rotate. We use sinusoidal
time laws during both phases. During the swing phase, the arm
movement generates a momentum with the same verse of w, while
during the double support phase, the arms are moved back to
prepare the next swing phase (see Fig. 4). For all walks (i.e., for all
velocity commands (v, w)) the arm is controlled by one parameter:
the amplitude Ks of the shoulder pitch joint sinusoidal time laws.

4. Policy gradient learning

In this article, we experiment with learning techniques for
improving the generation of walking behaviors, using the motion

control scheme described in the previous section. In particular,
we focus on Policy Gradient methods, that are recalled in this
section. As in any robot learning problem, the applied method
should minimize time consumption, which is often related to
‘hardware consumption’ in real robot applications. Hence, the
algorithm must converge to the best solution (or to a good solution)
after as few experiments as possible. When experimenting with
learning techniques for humanoid robots, this issue is even more
demanding, since bad walking behaviors can cause the robot to fall
to the ground and possibly damage itself.

To overcome this problem, we start from this observation:
during the learning process, the relevance of the parameters
(i.e., their impact on finding an optimal solution) is not constant.
In particular, in many cases, some of the parameters reach good
or optimal values after few experiments, while other parameters
need many experiments. If we are able to appropriately reduce the
search space by removing the directions for which we have already
found an optimal value (i.e., the directions that are not relevant
anymore for determining the optimal solution), the number of
experiments needed could be reduced, without losing the quality
of the solution.

Unfortunately, this choice cannot be made in an ideal manner,
and in practice reducing the search space implies a reduction in
the quality of the solution. On the other hand, reducing the search
space also means that, with the same number of experiments, it is
possible to explore the search space in more depth. Consequently,
there should be a balance between the number of experiments and
the quality of the solution.

In this article, we want to verify that reducing the search space
by removing irrelevant parameters during the learning process
may lead to an optimal solution after few experiments. In order
to verify this statement, we adopt the Policy Gradient learning
method, which has been successfully used for robot learning [3,31]
and is suitable for a modification that takes into account the
relevance of parameters [4], and apply it to biped curvilinear walk.

In the remainder of this section, we recall the Policy Gradient
algorithm and its extension that takes into account relevance of
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parameters, while in the following section, we describe how these
methods have been applied to learning curvilinear humanoid gaits.

4.1. Policy gradient

The learning problem considered in this article is formulated
as a policy gradient reinforcement learning problem [3], that
considers each possible set of parameter assignments, and
defines an open-loop policy that can be executed by the robot.
Assuming that the fitness function (or objective function) F(X) is
differentiable with respect to each of the parameters, the Policy
Gradient (PG) algorithm estimates its gradient in the parameter
space X € R¥, and follows it toward a local optimum X*.

The parameter optimization approach based on Policy Gradient
starts from an initial parameter set X° and proceeds to estimate
the partial derivative of F(X) at X° with respect to each parameter.
From the initial set X°, p randomly generated policies ,X° (m =
1,...,p), near X° are evaluated. The number of policies p is
proportional to the search space dimension: p = Ak. Each of the
p policies is generated as: nX° = X° + [p1, ..., pk]T, and each
perturbation p; is chosen randomly in the set {—¢;j, 0, +¢;}. Each
X0 is grouped into one of three sets for each j: G_ j, Go j or G4 j,
depending whether its j parameter was obtained by adding —¢€j,
0 or +¢;. After evaluating the fitness function at each policy mXC,
average scores F_ j, Fg j, and F, . j are computed for G_, j, Gpj and
G j respectively. These scores are used to construct an estimate
of the gradient X°, which is then normalized, multiplied by a
scalar step-size, noted 7, and added to X°, to determine X' and
begin the next iteration (i = 1, ..., Ni). The step-size n is fixed
to a constant value throughout the learning process.

The algorithm usually terminates after a predefined number of
iterations Njgr, and it is proved to converge to a local optimum X*
if a sufficient number of iterations are performed. In practice, at
each iteration of the algorithm, p experiments must be executed to
evaluate the fitnesses of the p policies necessary for estimating the
gradient vvX. Hence, the total number of experiments necessary to
complete Nj., iterations is:

Npc = pNiter = AkNiter- (3)

4.2. Extended policy gradient with parameter relevance

Although effective, the method described above does not
consider the variable relevance of parameters during the learning
process. Here, we present an extension of the method, which takes
into account relevance of parameters to speed up the learning
process. The algorithm presented in this section is derived from
the one described in [4], by considering only the relevance of
the parameters, and not the contiguities among strategies, since
strategies are not taken into account in this article.

Let us define the following metric for measuring the relevance
of the parameters.

Definition. Relevance of parameter j at iteration i # 0 is the norm
of the weighted average of the jth gradient component of vector X:

il
Z)\lﬂvxjg
i=1

RE(]') — —
Z A
i=1

where A €0, 1[ is a forgetting factor, that operates as a weight
diminishing for the more remote data.

POLICY GRADIENT witH PARAMETER RELEVANCE
INPUT: X%, 7, Nier, T, PRtare
OUTPUT: X*
1 begin
2 initialize X « X° J={1,...,k}
3 for each iteration i = 1 to Ny,
4 generate p'~! random policies , X7 near X~ on Ji!

5 evaluate F'(X) at all p'~! policies ,, X'
6 Jie—0
7 for each parameter j €J!
8 evaluate F_ j, Fy;, and Fy.;
9 if Fy; > Focjand Fyj > Fyoj
10 ij — 0
11 else
12 VX; — F#»e‘j - Ffe,]
13 endif
14 evaluate R'(j)
15 if (R'(j) > T, or i < PRgtart)
16 Ji—JUj
17 endif
18 endfor Y%parameters
i vX'
19 VX' —nx oxT]
2 X X uXx
21 endfor Yoiterations
22 return X*
23 end

Fig. 5. Pseudo-code for Policy Gradient with Parameter Relevance algorithm.

The above definition of relevance is used to estimate how much
the parameter can contribute to find an optimal solution. Small
values of the relevance of parameter j imply that the estimated
gradient varies ‘slightly’ along the jth component during the
learning process: hence, we assume that parameter j has little
relevance on the system performance, and that it is not necessary
to search in this direction anymore.

The Policy Gradient with Parameter Relevance (PGPR) algo-
rithm is shown in Fig. 5. The algorithm is similar to Policy Gradi-
ent, with the main difference that policies are computed only on
the relevant parameters. More specifically, we denote with J' C
{1, ..., k} the subset of relevant parameters at iteration i (i.e., pa-
rameters j with ‘high’ R'(j)). After PRy iterations, J' is updated at
each step during the learning process, depending on the values of
R'(j) (lines 14-16). At each iteration, policies are computed only
in the directions given by the relevant parameters, i.e. only by the
parameters in /'~ (line 7). Correspondingly, at each iteration, the
number of policies generated is also updated according to the num-
ber of relevant parameters: p' = A|J'|.

An example of application of the algorithm is outlined in Fig. 6.
The figure presents two cases of parameter search for the drawn
2D fitness functions. In each figure, the light colored dots show the
values of X' computed at each step (starting from the leftmost one),
while the dark colored dot indicates the solution X* found after
a few iterations (Njer = 6 in the figure). The horizontal dotted
line shows the search direction after one of the parameters (the
one corresponding to the vertical axis) is fixed. In the left picture,
the advantage of the algorithm is clear: after a few iterations,
the parameter corresponding to the vertical axis is fixed and the
search continues only on the horizontal axis (dotted line), rather
than on the entire 2D space. This obviously speeds up convergence
and improves the quality of the solution when considering a
small number of trials. The right picture shows a case where the
algorithm does not behave in an optimal way. Here, after some
iterations, the parameter associated to the vertical axis is fixed to
a value such that the consequent 1-D search does not guarantee
to find the optimal solution. However, even in this case, if we
consider only a limited number of experiments, the extended
algorithm provides a better solution than the classic algorithm.
In fact, during the PGPR learning process, since the number of
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Fig. 6. Example of application of the PGPR algorithm.

relevant parameters (i.e., /') is reduced progressively, the number
of policies p' = A|J'| also diminishes. Hence, the total number of
experiments necessary to complete Ny, iterations, is:

Niter Niter

NPGPR:Zpi:AZUi|~ (4)
i=0 =0

Thus, if we assume that at least one parameter is considered
irrelevant and therefore discarded during the learning process
(otherwise, the two algorithms will behave identically) and if we
fix the number of iterations N, (i.e., the number of times the
gradient is estimated), it is obvious from Egs. (3) and (4) that
Npcpr < Npc.

This shows the main characteristic of the proposed PGPR
algorithm: although it does not guarantee to reach a local optimum
(as in the example on the right in Fig. 6), in many cases it requires
less experiments to compute the same solution (in other words, it
tends to find good solutions as early as possible).

As shown in the next sections, the application of this algorithm
is very suitable for robot learning tasks, where experiments
are expensive and a non-optimal solution obtained with few
experiments is often preferred to an optimal solution that requires
a larger number of experiments.

5. Learning configuration

5.1. Parameters

The objective of the learning process is to learn the optimal
parameter vector X* that ensures the best performance (i.e., the
maximum value of fitness function F ()j)) for any curvilinear

walking gait (i.e., for arbitrary velocity requests (v, w) € R?). The
vector X is composed of the following eleven parameters (detailed
in Section 3):

e ssy: the ratio between single support duration and total step
duration,

e X the total length of a step,

o Xs,0: the F5 abscissa of the swinging foot at the beginning of
the single support phase,

e Xys: the portion of X;,; covered during a double stance phase,

e Z: the stance foot altitude in £z,

e Zs,: the maximum height from the ground reached by the
swinging foot,

e Yj: the distance between the feet during the gait.

e Y: the maximum F5 ordinate of the feet during the single
support phase,

e Yy: the maximum F5 ordinate of the feet during the double
support phase,

e Kg: the amplitude of the trunk roll sinusoidal law,

e Ks: the amplitude of the swinging shoulder movement.

Note that in the above list of parameters to be learned, we have
not considered Ty, and Hypy since Egs. (1) and (2) show that these
parameters are constrained respectively to v and X, and to w
and T,. Moreover, we decided to fix Ty, allowing for different
velocities, obtained by varying X;,;.

Although these parameters allow for a curvilinear walking gait,
assigning:

Xiot = X4s =0 Xswo = Xswo

where X0 is the X0 value that guarantees zero moment around
the Y axis (i.e., that the ZMP is the projection of the robot center of
mass on the ground), turns the gait into a pure rotational walk.

Moreover, all the parameters are box-constrained by the gait
designer, due to the physical characteristics of the system, and we
call A; the range size for parameter j. Hence, a candidate solution
of the optimization problem for curvilinear walk is:

T
X = [5% Xeot Xswo Xas Zst Zow Yge Yss Yos Ke Ks] € @ C R, (5)

5.2. Fitness function

The appropriate choice of the fitness function for optimization
is fundamental. Here, we evaluate the quality of a walking gait
by taking into account the speed and the precision of the robot
motion with respect to the desired trajectory. Hence, we adopt the
following function:

F(X) = ML (X) + 2P (X) (6)

where L(X) and P (X) are metrics indicating respectively the
length of the path covered in a fixed amount of time, and the
precision with respect to the desired trajectory at the end of the
experiment, measured for parameter set X. The positive weights
A and Ap indicate the importance of these two measures. Here,
we simply report the derivation of L and P in the case of circular
trajectories (i.e., case of finite, non-null R), without considering
the cases of pure rotation and pure rectilinear walks. To test
parameter set X, we make NAO walk, for a fixed period of time,
along a circular trajectory of radius |R| (i.e., we apply a motion
request (v, w) such that v = wR). Refering to Fig. 7, we note
e ()j) the Euclidean distance between NAQO’s final position and the
circumference, and d,, (K ) the signed distance covered by the robot
during the experiment. The sign of d,. is positive if NAO walked in
the correct verse (i.e., if the average radius during the real walk
had the sign of R). Then, the variables introduced in (6), can be
computed as:

L) = )

pix) =1

B IR|

Note that F ()i ) can become negative for bad parameter sets. Note
also that, although this formulation of the fitness function does not
take directly into account robot falls, it does reward ‘late’ falls, with
respect to ‘early’ ones.

6. Experimental results

The objectives of the experiments reported in this section are:
(1) demonstrating that the Policy Gradient algorithm is adequate
for learning optimal parameters of the curvilinear walk described
in this article; (2) evaluating the approach based on parameter
relevance and assessing its advantage when only a limited number
of experiments is available. The experiments have been performed
both on the Webots 3D simulator® and on real NAO robots.

5 www.cyberbotics.com.
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Fig. 7. Relevant variables used to compute the fitness of a parameter set X. The
robot center of mass is indicated with a circle. The ideal and real trajectories are
represented respectively by the dark and light dashed curves.

For the experimental evaluation described in this section, we
took advantage of a result from our previous work [31]: the utility
of using a 3D simulator for speeding up the learning process.
In [31], we had shown that simulated learning can be used in
a layered approach as a starting point for learning on the real
robot. Moreover, simulations are in general less biased by noise,
and require less resources (both in terms of human operators
and in terms of hardware) than real world experiments. On the
other hand, running very long runs on the simulation does not
guarantee better parameters for the real robot. In fact, we found
out that after a certain number of learning iterations we obtained
specific solutions for the simulator that did not correspond to
good solutions for the real robot. Therefore, the length of the
experiments in simulation has been limited to 20-25 iterations.

In the following, we will thus present first a set of learning
sessions using Webots, and then sessions on the real NAO.
Simulations provide information about the convergence of the
algorithms for a robot learning application, while real world
experiments are used to show that learning is effective also on real
robots.

In both simulated and real experiments, we have focused on
learning the best parameter set with fixed T,; and variable velocity
v, which depends on the step length X;,;, in order to maximize both
velocity and precision in executing a curvilinear walk.

6.1. Experiments with Webots simulator

For performing quantitative measures of the proposed learning
approaches, we made use of the Webots 3D simulator, that
includes an official model of the NAO humanoid robot. The learning
task described in the previous section has been performed several
times, and we report here some relevant results that highlight the
characteristics of the Policy Gradient (PG) and the Policy Gradient
with Parameter Relevance (PGPR) algorithms. Referring to the 11
parameters shown in (5), we have decided to fix parameters ss%, Ks
and Y to hand tuned values, and learn the remaining parameters
(thus, k = 8). The number of policies used to estimate the gradient
issetto 16 (i.e.p = Ak, with A = 2).

With this configuration, we performed two series of exper-
iments: (1) running several learning sessions starting from the
same initial parameter set, in order to attenuate the effects of the

randomized choices of the algorithms, while comparing PG and
PGPR; (2) running different learning session for different initial val-
ues to evaluate the different performance of PG vs. PGPR.

6.1.1. Experiments with the same initial value

In the first set of experiments, we have performed many
learning sessions starting from the same initial parameter set, in
order to reduce the randomness of the results. The objective is to
analyze the relevance of parameters, and to compare PG and PGPR
in terms of both the number of experiments performed and the
quality of the solution.

The experimental procedure is the following:

e choose an initial parameter set that is the same in all runs;

e perform 5 complete learning sessions using PG algorithm for a
fixed number of iterations (Nj,, = 20) and analyze the variance
of the results (for the fitness values as well as for the final
parameter set);

e identify the parameters with low relevance during the PG
learning process;

e run PGPR starting from intermediate results of the PG learning
run and fixing the parameters with low relevance

e evaluate the reduction in the number of experiments and the
differences in the quality of the solutions between PG and PGPR.

The results of the simulations are summarized below. Fur-
ther details are given in www.diag.uniromal.it/~iocchi/Robot
Experiments/HumanoidLearning.

e The fitness increases in a regular way and there is low variance
between the 5 simulations (see Fig. 8). The learning process
allows for an increase of performance from policies with fitness
1.55 % 0.05 at the first iteration to final results of 2.34 4- 0.06.

e The five simulation runs do not converge towards the same
parameter set (see Table 1). In particular, some parameters
converge towards the same values (low variance in the final
solutions), while others tend to assume different values (high
variance). This can be explained by the fact that in the simulator
some parameters are less relevant and do not contribute in a
significant way to the optimal solution. For example, the height
of the foot from the ground Z;,, does not affect the quality of the
solution since the model of the simulator is not precise enough
to take into account uneven floor and frictions between the foot
and the ground.

e Between iteration 10 and iteration 20, 3 to 5 parameters have
been considered not relevant. As shown in Table 2, some of
them are different in the 5 simulations and stabilize at different
iterations. In almost all cases, parameters that in the final set
of the PG learning process have high variances (i.e., Zg,,, Xgs, K;)
have been identified by PGPR as not relevant. This confirms the
ability of PGPR algorithm to detect non-relevant parameters.

e Applying PGPR from iterations where non-relevant parameters
have been detected and therefore fixed allows for a decrease in
the number of experiments between 7% and 17% with respect
to PG. The best fitness obtained using PGPR and PG are very
similar (i.e., within £5%) thus indicating that PGPR guarantees
the same performance of PG but using less experiments.

6.1.2. Experiments with different initial values

In the second set of experiments we repeat the approach
described before, but running different learning processes starting
from different initial parameter sets. We start with PG algorithm
and when the relevance of a parameter is below the given
threshold T, we split the learning task in two: (1) we continue with
PG algorithm; (2) the irrelevant parameter is fixed and learning is
pursued with the remaining parameters (we call this run PGPR-1).
While running PGPR-1, when the relevance of a parameter is below
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Fig. 8. Learning curves for the 5 learning sessions.

Table 1

Final parameter sets [Z Ygs Yss Zsw Xeot Xswo Xas Ki-] for the 5 learning sessions.

Run X F(X)
1 [0.158 0.059 0.053 0.001 0.168 0.289 0.239 0.026] 2.407
2 [0.159 0.060 0.053 0.008 0.163 0.310 0.250 0.018] 2.378
3 [0.161 0.059 0.055 0.006 0.165 0.287 0.243 0.022] 2.402
4 [0.156 0.062 0.050 0.003 0.154 0.294 0.243 0.030] 2.296
5 [0.153 0.056 0.051 0.006 0.170 0.267 0.203 0.028] 2.289
Average [0.157 0.059 0.053 0.005 0.164 0.289 0.236 0.025] 2.354
Std.dev. [0.003 0.002 0.002 0.003 0.006 0.015 0.019 0.005] 0.058
Std.dev.% [1.8% 3.6% 3.3% 55.9% 3.8% 5.3% 7.9% 18.8%] 2.45%
Table 2

Non-relevant parameters: values and iteration in which they have been fixed.

K, = 0.024 (10)
Xgs = 0.250 (15)
Run 1 Xewo = 0.285 (15)
Zy = 0.002 (16)
Y4 = 0.056 (17)

Necer = 266 (—17%)

Zsw = 0.005 (14)
Xgs = 0.245 (15)

Run 2 K. — 0.018 (20) Npepr = 298 (—7%)
Ys = 0.051(20)
Xgs = 0.250 (11)
Z = 0.004 (14) . e
Yy = 0.054 (17)
Zgw = 0.005 (13)

Run 4 {5 = Gtz (1) Npcer = 286 (—11%)

Xgs = 0.241(16)
Zy = 0.159 (20)

Yi = 0.049 (14)
Run 5 Xewo = 0.274 (17)
K, = 0.026 (18)

Necer = 298 (—7%)

the threshold, we split again in two learning tasks: (1) we continue
with PGPR-1 algorithm; (2) we fix this parameter and start a
learning session with the remaining ones (we call this run PGPR-2),
and so on, until a fixed number of iterations is reached.

In the tables, graphs and descriptions we use the terms PG,
PGPR-1, PGPR-2, ... to refer respectively to the result of the
standard PG algorithm, to the PGPR with 1 parameter fixed, to the
PGPR with 2 parameters fixed, etc. Thus, the PG run corresponds
to the standard PG algorithm, the PGPR-(n) run (with n being the
maximum value reached during the procedure) corresponds to the
PGPR algorithm proposed in this article (Fig. 5), while the runs
PGPR-(i) (1 < i < n — 1) represent intermediate processes where
only a subset of the irrelevant parameters has been fixed.

This procedure aims at verifying the effectiveness of the choice
of fixing non-relevant parameters at a certain iteration of the PG
algorithm. It is important to notice here that after the learning
process is split, the two sessions proceed in parallel with different
randomized choices. Therefore, it is not possible to directly
compare the results of the two sessions independently from these
random choices.

Table 3

Results of simulation with different initial values.

Initial parameter set Fo PG PGPR-1 PGPR-2

1 1.607 2.104 2.161(14) 2.241(18)
2 1.497 1.895 1.986 (13) -

3 1.107 1.814 1.998 (12) =

4 0.698 1.584 1.640 (10) 1.589 (17)

Starting from a manually coded initial parameter set °X (with a
fitness of 1.607 in the first iteration), 14 iterations of PG have been
executed on all the parameters, reaching a fitness value of 1.865.
Then one parameter has been fixed, because of its low relevance,
and the learning process has been split in two: one execution
with all the parameters, one execution with one parameter less
(PGPR-1). At iteration 18, the values of the fitness were 1.954
for PG and 1.985 for PGPR-1, thus showing a slight increase of
performance for PGPR. At this iteration a second parameter was
below the relevance threshold and we split the execution again:
we continued with PGPR-1 and we started a PGPR-2 session. At
iteration 25 we stopped the learning process. The final fitness
values for PG, PGPR-1, and PGPR-2 were respectively 1.935, 2.029,
and 2.049, while the maximum values reached during all the
executions were respectively 2.104, 2.161, and 2.241.

Three additional learning processes, starting from different
initial policies, have been run in Webots. The maximum fitness
values obtained by each execution of the algorithm in the four runs
have been summarized in Table 3. The value Fy in the table reports
the fitness function computed at the first iteration, and indicates
how good the initial parameter set was. As shown in the table, the
initial sets used in the runs have been chosen in order to evaluate
the effectiveness of the approach when starting both from good
parameters (high values of Fy) and from bad ones (low values of
Fo). The first irrelevant parameter was detected/fixed respectively
atiteration 14, 13, 12 and 10 for runs 1 to 4 (values in parenthesis).
A second irrelevant parameter was detected only in runs 1 and
4, respectively at iteration 18 and 17. Different final results in
the table mostly depend on the initial parameter set and on the
randomness of the algorithms.

As shown in the table, the general trend is that PGPR
outperforms PG, and PGPR-(i+ 1) outperforms PGPR-(i). However,
there are also cases in which this is not confirmed (for example,
with initial set 4). One reason is certainly the randomness of the
algorithm. A second reason is that when starting from an initial set
that is far from the optimum, fixing a parameter may be more risky,
since it can lead to worse solutions.

Moreover, some parameters have been fixed early in the runs
that start from lower quality initial policies. This is explained
by the fact that when starting from a low fitness solution, some
of the parameters contribute more significantly to increase the
fitness (i.e., the derivative of the learning curve is higher), causing
the other parameters to be fixed at earlier stages. As already
mentioned, some of these choices may not be optimal (see again
PGPR-2 for initial set 4).

The overall results of the experiments reported in this section
are that (1) Policy Gradient methods are effective to improve
performance of the walking gait described in this article, (2) the
PGPR method generally guarantees better solutions with respect
to PG, since in most cases where the relevance of a parameter is
low, fixing this parameter value allows for speeding up the search
toward the optimal solution.

Among all the tests performed, the best parameter set allowed
for a top speed of above 12 cm/s, which is better than the
(currently) standard walk in Webots (4.5 cm/s) and the one built-
in in the URBI® universal robotics platform (10 cm/s).

6 www.urbiforge.com.
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6.2. Experiments with the real robot

The main objective of this work is to implement an effective
walking gait on the real NAO robot, by exploiting the results
obtained in simulation. Obviously, since the model of the NAO
in the simulator is only approximated, the parameter sets that
return best results in the simulation do not guarantee the same
performance for the real robot. However, simulated tests still
help to discard bad values of the parameters, to further limit the
parameter ranges and to estimate the directions in which the
fitness function tends to increase. Moreover, the implementation
of the learning algorithms has been fundamental to improving
important aspects of the robot gait, such as stability and precision
with respect to the desired trajectory.

One important issue we have considered when moving to
experiments on the real robots is the lack of symmetry in the
response of the motors. While with the simulator it is possible to
consider the same set of parameters for driving both the left and
the right leg, with the real robot we had to duplicate some of the
parameters in order to characterize the control of the left and the
right leg. Moreover, we have noticed different behaviors of our four
robots with the same parameters; this is again due to the different
responses of the motors.

The experiments on the real robot have been performed as
follows.

(1) The best solutions obtained in the simulations have been tested
on the real robot and we have observed the different behavior
of the robot with respect to the simulator.

(2) We have chosen a “good” initial set of parameters by visual
inspection, evaluating mostly the walk stability.

(3) We have considered a rectilinear walk, and have adapted the
computation of the fitness function to the real robot, on which
we do not have a GPS-like device determining the real position
of NAO. In practice, the fitness score is given by a combination
of the performed distance and a stability value assigned by an
operator that visually supervises the experiment.

(4) We then apply the PG algorithm by considering only the
parameters that have shown to be more relevant during
simulated experiments.

The results of two sessions of PG algorithm on two different
real robots are reported here. In the first experiment (on robot
‘Nao-34’), six iterations of the learning process have increased
the fitness of the best policy from 45.75 to 57.00, while in the
second experiment (on robot ‘Nao-40’) the increase of performance
in 3 iterations has been from 55.0 to 64.5. Moreover, we have
verified that the parameters learned for the rectilinear walk can
be effectively used for curvilinear walk as well.

Details on the experiments and videos are available at: www.
diag.uniroma1l.it/~iocchi/RobotExperiments/HumanoidLearning

7. Conclusions

In this article, we have compared two learning methods for
humanoid walking gaits based on Policy Gradient. In contrast with
most works in the field of biped gait generation and biped gait
learning, we have focused on curvilinear trajectories. We have
shown that the PGPR algorithm, that takes into account parameter
relevance, allows for better solutions than classic policy gradient,
when only a few experiments are available, since it reduces
the search space size during learning. The experimental results
confirm the effectiveness of our biped motion control scheme, the
performance of Policy Gradient reinforcement learning methods,
and the higher convergence of the PGPR algorithm with respect
to classic PG. In fact, we have applied this learning task to biped
walking, obtaining, both in a simulated environment and on

real robots, notable improvements in the execution of walking
gaits, even after a limited number of experiments. These results
are fundamental in robot learning applications, where time and
hardware consumption is a major issue.

Future work will consist of using PGPR to identify the
parameters characterizing pure rectilinear and pure rotational
gaits. We also plan to estimate the dynamic model of the NAO robot
and to exploit its sensing capabilities in order to develop a ZMP gait
controller, whose parameters could also be tuned using PGPR.
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