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O
ver the years, there have been many improve­
ments in job-related safety standards and 
working conditions, but there are still many 
situations and environments where human 
lives are put at risk, such as in search and rescue 

situations, construction sites, and chemical plants. We en­
vision a world where robots can act as physical avatars 
and effectively replace humans in those hazardous scenarios 
through teleoperation.

Despite the many successful cases of teleoperating mobile 
robots and manipulators, even in space, the teleopera­
tion of humanoid robots still presents major challenges. 
While humanoid robots are designed with the ambition of 
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mimicking the human body’s capabilities, differences in kine­
matics (e.g., structure and joint limits) and dynamics (e.g., 
mass distribution and inertia) are still significant. Another 
crucial issue is the necessity of ensuring the dynamic balance 
of the robot while trying to imitate human motion. This is not 
straightforward during locomotion tasks, in which the 
dynamics are highly involved.

A possible solution is, therefore, to use two forms of 
teleoperation: a low-level one for manipulation, realized via 
whole-body teleoperation (Figure 1), and a high-level type 
for locomotion, based on the generation of reference veloci­
ties that are then tracked by the robot. We believe that this 
combination of different modes of teleoperation will con­
siderably ease the burden of controlling humanoid robots, 
ultimately increasing their adaptability to complex situa­
tions that cannot be handled satisfactorily by fully autono­
mous systems.

Background and Contribution

Workplace Risks
Studies [1]–[3] indicate that hundreds of thousands of workers 
die on the job each year worldwide at a staggering cost (around 
4% of global gross domestic product) due to time loss, worker 
compensation, interruption of production, and medical 
expenses. Not surprisingly, data show that some work activities 
remain inherently dangerous, even with strict regulations in 
place. A study [3] from 2012 identifies cancer, respiratory dis­
ease, and accidents as the major causes of job-related deaths that 
could be prevented through workplace automation. In particu­
lar, a survey by the U.S. Bureau of Labor Statistics [4] shows 
that the most common accidents in the United States are fatal 
falls, collisions with objects and equipment, and injuries in 

confined spaces. The number of these casualties could be 
reduced if the physical presence of the operator were avoided.

For example, removing asbestos roof tiles is an operation 
that could be performed by teleoperated robots. Currently, 
this task is carried out by humans in a context that is extreme­
ly risky for their health, not only because they have to move 
on roofs but also because they are exposed to asbestos parti­
cles [Figure 2(a)]. In the oil and gas industry, workers are 
often required to enter confined spaces for inspection and 
maintenance, exposing themselves to such hazards as toxic 
vapors, not to mention the difficulties of evacuating them in 
case of accidents [Figure 2(b)].

Humanoids at Work
In the last decade, many research projects have investigated 
the use of humanoids for reducing risks and human worker 
fatigue. In 2012, the U.S. Department of Defense launched the 
DARPA Robotics Challenge (DRC), a prize competition for 
promoting and testing humanoid applications in the context 
of search and rescue. Its aim was to develop semiautonomous 
ground robots that could perform “complex tasks in danger­
ous, degraded, human-engineered environments.” The DRC 
finals also represented a midterm evaluation for WALK-
MAN [5], a European Union Horizon 2020 endeavor aiming 
to develop a humanoid platform for autonomous or teleoper­
ated intervention in buildings.

COMANOID [6] is another EU Horizon 2020 project 
focused on using humanoids to relieve human workers from 
tiring, dangerous, low-added-value tasks. The project 
revolved around the idea that humanoid robots are more suit­
ed to operate in narrow and cluttered environments typical of 
maintenance and manufacturing contexts, where more con­
ventional robotic platforms like wheeled mobile manipulators 
would not be able to perform.

Yet another Horizon 2020 initiative, AnDy [7], ad­
dressed human–robot collaboration in industry. Among its 
objectives was the design of collaborative policies for 
humanoids and cobots to anticipate and assist the human 
worker. In this project, teleoperation was successfully dem­
onstrated to be an intuitive way to convey collaborative 
policies to humanoids.

Proposed Approach
In all of these projects, humanoids are preferred over more 
conventional robotic platforms because their structure is a 
better fit for environments and tasks that are designed for and 
performed by human workers. This operational versatility 
makes humanoids suitable for work activities that require a 
variety of complex movements, such as inspection, mainte­
nance, and interaction with human operators.

Unfortunately, flexibility and adaptability come at the cost of 
increased complexity. Planning and controlling tasks while 
maintaining balance can be a challenging endeavor. Teleopera­
tion can ease the control complexity and facilitate the interac­
tion with the environment. Indeed, in spite of recent progress in 
robot cognition based on machine-learning techniques, fully 

Figure 1. A human operator controlling a humanoid during a 
pickup task.
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autonomous solutions are not yet viable. Our view is that the 
intuition and intelligence of human operators can be leveraged 
to make humanoids perform complex tasks, provided that suit­
able control interfaces and teleoperation modes are designed.

In this article, we present a teleoperation framework for 
executing loco-manipulation tasks with a humanoid. The 
proposed control architecture provides two different modes 
of teleoperation:

●● �a high-level teleoperation setting in which the operator 
uses a joystick to send reference commands to the robot, 
such as direction and velocity of motion, without dealing 
with their actual execution

●● �a low-level teleoperation scenario in which the operator 
generates whole-body movements for the robot by means 
of a motion capture suit (motion retargeting).

In both cases, the human operator receives visual feedback 
through a virtual reality (VR) headset connected to the robot 
avatar’s cameras. In this article, we demonstrate the frame­
work for the teleoperation of the humanoid robot iCub.

Related Work
The idea of teleoperating robots with VR was first proposed by 
Tachi [8], [9]. The retargeting of the upper-body joints 
(important for manipulation) has often been performed inde­
pendently of the motion generation of the legs, which is crucial 
for balancing and locomotion. In [10], for example, the 
authors employ the mobile manipulator Justin to retarget 
upper-body motions with haptic feedback at the hands, with­
out considering leg motions [Figure 3(b)].

Kim et al. [11] were among the first to extend robot tele­
operation to walking motions. In [11], upper-body motions 
and walking are sepa­
rately retargeted onto the 
humanoid robot Mahru 
by using a wearable motion 
capture system. Whenev­
er the operator walks, a 
human-indep endent 
walking by the robot is 
triggered. For the retar­
geting of upper-body 
motions, only the arms 
are involved. Converse­
ly, in [12], Hu et al. focus 
exclusively on teleoperat­
ing the walking for the 
humanoid TORO but also 
consider the human footsteps and configuration of the leg 
joints in the retargeting.

In [13], the authors teleoperate the iCub robot in an 
immersive scenario using a VR headset and a walking plat­
form [Figure 3(c)]. The robot starts and stops walking when­
ever the operator does, but the retargetable double-support 
motions are only limited arm movements. Motion retargeting 
can also be performed at the whole-body level. Ishiguro et al. 
[14] conducted some experiments retargeting highly dy­
namic upper-body and leg motions onto the humanoid 
robot JAXON [Figure 3(d)]. Although suitable for executing 

In the last decade, 

many research projects 

have investigated the 

use of humanoids for 

reducing risks and human 

worker fatigue. 

Figure 2. Examples of hazardous working environments where robotic avatars could replace humans: (a) an asbestos tile removal 
operation and (b) a maintenance operation in a confined space (in the oil and gas industry).
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challenging movements, such as kicking or hitting a tennis ball 
with a racket, their technique cannot be used for motions like 
jumping, running, or walking on rough terrain.

The main challenge of teleoperating highly dynamical 
motions is to ensure smooth and stable motions in real time 
while guaranteeing the robot’s balance. Inverse dynamics 
approaches would be ideal for handling the changing dynamics 
of the robot during teleoperation, but they are computationally 
expensive and prone to numerical ill conditioning. For this rea­
son, the classic approaches, including the works cited previously, 
rely on inverse kinematics.

Similar issues must be addressed in robotic walking, 
where a widespread approach to generate robust dynamic 
motions exploits model predictive control (MPC) on 
reduced models of the robotic system. For gait generation, 
the most common strategy relies on the concept of zero 
moment point (ZMP), i.e., the point with respect to which 
the horizontal momenta of the ground reaction forces are 
zero. Dynamic equilibrium is guaranteed by keeping the 
ZMP at all times within the robot support polygon, i.e., the 
convex hull of the contact points.

Many successful techniques for generating stable gaits 
are based on a simplified linear dynamic model [15] relat­
ing the ZMP to the center of mass (CoM), derived by 
neglecting any rotational contribution around the CoM, 
which is also assumed to be at a constant height. This is 
called the linear inverted pendulum (LIP) or cart-table (CT) 
model, depending on whether the ZMP is treated as an 
input or an output.

In the fundamental work in [16], the CT model was used 
to design a linear quadratic controller with a preview. Con­
straints were added in [17], leading to an MPC formulation 
and also allowing the automatic choice of the footsteps [18]. 
To cope with the unstable nature of the LIP, an explicit stabili­
ty constraint ensuring that the CoM trajectory is bounded 
with respect to the ZMP was introduced in the MPC design 
in [19]. Extensions for walk-to locomotion [20] or uneven 
ground [21] have also been proposed.

Multimode Teleoperation Framework
Our framework is illustrated in Figure 4. The human operator 
can choose between two different teleoperation modes using 
the buttons of the VR controller: 1) a low-level approach for 
full real-time control of the robot via motion retargeting or 2) 
a high-level method to command walking or preoptimized 
task trajectories. Both modalities share the same whole-body 
controller for computing in real time the commands to be sent 
to the robot.

In the first operational mode, the human posture is 
tracked by a motion tracking system—in our case, the Xsens 
motion capture suit. The data are then mapped to feasible 
corresponding joint values for the robot. To achieve dynami­
cal balance, the references are corrected by a stabilizer and 
then fed to the whole-body robot controller. The latter is for­
malized as a multitask quadratic programming (QP) control­
ler, where the task references are the desired robot posture 
and its stabilized CoM.

The second operational mode is characterized by a higher 
degree of robot autonomy and triggered by the operator 
using the joystick. For walking, the operator imparts a direc­
tion and velocity references for the humanoid gait through 
the analog sticks. These are translated into a timed sequence 
of footsteps, along with swinging foot and CoM trajectories, 
through an MPC-based control scheme. Alternatively, the 
operator uses the joystick buttons to select one of several pre­
defined task trajectories. The corresponding trajectories, 
which have been preoptimized offline, are sent as references 
to the robot controller and then simply reproduced.

The reason for the two distinct modes is that retargeting is 
essentially kinematic and so not effective for online teleopera­
tion of dynamic motions like walking or stepping. In our 
experience, retargeting of walking is not a viable solution, for 
three reasons: 
1)	�The stride of the robot is typically shorter than the operator’s. 
2)	�The robot foot trajectory is often optimized for balance 

and impacts, while the trajectory retargeted from the 
human is not compliant with these requirements.

Figure 3. The state of the art in humanoid teleoperation: (a) the TELESAR II [9], a mutual telexistence system; (b) the telexistence of 
the iCub robot with a VR walking platform [13]; and (c) the dynamical whole-body teleoperation of the JAXON robot [14].

(a) (b) (c)
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3)	�Since humanoids cannot walk as fast as humans, in a retar­
geting context, the operator would be forced to walk in 
an unnatural way, ultimately leading to inefficient 
robot locomotion. 
For these reasons, it is better to rely on MPC-based gait 

generation and avoid retargeting altogether in this phase. 
Similar considerations can be made for many motion prim­
itives or task trajectories that impact or leverage the robot 
dynamics, such as stepping or serving in tennis. In our 
view, these are the kind of motions that should be preopti­
mized offline, as they are specific to the robot dynamics. 
The following sections describe in detail the two teleopera­
tion modes.

Low-Level Teleoperation Mode
The motion retargeting in the low-level teleoperation mode is 
built on our previous work [22]. Joint positions are measured 
and grouped into subcategories: head, torso, left arm, right arm, 
left leg, and right leg. In addition, the ground projection of the 
CoM, the height of the waist, the orientation of the head, and the 
position of the feet are controlled.

In the joint retargeting module, the Xsens skeleton’s 
degrees of freedom are assigned to the corresponding ones of 
the iCub robot, as shown in Figure 5. Then, we consider the 
joint angle variations of the human with respect to the start­
ing posture to compute the corresponding instantaneous val­
ues of the robot joint angles:

( ),q q q qR R H H
k k0 0= + -

where q is the joint positions vector, the superscripts 0 and k  
refer to measurements at the initial time and time ,k  and the 
subscripts H  and R  indicate measurements on the human 
and robot, respectively. The same approach is used to retarget 
the relative Cartesian position pBS  of a body segment with 
respect to a base link, with the difference that the variation of 
the human positions has to be properly scaled by the human–
robot limb length ratio, as explained in [22].

To track the human CoM, we use normalized offsets, from 
which we then reconstruct the robot CoM ground position. 
We consider the ground projection of the human CoM p .CoM

g  
Its position with respect to an arbitrary foot (let us say, the 
left) is projected onto the line connecting the two feet. The 
result is then normalized to obtain an offset [ , ]:o 0 1!

( ) ( )
,

p p p p
p p

o
g g g g

g g 2
CoM Foot Foot Foot

Foot Foot

l r l

r l

$

< <
=

- -

-

where p lFoot
g  and p Footr

g  are the ground projections of the left 
and right foot, respectively. When the human is in a symmetric 
pose, the offset o has a value around 0.5; when the human 
stands on a single foot, it is either zero (left foot) or one (right 
foot). The robot CoM ground projection is then reconstructed 
on the line connecting the humanoid’s feet by means of this off­
set value. To also retarget the CoM changes that are not on the 
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line connecting the feet, we can apply the same concept while 
considering the maximum backward and forward CoM dis­
placement in the orthogonal direction of the line connecting 
the feet, as done in [22].

The resultant retargeted motion is not guaranteed 
to be dynamically balanced, and different stabilizers 
can be used to correct it (Figure 5). In our teleoperation 

approach, we want a dynamically balanced CoM trajecto­
ry, and we adopt the LIP model to properly modify the 
reference trajectory.

We previously recalled that balancing moments leads to 
the definition of the ZMP. Dynamic balance is enforced by 
keeping this point at all times within the robot support poly­
gon. By neglecting rotational terms and assuming a constant 
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height hCoM for the CoM, the moment balance equation of 
the robot leads to the LIP,

	 ,x x x1
2ZMP CoM CoM
h

= - p � (1)

where / ,g hCoMh =  with g  the gravitational constant while 
xCoM  and x MZ P  are the CoM and ZMP positions, respectively, 
along x  (similarly for ).y

By employing the dynamic equation of the LIP, it is possi­
ble to set up a QP optimization problem that provides a cor­
rection of the desired CoM at each control iteration that 
satisfies the humanoid’s balance condition: 
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where xCoM
refo  is the reference human retargeted CoM velocity; d is 

the sampling time; xm
CoMo  and hm

CoM are the last CoM and the last 
CoM height, respectively, measured from the robot; xmin

ZMP and 
xmax

ZMP are the lower and upper bounds, respectively, of the sup­
port polygon of the robot; and the first constraint is derived from 
(1) using the Euler approximation. 

The stabilized CoM reference, Cartesian tasks, and postural 
tasks are set as reference tasks in the multitask QP controller. At 
each time step, a linearly constrained QP optimization problem is 
solved to minimize the given cost function characterizing the 
motion tracking, subject to system constraints such as the joint 
and torque limits. More detail about the QP controller can be 
found in [23].

High-Level Teleoperation Mode
As illustrated in Figure 4, the desired humanoid motion is 
either defined offline (pregenerated task trajectories or action 
primitives [24]) or online (an MPC-based gait generator). 
Pregenerated trajectories are triggered by the operator, 
depending on the situation. For example, in the final phase of 
the reported experiment, the robot moves its feet apart 

autonomously, independently of the human’s lower limbs 
motion, to pick up the box more effectively.

Other tasks or repetitive movements like standing up can 
be recorded offline and replicated for a quick and precise exe­
cution. We also recommend the use of this option to make 
the robot perform motions that are not ergonomic for the 
operator or can be uncomfortable to perform. Note also that 
the execution of predefined motions may be more convenient 
in the presence of signal degradation or delay.

The online gait generation is based on the MPC scheme 
proposed in [19] and [25] and is summarized in Figure 6. The 
joystick provides reference velocities ( , )v vx y  and ~ for, respec­
tively, the sagittal, coronal, and angular motions. Footstep ori­
entations are computed in a separate stage and used as known 
parameters in the next module. This is useful to guarantee the 
linearity of the constraints in the following MPC formulation.

To generate the footstep orientations, a first QP problem,
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is solved for all of the F  predicted footsteps that fall within the 
prediction horizon of the MPC problem. These are denoted as 

( , , ),k F1
f f ffi iH =  while Ts is the step duration and maxi  the 

maximum allowed rotation between two consecutive steps.
A second module based on MPC generates the CoM tra­

jectory and the positions of the footsteps, while their orienta­
tions are inherited from the first module. At each time instant 

,tk  the MPC solves a QP problem on a prediction horizon 
[ , ]t tk k C+  based on a prediction model and constraints. The 
sampling interval has duration .d  We use as the prediction 
model the LIP (1) with an additional integrator on the input 
(dynamic extension), so that the ZMP velocities ( , )x yZMP ZMPo o  
are used as the control input. The decision variables of the QP 
problem are, therefore, ,xk

ZMP fo  ,xk C 1
ZMP
+ -o  ,yk

ZMP fo  yk C 1
ZMP
+ -o  and 

the footstep positions , ,x xF1
f ffo o  , ,y yF1

f ffo o  which are collect­
ed in the vector U k  of decision variables. The ZMP velocities 
are assumed to be constant in each sampling interval [ , ],t ti i 1+  
resulting in a piecewise linear ZMP.
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Figure 6. The pipeline of the MPC-based gait generation module.
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The constraints enforced in the second QP are
●● �a balance constraint, which ensures that the ZMP is at all 

times inside the support polygon
●● �a kinematic constraint, guaranteeing that the footsteps are 

placed in a kinematically feasible region and that they 
avoid self-collisions

●● �a stability constraint, which makes sure that the generated 
CoM trajectory does not diverge with respect to the ZMP.
The balance or ZMP constraint at a generic instant of the 

single support is expressed as

	 ,R
x x
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d
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where d ,z x  and d ,z y  denote the size of the rectangular sup­
port polygon while ( , )x yk i k i

ZMP ZMP
+ +  is the ZMP position at the 

ith prediction instant. R j
T  is the rotation matrix associated 

with the orientation of the jth predicted footstep within the 

prediction horizon, which is computed in the “Footstep 
Orientation” block in Figure 6. The ZMP constraint is 
enforced at each instant of the prediction horizon, i.e., for 

, , .i C1 f=
The kinematic constraint ensures that the footsteps are 

placed consistently within the robot’s capabilities. The con­
straint is
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where d ,xk  and d ,yk  represent the size of a rectangular region 
that is kinematically feasible and avoids self-collisions, and ,  
is the position of its center with respect to the previous foot­
step. The ! sign regularly alternates, discriminating between 
the left and right footsteps.

To understand the necessity of the stability constraint, 
note that the LIP model (1) and, hence, the prediction 
model have an unstable eigenvalue; therefore, the generic 
CoM trajectory will, in general, diverge with respect to the 
ZMP. There exists, however, a stability condition relating 
the CoM initial state in tk  to the future ZMP, expressed as
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which ensures that the CoM trajectory remains bounded with 
respect to the ZMP. A similar expression holds along .y

The stability constraint of the MPC is obtained by com­
puting (4) for a piecewise linear ZMP trajectory. However, 
note that the integral requires the future ZMP trajectory, 
which is available only up to the prediction horizon. The 
remaining part, after ,tk C+  can be conjectured by using the 
available information beyond the prediction horizon (e.g., 
the planned reference velocities). One possibility is to use an 
infinite replication of the control inputs over the horizon, 
which is especially appropriate for regular gaits that exhibit a 
periodic behavior; the resulting stability constraint is
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The second QP problem can finally be stated as
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In the cost function, xb  and yb  represent the weights associ­
ated with the velocity tracking terms.
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Figure 8. The walking phase: the CoM and ZMP trajectories along 
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Figure 7. (a) The robot walking in the high-level mode. (b) The 
robot controlled in the low-level mode with a motion capture 
suit and a VR headset. 
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Once both QP problems are solved, the first value of the 
ZMP derivative ( , )x yk k

ZMP ZMPo o  is used to compute the CoM tra­
jectory pCoM through the prediction model, while the first pre­
dicted footstep ( , , )x y1 1 1

f f fi  is employed, utilizing a predefined 
polynomial shape, to generate a swing foot trajectory pswg end­
ing at the predicted footstep. Both pCoM and pswg are finally 
tracked by the kinematic controller.

Experiments
This section presents an illustrative experiment performed with 
a human operator and the iCub humanoid robot. The iCub is 
only 104 cm high and cannot lift heavy weights, but our meth­
ods are not iCub specific and could be easily applied to adult-
size humanoids with heavier payloads. In our presented 
scenario shown in Figure 7, the robot must walk, pick up a box 
on the floor, and hand it to the worker. The operator is 
equipped with a wearable motion capture Xsens MVN suit and 
the VR Oculus Rift system, composed of a headset and a pair 
of joysticks. The suit provides real-time estimation of the pos­
ture, the headset gives visual feedback from the robot camer­
as, and the joysticks allow the operator to switch between the 
two different teleoperation modes and guide the robot.

As a first step, the robot should autonomously walk to the 
box, guided by the operator. After the operator selects the high-
level mode on the VR controller, the robot walks while receiv­
ing velocity reference commands through the joystick. Figure 8 
shows the MPC-generated CoM trajectory (to be sent to the 
whole-body controller) together with the footsteps. When the 
robot arrives in front of the box, the operator stops it. Then, still 
in high-level mode, the operator prepares himself for the pick­
up by moving his feet apart and selects a predefined motion for 
the humanoid to perform the same movement independently.

Finally, the operator switches to the low-level mode using 
the VR controller and performs a squat motion to pick up the 

box. Motion retargeting drives the robot to follow the move­
ments of the operator in real time, successfully handing the 
box over to the human. Balance is maintained throughout 
this phase thanks to the stabilization performed on the retar­
geted human references, as shown in Figure 9. A video clip of 
this experiment is available online [26].

Conclusions
In this article, we proposed a multimode teleoperation frame­
work for a humanoid robot on loco-manipulation tasks. The 
first mode is a low-level teleoperation of all the joints of the 
robot, while the other enables the execution of high-level 
commands and predesigned motion primitives, which can be 
useful for locomotion or other specific tasks.

The use case presented in the experiment consists of 
walking to a box on the ground using the high-level 
mode and then picking it up by switching to the low-level 
mode. It is possible to envision several scenarios in which 
the presented framework might be employed. For exam­
ple, the operator might switch to the low-level mode to 
use control panels, open doors, or recover items, all 
actions that could be necessary during exploration. The 
robot might also be equipped to execute specific actions 
necessary for maintenance operations (e.g., tightening 
screws and assembling parts) using specialized tools acti­
vated from the joystick. In the future, we will test these 
scenarios with adult-size humanoid robots.

A current limitation of this framework that prevents us 
from addressing more complicated teleoperation scenarios 
is the absence of haptic feedback. While safe physical inter­
action with the environment may be ensured by the robot’s 
low-level control, haptic feedback is still critical to enhance 
the remote-control capabilities of the operator. Typically, 
haptic feedback is localized in the end effector, where most 
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Figure 9. The pickup phase (the feet of the robot are shown in black): (a) the CoM reference position reconstructed from the human 
reference value (red) and the corresponding stabilized value (blue) and (b) the ZMP of the LIP model associated with the CoM 
reference without stabilization (red) and with stabilization (blue). 
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of the interaction occurs; in the case of teleoperated human­
oids, however, whole-body haptic feedback should be con­
sidered, possibly by means of wearable vibrotactile devices.
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