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Abstract

In this paper we consider the problem of controlling via state-feedback the end-effector
motion of a one-link flexible robot arm described by a nonlinear dynamic model. Due to
the non-minimum phase nature of the system zero-dynamics, use of pure inversion-based
techniques is unfeasible. In order to obtain stable tracking of desired tip trajectories, a
nonlinear regulation approach is followed. Alternate general design procedures that exploit
system invertibility are presented, leading to regulators of different complexity and real-
time demand. Issues about the generation of output reference trajectories and the off-line
computation of the associated steady-state trajectories are discussed, using the one-link
flexible arm as a case study. Simulation results obtained for a spline trajectory and for a
point-to-point motion show the achievable tracking accuracy and the wide applicability of
the presented control technique.

Introduction

The most simple approach to the problem of output tracking in nonlinear systems is based
on input-output inversion techniques [1,2]. In robotics, this solution has been applied for
exact reproduction of joint and end-effector trajectories, both in rigid manipulators [3]
and in robots with rigid links and elastic joints [4]. The main feature of these invertible
systems is that no zero-dynamics is present, and so full linearization can be obtained by
means of nonlinear static or, when needed, dynamic state feedback [5]. In this case, use
of an inverse control law induces no unobservable part in the closed-loop system.

More in general, the feasibility of an inversion-based approach relies on the assumption
of asymptotic stability of the zero-dynamics [6] associated to the system — which in the
linear SISO case is equivalent to assuming a minimum phase transfer function. Under
this hypothesis, the obtained closed-loop system consists of an input-output linear and
controllable part, and of an unobservable but stable dynamics. Instead, when the zero-
dynamics is unstable, inverse control substantially leads to an unbounded state evolution
in the closed loop. In practice, the applied model-based input will saturate and output
tracking will be completely lost. A different approach is then required for this class
of nonlinear systems in order to obtain trajectory tracking with internal stability, i.e.
output regulation. Recently, Isidori and Byrnes [7] have found a complete solution to the
regulation problem for general nonlinear systems. Output tracking is achieved without
forcing linearity in the input-output map through inversion; thus, this approach is suitable
for asymptotic trajectory reproduction also in nonlinear non-minimum phase systems.

The presence of link flexibility in lightweight robotic systems turns the trajectory
tracking problem into a less trivial one. Interestingly, both asymptotically stable and
unstable zero-dynamics are encountered in this case. It is easy to show that trajectories
defined at the joint level can be exactly reproduced in a stable fashion, using (static)
inverse control [8]. On the other hand, pure inversion is not feasible for the execution
of a desired end-effector motion, i.e. when the arm tip is required to follow a specified
trajectory. In fact, for a robot with flexible links, the zero-dynamics associated with any
reasonable definition of an output characterizing its end-effector location is unstable.

The non-minimum phase nature of end-effector motion is well known in one-link
flexible robots [9-11], and is present in the relative dynamic model independently of its
accuracy — nonlinear or linear, infinite or finite, with any number of elastic modes. The
same characteristics are indeed inherited in the multi-link flexible case. Most of recent
research is focused on one-link flexible arms, because of the control difficulties that already
arise in this case. However, the problem of end-effector trajectory reproduction is rarely
addressed [10-12]. A non-causal solution has been provided in [11], based on a frequency
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approach and using a linear dynamic model of the arm. In [12], we have considered a
simple nonlinear model, with flexibility concentrated in elastic springs along the link, and
the problem was solved using nonlinear regulation theory for the first time. In particular,
asymptotically exact tracking was obtained for sinusoidal tip motion and with a fourth-
order dynamic model of the arm. Also, it was shown how the sinusoidal velocity profile
could be used to produce a convenient end-effector trajectory of given time period.

In this paper, some alternatives in the design of nonlinear regulators are presented for
a class of invertible systems. We consider different feedforward /feedback combinations,
which are obtained by taking advantage of the existence of an input-output inversion —
although destabilizing — control law. Direct, indirect and mixed designs are compared
with respect to practical tracking performance and ease of implementation. This analysis
provides the basis for bringing the nonlinear regulation approach into action even in more
complex robotic applications, well beyond the simple example presented here. Proceeding
as in [12], we demonstrate the feasibility of accurate output tracking even for trajectories
generated by exosystems which do not satisfy the hypothesis assumed in [7]. Numerical
simulations indicate that very limited transient errors can be obtained with the indirect
nonlinear regulator in the case of cubic spline tip trajectories. Finally, results are reported
for a point-to-point (rest-to-rest) move, in order to illustrate the wide applicability of the
presented technique, which provides also new insight into classical cases.

Output Tracking via Nonlinear Regulation

Achieving exact or asymptotic tracking for a class of output trajectories while preserving
stability in the closed-loop system is a classical regulation problem. The key idea for the
solution is to find a bounded evolution of the state which produces the given output ref-
erence trajectory. The regulator will then drive the actual state towards this particular
evolution, labeled steady-state for obvious reasons, asymptotically obtaining stable tra-
jectory reproduction. Under mild assumptions, necessary and sufficient conditions were
found in [7] for solving this problem in the case of nonlinear systems. These conditions
are briefly recalled first. Consider a system defined by

x = f(x) +g(x)u, y=h(x), (1)

and assume that its linear approximation at x = 0 is stabilizable by means of a linear
state feedback u — Fx. A reference trajectory ya4(t) is supposed to be generated by an
autonomous dynamic system (i.e. an exosystem)

w = s(w), ya = q(w), (2)

for which every point in an open neighborhood of the stable equilibrium w = 0 is Poisson
stable (see [7]). Vector functions f and h are assumed to be zero at x = 0, as well as
s and q at w = 0. Note that the assumption of Poisson stability considerably narrows
the admissible class of dynamical systems eligible as trajectory generators. Indeed, this
hypothesis is strictly required only when considering an unlimited time horizon, and may
be relaxed when the reference trajectory to be reproduced is sufficiently well behaved, as
will be shown in the case study on the flexible arm. A state feedback law of the form

u = c(w) + F(x — n(w)), (3)

with smooth ¢(w) and m(w), ¢(0) = 0, and w(0) = 0, solves the regulation problem if
and only if c(w) and m(w) satisfy the following equations:

7 o(w) = £(n(w)) + E(r(w))e(w),

q(w) = h(m(w)).

The resulting nonlinear regulator (3) is made of a feedforward term c(w), providing the
desired steady-state response, and of a linear feedback that is designed around the invariant
manifold x = w(w) in the extended state space (x,w). Note that when x = m(w),
y = yq necessarily follows. Also, if the initial state x(0) lies on the steady-state manifold
associated with the desired output trajectory (i.e. x(0) = m(w(0))), exact output tracking
will result. Otherwise, only asymptotic tracking is obtained, still with bounded internal

(4)
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state. The overall block diagram of this direct regulator is reported in Fig. 1.
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Fig. 1 — Nonlinear regulator: direct design

In the following two further schemes that realize the same nonlinear regulation concept
will be presented. We assume that system (1) is invertible, and that input-output inversion
can be achieved via purely static state feedback of the form

u = a(x) + B(x)v, with B8(x) nonsingular. (5)

In this case, one can take in the first place the compensated system constituted by the
original plant under the action of the above inversion feedback. A proper change of
coordinates x = ¥(x), with ¥(0) = 0, displays the linearity of input-output paths in the
compensated system. The synthesis of a regulator can then be performed on the external
side of (5), applying the direct design to the new input v. As a result, the control law fed
into the original plant

u = a(x) + B(x)(E(w) + F(X — 7(w))) (6)

is a nonlinear state feedback, making the transformed manifold X = 7(w) attractive.
Figure 2 shows the overall block diagram of this indirect regulator. In order to assign
the same eigenvalues specified by F in (3) to the linear approximation at X = 0 of the
compensated system, the linear feedback matrix in (6) should be chosen as

F = 87 (0)(F — ax(0))¥'(0), (™)

where a subscript denotes the Jacobian of the relative mapping.
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Fig. 2 — Nonlinear regulator: indirect design

The motivation for a two-stage approach stands in the benefits obtained by (5), which
typically cancels the ‘heavy’ nonlinearities present in the orlgmal system. For example in
the case of robots with multiple flexible links, use of an inversion feedback resuits in com-
plete compensation of all nonlinear rigid body effects, which dominate the ‘slow’ dynamics
of the system. As a consequence, the explicit derivation of an indirect regulator, namely
the computation of €¢(w) and 7(w) solving equations similar to (4) for the compensated
system, turns out to be easier and numerically more robust than in the direct case. This
observation is strengthened when approximate computations are introduced. On the other
hand, system (1) may have been driven to instability through the application of (5). Yet,
the regulator will take care of induced unstable behaviors since the same approach works
also for an unstable plant, as long as it is stabilizable. Note also that the compensated
system can still be stabilized by linear feedback.
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Exploitation of system invertibility, which led to (6), can be combined with the sim-
plicity of control law (3), where all model nonlinearities are taken into account in the
feedforward term. To this end, regulation may be obtained using the same control struc-
ture as in (6), but evaluating nonlinear terms at their values on the manifold x = m(w),
instead of at their current ones. The control input becomes

u = a(m(w)) + B(r(w)) (E(w) + F(x — m(w))). (8)
Since feedforward terms in (3) and (8) must be equal, the following relation holds:
c(w) = a(m(w)) + B(m(w))e(w). (9)

This stresses the internal structure of the feedforward part of regulators, in the case of
invertible systems. As for the linear feedback term, stabilization is obtained by means of
a constant F in the direct design, while the mixed design achieves pole placement using a
time-varying matrix B(w(w))F. Close to the steady-state manifold, this gain modulation
is expected to be superior to constant linear feedback. In the robotic case, this is roughly
equivalent to weighting the feedback gain by the ‘apparent’ rigid inertia matrix.

The three proposed schemes are different regulators designed for the stable tracking
of output trajectories in nonlinear systems. In case of matched initial conditions, x(0) =
x(w(0)) viz. X(0) = F(w(0)), exact trajectory reproduction is obtained, and (3), (6),
and (8) collapse into a unique feedforward law that assigns the same steady-state behavior.
When matching of the full initial state is impractical, only asymptotic tracking is possible
and the above control laws will produce different transient behaviors: in this respect,
the best performance is achieved with the indirect approach. On the other hand, control
laws (3) and (8) are simpler, because most of the computations can be done off line.

A One-Link Flexible Arm Model

A one-link flexible planar robot arm will be used as a case study for the end-effector
tracking problem. A simple modeling technique divides the flexible link into rigid segments
that are connected by elastic springs, where link deformation is concentrated. Following
the Lagrangian approach, a nonlinear dynamic model can be obtained in the standard
form. Explicit expressions that are parametrized in the number of segments have been
derived in [12], so that model order can be varied easily to achieve the prescribed accuracy.
The following treatment will be limited to the case of two equal segments of uniform mass,
moving on the horizontal plane. Let m and £ denote the total link mass and length, k the
spring elasticity, u the input torque, #; the angular position of the link base, and #5 the
flexible variable. The dynamic equations are

[b”(BQ) bu(eg)] [q1] +[ c1(02,61,62) + d16; ]: [1] " (10)
b12(62) b2 62 c2(02,01) + kb2 + d269 0]

with the elements of the inertia matrix B(62) given by
bi1(02) = a+ 2ccos by, bi2(f2) = b+ ccosby, by =09,
and Coriolis and centrifugal terms
¢1(0a,0y,02) = —c (62 + 26165)sin bz, ca(f2,6,) = c 7 sin by,

where a = 5mf%/24, b = m€*/24, ¢ = mf*/16. In (10), dy and dz are damping coeffi-
cients representing viscous friction at the joint and link structural (passive) dissipation,
respectively. State equations can be obtained by setting x = (61,62,6:,82) € R*, but
we will keep the second-order differential representation for compactness. The linearized
expression of the end-effector angular position, as seen from the base,

1
y = & + 592 (11)
will be taken as controlled output for the system. The above finite-dimensional model,

although of reduced-order, displays the same basic control properties of more accurate and
complex distributed models.
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Indirect Nonlinear Regulator Design

In order to obtain output tracking of end-effector trajectories for the considered one-link
flexible arm, we will follow the indirect nonlinear regulator design. Stabilizability of the
linear approximation of (10) around the origin x = 0 is easily verified. Since the relative
degree of output (11) is two, the synthesis of an inversion-based control is accomplished
by deriving twice the ouiput and setting ¥ = v. Solving for u yields

b11(62) — 2b12(02)
2bgg — b12(02)

v = a(x) + B(x)v.

u = ¢;(02, 9,,é2) + d1é1 + (02(92,é1) + kb2 + dzéz)

2bggy — b12(02)

In the system after inversion, the input-output linearizing coordinates are X = (y, ¥, 02, 92)
In view of (11), here ¥(x) is just a linear transformation in the state space. The closed-loop
equations can be written as

y=v,

2(c2(y, 02, 02) + kb2 + d283) 2b12(62) - 5 (13)
v = v(X) 4+ §(x)v.
b12(02) — Zba bra(8y) — 25y U~ T F )

The zero-dynamics of the system is then obtained by setting y(t) = 0 [6]:
(c/2)62 sin B + 2(k0y + d262)

b— ccosbhy

é.g:

62:-

(14)

It is easy to see that this two-dimensional dynamics is unstable in the first approximation.
Therefore, tracking of a desired output trajectory yq(¢) cannot be achieved by simply
stabilizing the (linear) input-output behavior in (13), i.e. using

v=ia+ Fi(y—ya) + Fo(y — 92), By, F2 <0, (15)

as specified in a pure inversion-based approach [1,2]. As a matter of fact, (15) will force the
state of the system to become unbounded. This is always true, except for particular initial
conditions which depend on the desired trajectory. The initial state which guarantees — at
least in principle — an overall bounded evolution is given by the steady-state trajectory
w(w(t)), evaluated at time t = 0. This computation is a by-product of the regulator
derivation and it has to be performed according to the specific reference trajectory, being
the state w of the exosystem inherently related to the desired output evolution. Note
that, if the flexible arm is in a different initial state, only the regulator approach will be
capable of achieving asymptotic output tracking with bounded internal state. However, if
a non-causal solution is admitted [11], one may compute an input torque for t < 0, 1.e. to
be applied before the trajectory starts, in such a way to bring the system at time t = 0
on the steady-state manifold.

We will first consider how to obtain ¢(w) and 7(w) for a cubic spline reference tra-
jectory ya(t) = rat® +rot2 4+ rit+ro. This can be generated by a properly initialized linear
exosystem in Brunovski canonical form of order four: w; = wiyq, ¢ = 1,...,3, wg = 0,
ys = wy. Accordingly, the initial state of the exosystem should be w(0) = (rq, 71,272, 673).
This chain structure of integrators can be extended to the nth order for generating, as yq,
polynomial trajectories of degree n — 1. Here, the important point to remark is that these
exosystems are not even stable for n > 2. If an infinite time horizon is considered, any of
these polynomial trajectories will become unbounded. However, the proper initialization
of these exosystems and the limited time span considered in typical robotic applications
allows to overcome this critical point. In the cubic case, the most practical choice is to
set a finite time ts, specifying initial and final position and velocity (typically, zero). For
¥4(0) = vo, 94(0) = u5, ya(ts) = ys, va(ts) = y’, the spline coefficients take on the values:

[r;;] _ L[ —2(ys — vo) + ts(vy + v0) ] , [n] _ [ya] | (16)

ra] T 1 [3tp(us — wo) — 1555 + 200) ro] ~ Lo
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Taking advantage of the structure of system (13), equations (4) particularize to
(W) = wy, mo (W) = wo, e(w) = ws, (17)
and, hence, to the following reduced set of partial differential equations

om, on o7,

3 — —~
Oun w2t Ow, wa + Ows we = Ta(W), (18a)
or o7 % _ ~
311;)41 wy + a:; w3 + 617:): Wy = '}’(TI'(W)) + ﬁ(ﬁ(w))wal (18b)

with the v and & functions defined in (13). As expected, the first two components of
the steady-state behavior T(w) are the output reference position and velocity, while the
feedforward term ¢(w) is just the desired output acceleration. Equations (18) can be solved
approximately using polynomial expansion. In particular, because of the second-order
nature of the underlying mechanical system, it is sufficient to choose an approximation
for 73(w). Then, 74(w) will follow immediately from (18a). Considering a complete
third order polynomial expression for 73(w), substitution into (18b), Taylor expansion of
the nonlinear terms (up to third order), and final application of the identity principle of
polynomials gives

Fa(w) = agwa + asws + wh(azaws + a204ws) + G2aawrtnwe + G213 (19)

2 2 2
+ w3 (az2a3w2 + aaze wy) + wi(azaws + A344W3) + @asa Wy,

with definite values of the nonzero coefficients appearing in (19). Incidentally, note that a
‘linear’ version of the regulator can be obtained within the present framework, by limiting
the above expansions to first order terms. With these computed expressions, the resulting
v will be of the form

y— fI(W) Y~ Ya
=3 Fly—TM™ | g4+ F Y=va | 20
v C(W) + 8.2 _ 7r3(w) Yd + 6.2 —_ Wﬂ(yd: yd.;yd) ( )
B, — ma (W) 6> — T4 (Ya, Ya, Va)

which should be compared to (15), as a clear distinction between the two of approaches of
inversion and regulation. Combining (20) with (12) gives the actual input torque applied
to the flexible robot arm.

As a second simple example of computation of the terms ¢(w) and 7(w), we take the
classical point-to-point (rest-to-rest) move. In this case, a scalar exosystem is defined as
w =0, w(0) = yy, va(t) = w, and the indirect regulator design provides

¢(w) =0, ™ (w) = w = yy, Fo(w) = T3(w) = Ta(w) = 0. (21)

Simulation Results

The proposed nonlinear regulator was tested by simulation using as parameters for the
one-link flexible arm £ = 1 m, m = 0.2 kg, k = 5 Nm/rad, and dy = d, = 0.01 Nm sec/rad.
Simulations were run using Matlab, with a fourth order Runge-Kutta integration method.

For the spline trajectory, the following data were used: yo = 0°, ys = 90°, yy = y} =0,
ty = 1 sec, with the feedback matrix F assigning poles at —20 £ ¢30 and —30 + 125 to
the linearized system. Figures 3—-7 show the obtained tracking results. In particular, note

that the maximum error during transients is very limited (0.6° in Fig. 4). The presence
of transient errors, even if the output is initially matched with the desired one, 1s due to

the fact that the arm starts from rest in its undeformed condition (82 = 02 = 0). Instead,
initial belonging to the steady-state manifold would require e.g. 02(0) to be equal to

~ 6 2 216 yj 2 4 8
wa(w(0)) = %(Gn - 2—04) + 5 £ (aszs — 73334 + 73 0044 — ;«70444) # 0. (22)
K f f f 5 f

A ‘dual’ mismatched situation occurs at the trajectory end, after 5. In Fig. 5, the non-
minimum phase behavior of the tip is shown by its reversed initial velocity, as opposed
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to joint velocity. One can also note from Fig. 6 that the link deflection 8, is slightly
but constantly increasing during motion. This is due to the linear growth of the spline
acceleration, which would force over time an extremely large deformation into the system.
Nevertheless, the deflection remains limited and reaches a peak value of 5°. The applied
torque u in Fig. 7 follows closely the equivalent rigid one. These results are quantitatively
similar to the ones obtained in [12] with an harmonic exosystem (which is Poisson stable).

The same total net motion (yo = 90°, ys = 0°) was considered for point-to-point
S

regulation, with double real poles assigned by F at —920 and —30. Figures 8-10 show
that the nonlinear regulator achieves the rest-to-rest task in only 0.6 sec, but with a larger
torque effort and a link deflection which is five times times as large as in the spline motion.
Since 73 and T, are zero in this case, the resulting input signal in (20) executes also what

is usually called a ‘modal damping’ action, e.g. in the form Fify + F40,. However, the
benefit of this conventional strategy becomes questionable for general trajectory tracking
in flexible structures, when the natural steady-state deflection is different from zero.

Conclusions

The problem of tracking end-effector trajectories in a flexible robot arm is conveniently
solved via nonlinear regulation theory. Different possible realizations of nonlinear regula-
tors have been presented, highlighting achievable tracking accuracy and ease of implemen-
tation. It was shown in simulation how trajectories generated by exosystems not belonging
to the theoretical framework worked out until now can still be asymptotically tracked with
very satisfactory results. The improvements gained with the nonlinear approach over linear
tracking regulators have already been shown in [12].
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