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NONLINEAR CONTROL OF
ELECTRICAL SYSTEMS

THE DESIGN OF LINEARIZING OUTPUTS
FOR INDUCTION MOTORS

A. De Luca and G. Ulivi

Dipartimento di Informatica e Sistemistica, Universita di Roma “La Sapienza”,
Via Eudossiana 18, 00184 Roma, Italy

Abstract. Nonlinear control schemes based on inversion techniques are presented for voltage-
frequency controlled (VFC) induction motors. The selection of different output sets is discussed and the
properties of the resulting closed-loop systems are investigated. When the two components of the rotor
flux vector are chosen as controlled variables, the system is invertible and has. no zero-dynamics.
Therefore, the VFC induction motor can be fully linearized and input-output decoupled by means of a
dynamic state-feedback law. Two other pairs of outputs are then considered: the torque and the stator or
the rotor flux modulus, respectively. An input-output linearizing and decoupling dynamic compensator
can be designed for both cases. The associated closed-loop systems contain an unobservable part
whose dynamics is shown to be stable. The comparison among the obtained results provides a deeper
insight into the structural control properties of the induction motor.

Keywords. Nonlinear control systems, Linearization, Decoupling, Motor control, Induction machines.

Introduction

A common driving mode for an induction motor is to use the
amplitude and the frequency of the supply voltage vector as
control variables (Voltage-Frequency Control, VFC). This is
particularly appealing when the machine is supplied by an
inverter since most of the pulse-width modulation techniques
used in such devices assume these quantities as inputs
(Leonhard, 1985). When the induction motor is driven in a VFC
mode, its dynamic behavior becomes nonlinear and smooth.

Several objectives have to be considered in the design of a
control system for an induction machine. If the motor is used as
an actuator, controlling the produced torque is the major
concern. In any case, both the machine flux and the current
sinked from the inverter have to be kept limited even during
fast transients, so that the motor can operate properly. As a
matter of fact, the relevant quantities to be controlled are
nonlinear functions of the motor "physical" state variables,
which are currents and fluxes.

The system outputs are typically defined in connection with the
above specified control objectives. If inversion-based schemes
are used for control (Singh, 1981, Isidori et al., 1986), the exact
tracking of output time profiles becomes feasible. By inverting
the plant, the chosen outputs have a direct influence on the
characteristics of the resulting closed-loop system which may
contain an unobservable and possibly nonlinear part. This
internal dynamics should be stable in order to validate the
overall nonlinear control design. When several alternative sets
of outputs are considered, these should be evaluated in terms
of the induced closed-loop characteristics. With respect to this
analysis, a relevant role is played by the so-called zero-
dynamics of the system defined as its internal behavior when
the inputs and the initial state are chosen so that the outputs
are constrained on a given manifold (Byrnes and Isidori,
1988).

The purpose of this paper is to study some possible choices of
outputs for a VFC induction motor. Each choice specifies a
nonlinear state-feedback control scheme and leads to a
different closed-loop system. In particular, it will be shown that
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using the two components of the rotor flux vector as outputs
yields an invertible system without zero-dynamics; this system
can be fully linearized by means of a nonlinear dynamic state-
feedback (Isidori et al.,1986). Two other pairs of outputs are
then considered: the torque and the squared norm of the stator
flux, and the torque and the squared norm of the rotor flux. It
turns out that a nonlinear dynamic feedback is again required
for input-output linearization and decoupling in both cases;
each resulting closed-loop system has an unobservable part
which is of dimensicn two and, respectively, one. It will be
shown that this internal dynamics is always stable in the
operating region.

The steps that will be followed to get these results lead to a
better understanding of the intrinsic control structure of a VFC
induction motor. In particular, the zero-dynamics has a nice
physical interpretation and may provide in a single framework
also the standard steady-state conditions of the machine.

Induction motor model

Figure 1 shows the block diagram of a voltage-fed induction
motor which is controlled using the amplitude V and the
frequency o, of the supply voltage. The standard model relies

on the two-phase equivalent vector representation of the motor
current, flux and voltage vectors. Let ig,, isg be the components

of the stator current and ¢, 9sp the ones of the stator flux, as
projected on a reference frame (o) which is fixed to the stator
windings. A set of four differential equations can be derived to
describe the dynamic behavior of the motor in terms of these
quantities and of the projections v, and v of the supply
voltage which is applied to the stator windings. These are
related to the control inputs by

[Va‘ [V cos
217 ) §
B V sin 9

As a consequence, another differential equation should be
written for the angular position 9. Defining the state x and input

t
Y= Ima(t) dt + 9,
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the VFC motor state equations become:
x =f(x) + g(x) u (1)
with
) B o
(a+B) ® % oA 0
s s
o B
) -(oB) -—— 0 - -
OA, Ag A0 X
f(x) = x=| . = Ax
ach, 0 o 0 o0 0" 0]
0 00 0 0 0
0 0 0 0 0
€OS X
s
cAS
sin Xg
0
9y4(X5) 0
oA 15
g(x) = s = =] 9,(x5) g
) [ . 1] [90%5) @, ]
cosxg 0
sinxg 0
[ o 1]

where o = Rg /0Ag, B = Ry /6Ar, 6 = 1- (M2/ AgA(). Rg and R,
are the stator and rotor resistances, Ag and Ay are the stator
and rotor self-inductances and M is the mutual inductance
between the two windings.

In the following two sections, different outputs y = h(x) will be
considered in association with the above state equations and
their properties analyzed.

Full linearization via dynamic feedback

It will be shown here that a set of outputs exists for the
induction motor (1) such that the resulting system is invertible
and fully linearizable by means of a state-feedback of the
dynamic type. Consider the following outputs:

Y; =Xg - OAX, (2a)
Yo =X4- OAX, (2b)

These linear functions have a clear physical meaning, being
proportional (by a factor A;/M) to the (c,B) components of the
rotor flux. The generalized inversion algorithm (Singh, 1981,
Byrnes and Isidori, 1988) will be applied to the triple
{f(x),g(x),h(x)} formed by (1) and (2) in order to check whether
the two inputs can be recovered from the knowledge of the
outputs and of their time derivatives. The first input u; appears
explicitly after two time derivatives:

Yy=(a5- oA a,)AX + (ag - oAa,)g,(X;)u (3a)

1

Y, =(a,- OA3,)AX + (8,- OA3,)g, (XU, (3b)

where a; denotes the j-th row of the system matrix A. To
proceed with the algorithm a new "dummy" output function AM(x)
has to be defined by combining the above expressions so to
cancel the dependence on the first input. This is achieved by
solving for y(x)

(ag-oAa,) 9,(Xs)
[1 1) =0

(a,- oAa,) g, (Xs)
which gives:
(ay- O0A@a,)g,(Xs)  cos Xg

Y(xg) = - =- )

(a,- 0A@,)0,(x5) SN xg

Therefore, the new function
r=[1 wo)][v]-
y
)

1
2
=[(a;- oAg,) - Y(Xs)(@, - 6A8,)] Ax (5)

is independent from the inputs. Note that the singularity sin x5

=0 in (4) could have been easily avoided by using a different
admissible definition for A(x). The derivative of A w.r.t. time is

A=Y 1Y, +1Y,=

= (8, - oA a,) - Y(x5)(, - 0A,)] (A’ + Ag (xg)u, )+

o

X

As the coefficient which premultiplies u, does not vanish

identically, the algorithm stops providing the following vector
equation used for solving w.r.t. u:

Y, _ b1(x)] [mn(x) 0 ] - bl + M .
[X] [bz(x) : Myy(X) Myy(x) V=Bl = M 0

The expression of the terms b;(x) and m;(x) are obtained from
(3a) and (6). The matrix M(x) is locally nonsingular, although it
inherits the possible singularites introduced by the algorithm.
The functions

(a, - oA 2,) Ax U, (6)

Y1), Yo%), ¥, (%), ¥, (%), Alx)

are independent in the region of nonsingularity of M(x); by the
implicit function theorem, the knowledge of their values allows
to recover the five components of the state x. Note that
constraining these functions to zero gives x = 0. As a result, the
system formed by (1) and (2) turns out to be invertible and with
no zero-dynamics.

Following Isidori et al. (1986), a dynamic state-feedback can
be designed which yields full linearization and decoupling in
the closed-loop system. Such a dynamic control law is not
unique and may be obtained in various ways. In particular, the
following three-step procedure can be used:

1. Apply the static state-feedback

u=M"(x) [w-b(x)]

which is derived from (7).

2. Extend the system by adding one integrator (with state €) on
the new input wy:

w, =§ E=W,,  W,=Ww

More in general, p; integrators should be added to each
ordered input w;; this number is equal to the difference
between the second-highest and the lowest order of
derivation of the output y; appearing in the left-hand side of
(7) (Singh, 1981).

3. Use decoupling static feedback from the extended state (x,8)

2

W= o (xE) +B(x) v

to complete the design of the full linearizing compensator.



The Design of Linearizing Outputs for Induction Motors 365

Note that the decoupling matrix D(x) of the extended system
depends only on x and has a simple triangular form:

1 0
h Yxg) 1

while

(x8) =B () L7 h(x.)

where the bar over f denotes the drift vector field obtained after
the dynamic extension of step 2 in the above procedure.

Collecting together these terms provides a dynamic state-
feedback compensator in the form (see Figure 2):

E=P(xg)+QxEV =R(x.8) +S(x&) v

In the proper coordinates, the equivalent structure of the

closed-loop system is given by two strings, each of three
integrators, from v to y. Since there is no resulting

unobservable dynamics in the closed-loop, the stabilization of
this linear system is achieved simply by pole-placement
design of v.

Input-output linearization via dynamic feedback

The previous choice of outputs gives a closed-loop system
without unobservable dynamics. The exact value of the rotor
flux representative vector can be freely imposed through a
third-order linear dynamics. However, the two components of
the rotor flux do not represent suitable quantities to be
controlled when the induction motor is used as an actuator in a
typical drive. In fact, it is a difficult task to ensure a desired
torque by defining only reference values for these outputs.
With this respect, the following two alternative sets of outputs
are more convenient:

(a) torque and squared norm of the stator flux

Y= T =XXg - XX, (8a)
1 2 1 2 2
y2=—2-<l>s=§(x3+x4) (8b)
(b) torque and squared norm of the rotor flux
Y1 =T =XX3 ™ %1%y (9a)

1 2 1 B
y2=—2-<1>r—§[(x -ch) (x4~ 0AX,) ] (9b)
All the above functions are intrinsically coordinate-free, i.e.
independent from the absolute position of the vectors
representing the state. In particular, these outputs assume
constant values at sinusoidal steady-state.

For the first set of outputs, a nonlinear controller has been
already designed in De Luca and Ulivi (1988). In this case the
system can be input-output linearized and decoupled if a
dynamic compensator of order one is used. In particular, an
integrator should be added on the voltage modulus input in
order to get a nonsingular decoupling matrix. The resulting
closed-loop system has a two-dimensional unobservable part
whose stability was shown by simulation only.

When the outputs (9) are used, i.e. replacing the stator with the
rotor flux norm, it is possible to show that a similar result can
be obtained. Namely, a dynamic state-feedback of order one
can be designed such that the system becomes input-output
linearized and decoupled. Again, the dynamic extension can
be realized by adding one integrator to the voltage modulus
input. In this case the closed-loop unobservable part becomes
of dimension one and its stability has to be investigated.

In the following, explicit expressions will be derived for the
unobservable dynamics in both cases. In order to achieve this
goal, a proper choice of coordinates is required which helps in
getting simpler equations. The full linearization results shown
in the previous section suggest to use the components of the
rotor flux vector as coordinates for the unobservable parts. The
appealing feature of the rotor functions (2) stands in their
maximum relative degree (Isidori, 1985). Besides, the choice
of other coordinate functions (e.g. the two components of the
stator current as in De Luca and Ulivi (1988)) may lead to very
complicate expressions which are difficult to handle even
using symbolic manipulation languages.

Before analyzing the above cases (a) and (b) it is worth to
rewrite the dynamic equations (1) in a compact form after the
introduction of the input integrator:

.+
; _T
X=['sa O P V] =[x Xg XG]

[ @a]T

AX + Xg 0y4(Xs) 0 o0
=f(x)+Gu = 0 +1 0 1 ]u (10)
0 i 0

This preliminary addition of one integrator implies that the
controllers which will be derived next are always of the
dynamic state-feedback type.

T

Outputs (a): Torque and squared norm of the stator flux

It is easy to see that the outputs y = h(x) defined by (8) have
relative degrees ry =r, = 2, with reference to the dynamics
(10). The decoupling matrix D(x) = [Lg L; h(x)] is nonsingular for

V = =
s +X,) ] =i-— @, @ #0

det D(x) = X [ (XX, + X,X,) -
6L \*%3 4" GA, oA

2

1 2 2
(X5 + X
A
s
i.e. whenever the two vectors of stator and rotor flux are not
parallel and voltage is applied at the motor input. These
conditions are always satisfied during standard operation.
Since n = dim(x) = 6, an unobservable sink of order n-(ry+r,) =
2 arises in the closed-loop system (see Figure 3a). In order to
derive dynamic equations for this part, a state transformation is
performed:

z=T(x)=[h1(x) Lh,(x) hyx) Lhyx) Tyx) 0] =

T
: 1.2 =%

=[Tm Tm ECIJ o0, 9 (9"3]

The Jacobian matrix J(x) = [0T/dx](x) of this state transformation

is nonsingular if and only if the decoupling matrix D(x) is

nonsingular. By inspection it is easy to see that T(x) has the

following block triangular dependence on x:

i R

Therefore, one can obtain explicit expressions for x = x(z) first
inverting T' and then using the last two rows of (11) to
determine xs = x5(z) and xg = Xg(z). The inversion of the

mapping T' provides:

z' =(2,,2,252,), 2"=(z,.z,) (1)

2 2 2
___.zi_[1_\/223(z5+26)-(cAsz1) ]
oA 2

2
Z.+Z

5 6
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B forz.#0
2= 2, = (12)

Xg = Zg + OA X, (Z) =1 X4(2)

X, = Zg + OA X, (2) =1 X,(2)
The first two expressions in (12) hold for z5 (= ¢,,) # 0, while an
alternative representation can be obtained for zg (= @) # 0.
Since z5 and zg are never both zero in the operating region, no
special restrictions are imposed on the validity of the inversion
of this mapping. By replacing these four solutions into

2, =T, (X) = O(X Xg+X,X,) - (0+B)(XX57X X)) - W/GA (x +X )

2X4) 273717
+Xg [ (X3-0AX,) sinXg - (x,-GAX,) COSX; ] oA

2

Z, =T, (X) = -0OA (X Xg+X,X,) + Xg [Xg COSXg + X, SINXS]

and noting that these equations are linear w.r.t.

Va= Xg COS)(5 5 \ =)(6 SInX5

B
it is possible to solve for vy = v,(.

-Zg/OA,  ZgIOA, z-‘i’[x
(13)
X4 Z, —\P[x

The solution of (13) is unique and well defined in the same
region where the decoupling controller is assumed to operate.
Finally, the last two components of x are computed as

z) and vg = v(2) from

Xg _ATAN2{v (). v (2)}=:x5(2)
> Py (14)
Xg = vu(z)+vB(z) =1X4(2)

where ATAN2 is the four-quadrant arctangent function.
Using the obtained inverse transformations from z to x =
x(z), the closed-loop unobservable dynamics can be written as

Zg=[X3-OA X 1y L ypy=
\/223 (z2+2])- (GASZ1)2] kz,
=- 1-(1-0) Z. = +0fz
B 2 2 5 2 2 6
z, +2g z  + 2,
(15)
e =[ - OA, x2 ]x @)=
2 2 2
kz \/22 (z+z)—(cAz)]
= 212+0)25—ﬁ1-(1—c) e 5262 st Zg
+Zg z  +2; I

where k := Bo(1-6)Ag > 0. This dynamics has the form of a
nonlinear harmonic system. When the chosen motor outputs Z4
and z3 are forced to their desired constant steady-state values,
then the solution of (15) converges to a sinusoidal form
characterized by the zeroing of the damping terms. In this
condition the squared norm of the rotor flux @2 = (z52+242) is
constant and its value can be easily derived. Moreover, the
angular frequency of the rotor flux vector can be computed
from the off diagonal coefficients in (15) and it coincides with
that of the motor supply ®,.

Outputs (b): Torque and squared norm of the rotor flux

When the squared norm of the rotor flux (9b) is used in place of
the similar quantity defined for the stator (8b), the relative
degree of this second output becomes r, = 3. It can be shown

that in this case the decoupling matrix D(x) associated to the

system dynamics (i0) is nonsingular for:

B(1-0)

(5As

det D(x) = - Xg [(%g - 0A5x1)2+ (%4 - oAsxz)z] =

(B9 g2 Lo
OA, r

In this case the unobservable sink which arises in the closed-
loop system has only dimension one (see Figure 3b). A

before, the stability of this part needs to be investigated in
order to validate the decoupling and input-output linearizing
control approach. The derivation of the scalar equation
governing the behavior of this unobservable dynamics follows
the same steps seen above. In particular, the use of one rotor
flux component for completing the change of coordinates in the
state-space proves to be satisfactory. Therefore, by setting

5 T
z=T(x)=[h1(x) Lh,(x) hyx) Lh,x) LZh,(x) TG(x)]=

. a T
. 1,2 =% g

= [ To Tm 2% @0 <(2,0) cpm]

The Jacobian matrix of this transformation has determinant

2

aT(x)
det J(x) = det[ % ] =-p°(1

2., 2
-0) Vo, (prB

The mappmg T(x) is singular whenever the decoupling matrix
D(x) is singular or when @p is zero: in this second situation, OB
should be chosen in place of ¢,y as Tg(x). Therefore, the
dynamic description which follows does not hold globally but
only within a domain made of (any) two quadrants.

Following the same reasoning which led to (12), the
inverse expressions x = x(z) are computed as

/ 2
Bo(1 -0)AZ,z5 + (22,80 +2,) 2z4- 24

%" 2z, Bo(1-0)A A

X =w=: x1(z)

1
2
,/223-2‘S

X3 =Zg + OA X,(2) =1 X4(2) (16)

/ 2
Xy =) 223-25 +OAX,(2) = X,4(2)

while x5(z) and xg(z) are obtained as in (14), i.e. solving a
linear system of equations similar to (13). Their explicit
functional forms are not reported here; in fact, they are not
needed for the derivation of the unobservable dynamics.
Substituting (16) into the closed-loop equation of Zg gives
finally:

: 1 [ 2
26=—2—Z; {2425 - [Bo(1-0)Ayz, +202,] 2z4-z5 ) (17)
When the outputs are forced to their desired constant values

1
=T, z aErdes' 4= %

1 m,des ’ =O’ Z3= 2,=25=0

2

then (17) becomes the zero-dynamics of the system

. 1 2
ZS =TT [ kTm,des * mq)r des] rdes

r.des

2
_ZG

where k > 0 is the same one defined in (15). This equation is
still nonlinear but its solution in time is unique for a given initial
condition at time t = 0 and has the simple form

kTm,des
2
(pr,des

z(t) = |<I>r desl €OS (@t +3) 0, =0+
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Therefore, the internal unobservable dynamics is proven to be
stable also in the case of rotor flux output.

Conclusions

Three feasible inversion-based control schemes have been
proposed for voltage-frequency controlled induction motors.
These schemes differ in the definition of the controlled outputs:
the two components of the rotor flux, the torque and the norm
of the stator flux, and the torque and the norm of the rotor flux.
All of them require dynamic state-feedback to achieve input-
output linearization and decoupling. Using the components of
the rotor flux yields also full state linearization in the closed-
loop, but this choice is the less attractive from a practical point
of view.

The above analysis shows that the length of the obtained
input-output chains of integrators is a rough but valid measure
of the intrinsic difficulty in controlling torque (two integrators),
stator flux (two) and rotor flux (three) in a VFC induction motor.

Another general result is related to the existence of zero-
dynamics for this system. Whenever the inputs and the outputs
of an induction motor are coordinate-independent, an internal
dynamics arises in the closed-loop due to the intrinsic rotating
nature of the vectors representing the motor physical
quantities. In fact, once the inversion controller is applied,
constant nonzero values for the inputs and outputs are
perfectly admissible: an harmonic system should then be
present which, at the steady state, internally drives the motor
so to provide the proper output torque and flux values. Thus,
the (marginal) stability of the zero-dynamics should not be
surprising. The same reasoning also explains why the only set
of fully linearizing outputs, the two components of the rotor flux,
is a time-varying one in steady-state conditions.

It is interesting to remark that if a third independent input is
added, as in De Luca and Ulivi (1987), still not enough
degrees of freedom are provided so to control the torque, the
(stator or rotor) flux norm and the current norm in a decoupled
way. In fact, the inherent coupling of these quantities can be
made explicit also in the case of VFC induction motors.
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